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Abstract

Maintenance of mammalian core body temperature within a narrow range is a fundamental 

homeostatic process to optimize cellular and tissue function, and to improve survival in adverse 

thermal environments. Body temperature is maintained during a broad range of environmental and 

physiological challenges by central nervous system circuits that process thermal afferent inputs 

from the skin and the body core to control the activity of thermoeffectors. These include 

thermoregulatory behaviors, cutaneous vasomotion (vasoconstriction and, in humans, active 

vasodilation), thermogenesis (shivering and brown adipose tissue), evaporative heat loss (salivary 

spreading in rodents, and human sweating). This review provides an overview of the central 

nervous system circuits for thermoregulatory reflex regulation of thermoeffectors.
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Introduction.

Homeostatic control of body temperature is critical to the survival of mammals. Body 

temperature in mammals is generally maintained within a narrow range by the activation of 

multiple thermoeffector responses which are primarily under the control of central nervous 

system circuits. Important thermoeffector systems have evolved to maintain tissue 

temperatures at an appropriately elevated level to optimize enzymatic reactions and cellular 

function, while preventing dangerous elevations in body temperature that might compromise 

cellular function due to protein denaturation. Thermoregulatory behaviors, driven by 

cutaneous thermal receptors and motivated by thermal comfort, often comprise a first line of 

defense in maintaining body temperature in non-normothermic environments. The primary 

thermoeffector tissues include cutaneous blood vessels whose level of constriction 

determines whether the heat energy in warm blood will be radiated from the body to the 

environment or conserved in the body core. Salivary (in rodents) and sweat (in humans) 

glands provide fluid that dissipates body surface heat to the environment during evaporation. 

Thermogenesis due to skeletal muscle shivering and to the uncoupling of metabolic energy 
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from ATP production in mitochondria, particularly prominent in brown adipose tissue, is the 

primary physiological heat source for cold defense. This review will provide an overview of 

the central neural circuits, from thermal afferents to thermoeffector tissues, that comprise the 

core neural pathways for the thermoregulatory responses.

Thermal afferent pathways

Primary somatosensory neurons

Classic neurophysiological experiments have characterized two general classes of innocuous 

thermal afferent fibers, those activated by cooling and those activated by warming. The cold 

activated fibers are rapidly adapting A-delta fibers in humans and primates [19, 43] and 

mostly c-fibers in other mammals such as, cats and rats [52]; these fibers respond with a 

dynamic activation during cooling and a sustained but diminished activation during stable 

cool thermal conditions. The warm activated fibers are largely c-fibers that are activated by 

innocuous warm temperatures [30, 52]. Thermal TRP channels likely play a role in detecting 

innocuous temperatures. For example, TRPM8 agonists applied to the skin evoke responses 

that mimic cold exposure [131]. In addition, TRPM8-deficient mice have a deficit in their 

ability to detect cold [9, 24, 29] and have mildly impaired cold tolerance [130]. Furthermore, 

TRPM8 antagonists attenuate cold defense responses [3]. Diphtheria toxin-induced ablation 

of TRPM8-containing neurons decreases behavioral responses to cold even more than 

TRPM8 deficiency [108].

The TRPV1 channel is a primary candidate for the detection of warm temperature. TRPV1 

is necessary for innocuous warmth sensitivity in trigeminal ganglion cells [145], however 

TRPV1 deficient mice have relatively normal thermosensitivity [63, 108, 116]. TRPV1 

antagonists produce hyperthermia, but this effect occurs independently of body and skin 

temperatures [127] suggesting that non-thermal activation of the TRPV1 channel contributes 

significantly to this response. Nonetheless diphtheria toxin-induced ablation of TRPV1-

containing neurons decreases behavioral responses to heat (35–50 °C) [108]. These data 

suggest that the TRPV1-containing neurons play an important role in sensing warm 

temperatures but that the TRPV1 channel itself may be dispensable for this detection and 

furthermore that the TRPV1 channel also contributes significantly to other non-thermal 

processes. These TRP-containing primary somatosensory neurons have cell bodies located 

in the dorsal root ganglia and provide input to the superficial lamina (primarily lamina I) of 

the spinal dorsal horn [132, 140].

Spinal and trigeminal dorsal horn (DH)

Separate groups of secondary somatosensory neurons in the dorsal horn are activated by 

innocuous cooling or warming of the skin [5, 23, 28, 109]. The responses of DH neurons to 

skin cooling is primarily mediated by glutamatergic input from TRPM8-containing primary 

somatosensory neurons as evidenced by the observations that activation of cooling 

responsive DH neuron is blocked by either ablation of TRPM8 neurons or glutamate 

receptor blockade in the DH [109]. The effect of glutamate receptor blockade on skin 

warming-induced activation of DH neurons has not been tested, but TRPV1-containing 

neurons contribute to the warming activation of DH neurons [109] Nonetheless, warming-

Madden and Morrison Page 2

Neurosci Lett. Author manuscript; available in PMC 2020 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



induced activation of DH neurons is likely to be more complex than a simple activation of 

these cells by a glutamatergic input from warm-activated (presumably TRPV1-containing) 

primary somatosensory neurons since ablation of TRPM8-containing (cold-activated) 

neurons increases the DH neural responses to warming [109].

The DH contains neurons that project to the lateral parabrachial nucleus (LPB) [21, 95] and 

to the thalamus [49, 65]. The spinothalamic pathway relays thermal afferent input to the 

cortex for perception [26] but is not necessary for autonomic and behavioral responses to 

changes in skin temperature [94, 95, 144]. Temperature-responsive neurons in the DH send 

projections to the LPB [66] and the terminals of many DH neurons are in close apposition to 

LPB neurons that project to the POA [95]. Neurons in the LPB are necessary for 

thermoregulatory responses to cutaneous thermal input [60, 94, 95]. The LPB contains 

neurons that are activated by either warming or cooling of the skin [17, 94, 95]. The neurons 

that are activated by cold exposure are found predominantly in the external lateral 

subdivision of the LPB (LPBel), receive projections from the DH, and provide input to the 

median preoptic area (MnPO) [95]. Glutamatergic activation of neurons in the LPBel is 

necessary for cold defense responses such as shivering and BAT thermogenesis [95]. LPB 

neurons that are activated by heat exposure are located in the dorsal subdivision of the LPB 

(LPBd), provide input to the preoptic area, predominantly to the MnPO, and glutamatergic 

activation of the neurons in the LPBd is necessary for heat defense responses such as 

decreases in cutaneous vasoconstriction and inhibition of BAT thermogenesis [94]. In 

addition, in mice, the majority (83%) of the POA projecting neurons that are activated by 

heat exposure express preprodynorphin [38]. Furthermore, dynorphin microdialysis in the 

POA causes hypothermia [143]. The role of dynorphin in the POA during heat exposure 

remains unknown. Figure 1 illustrates the thermal afferent pathways.

In addition to the activation of DH neurons by thermally-activated cutaneous somatosensory 

input, thermoeffector activation can be elicited by directly changing the temperature of the 

spinal cord [139]. The mechanism of thermosensitivity of the spinal cord is unknown, but 

the TRP-mediated thermosensitivity of the central terminals of the cutaneous thermal 

afferents within the dorsal horn and the axons of thermal afferent nerve fibers [138], is a 

potential explanation [18, 86].

Abdominal thermal afferents

Abdominal thermosensitive afferents contribute to thermoregulation. For example, 

abdominal temperature influences the activity of sympathetic cutaneous vasoconstrictor 

fibers in the rat tail [122]. Furthermore, splanchnic nerve fibers from the abdominal wall are 

thermosensitive [114, 115], and contribute to thermoregulatory function in the ewe [113]. 

Similarly, in humans changes in abdominal temperature elicited by ingestion or gastric 

delivery of cold water can decrease sweat production during heat stress [81]. Conversely, 

ingestion of warm water can decrease shivering during cold exposure without affecting 

rectal, aural or skin temperatures [82]. In addition, there are thermosensitive vagal afferent 

neurons in the nodose ganglia [33], and the solitary tract-evoked responses of second order, 

vagal sensory neurons in the NTS are sensitive to local temperature [45, 124]. The degree to 

which thermally-sensitive vagal afferents contribute to thermoregulation is unknown. 
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However, activation of vagal afferents [73] and activation of TRPV1 channels in the NTS, 

putatively on the central terminals of vagal afferent fibers, inhibits BAT thermogenesis [79], 

suggesting a potential role of thermally-responsive vagal afferents in thermoregulation. The 

details of the neural circuit by which these vagal afferents affect thermoregulation is 

unknown but given the robust inputs from the NTS to the LPB [44, 98] could involve inputs 

from neurons in the NTS to the thermal afferent neurons in the LPB (Figure 1). Additionally, 

these and other vagal afferent fibers could contribute to the regulation of metabolism and 

body temperature in response to non-thermal stimuli such as signals related to 

gastrointestinal stimuli for energy homeostasis (e.g. – GLP-1 [62], and lipids [13]).

Preoptic area (POA) neurons integrate thermal sensory information to control thermoeffector 

output.

Since the discovery of the anterior hypothalamus/POA as a site at which thermoregulatory 

response could be elicited by local temperature changes [74] and the subsequent 

demonstration of directly thermosensitive neurons in this region [96], the POA has received 

significant attention as a major locus in thermoregulation. Changes in POA temperature can 

elicit a broad array of thermoregulatory responses including both heat defense responses 

such as sweating, saliva secretion, panting, and cutaneous vasodilation, and cold defense 

responses such as shivering, BAT thermogenesis, and hormonal as well as behavioral 

responses [6–8, 10, 20, 40, 41, 50, 51, 55, 56, 76, 80, 106, 118, 125, 134].

The majority of temperature sensitive neurons in the anterior hypothalamus and POA are 

warm sensitive neurons (WSN, i.e.- neurons that increase their firing rate in response to 

increases in local temperature). WSN comprise ~30% of the neurons recorded in the POA 

compared to cold responsive neurons which make up <10% of the neurons recorded in this 

region, the remaining 60–70% of neurons are temperature insensitive [42, 46, 59]. In 

addition, WSNs have intrinsic thermosensitivity in the absence of synaptic input [58], 

whereas cold responsive neurons may require synaptic input for thermal sensitivity [32, 58], 

although it has also been reported that some neurons retain cold sensitivity during ionic 

conditions that would block synaptic inputs [47]. The mechanism(s) for the intrinsic 

thermosensitivity in WSNs is debated and may include depolarizing pacemaker potentials 

possibly mediated via decreases in outward potassium currents [14], and/or heat induced 

membrane depolarization [61]. TRPM2 channels may also contribute to the heat sensitivity 

of a subset of WSNs with a high threshold temperature for activation but are unlikely to 

mediate the majority of normal physiological responses since these channels only become 

activated at local temperatures above 42oC [126]. WSNs also integrate information about 

local temperature with cutaneous and spinal thermal afferent input [16, 39].

This integration of cutaneous thermal afferent input with intrinsic brain temperature has 

served to place these neurons in the role of a critical node for thermoregulation and it has 

become the convention that the POA contains the transition from the thermoafferent to the 

thermoeffector efferent pathways. Most WSNs are GABAergic [31, 67] and WSNs have 

been postulated to be output neurons of the POA for thermoregulation [15]. Consistent with 

this model, the predominant output of the POA is inhibitory to heat conserving (cutaneous 

vasoconstrictor) and thermogenic responses. For example, transections of the neuraxis 
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caudal to the POA increase cutaneous sympathetic nerve activity (SNA) [111] and similarly, 

injections of the inhibitory neurotransmitter, GABA into several regions of the POA, 

including the median preoptic area (MnPO) or an area spanning the border between the 

medial and lateral preoptic areas increases cutaneous SNA to the rat tail [136]. In a parallel 

manner, transections of the neuraxis caudal to the POA increase BAT SNA and BAT 

thermogenesis [22, 141], and nanoinjections of the GABAA receptor agonist, muscimol into 

the ventral portion of the lateral preoptic area (vLPO) increase BAT SNA, BAT 

thermogenesis, and shivering [25]. The activity of neurons in the POA has also been 

implicated in driving heat defense responses such as sweating and saliva secretion. 

Functional MRI studies in humans have shown sweating-related activity in the POA [34]. 

Furthermore, lesions of the anterior hypothalamus/POA eliminate heat-induced salivation in 

the rat [128].

Connections between subregions of the POA have been suggested to play a role in 

thermoregulatory function. The preponderance of evidence suggests that MnPO neurons that 

receive thermal input from the cold-activated LPBel neurons inhibit the GABAergic output 

neurons of the POA, which are located in the medial preoptic area (MPA) [84, 88]. 

Conversely, the MnPO neurons receiving the warm afferent input from the LPBd have been 

suggested to activate the GABAergic MPA neurons [94, 133]. More detailed studies into the 

interactions of the neurocircuitry within the preoptic area are warranted especially given the 

recent appreciation of the complexity of the neural circuits within POA, including the roles 

in thermoregulation of additional recently recognized subregions (e.g.- the vLPO [25, 149]), 

recently described functional inputs to the POA [107], and the potential for divergent roles 

of heterogeneous cell populations within all regions of the POA.

Efferent pathways controlling thermoeffectors

The efferent pathways controlling thermoeffectors can be defined into three general 

categories: thermogenic (BAT and shivering), vasomotor (cutaneous vasoconstrictor and 

cutaneous active vasodilator), and evaporative heat loss (sweating and saliva secretion) 

(Figure 2). The thermogenic efferent pathways are largely overlapping and involve an 

inhibitory output from the POA that impinges on hypothalamic neurons in the dorsomedial 

hypothalamus. The thermogenesis-promoting neurons of the DMH activate premotor 

neurons in the RPa which in turn send descending excitatory drive to spinal neurons 

(sympathetic preganglionic neurons for BAT and motor neurons for shivering). A similar 

pathway mediates cutaneous vasoconstriction with the exception that a relay in the DMH is 

not required, instead the inhibitory output from the POA impinges directly onto the 

cutaneous vasoconstrictor sympathetic premotor neurons in the raphe. In contrast, for 

sweating the pathway involves an excitation of neurons in the parafacial area which send 

descending excitatory drive to spinal sudomotor sympathetic preganglionic neurons. The 

efferent pathway for salivation has key features paralleling the other efferent pathways, the 

POA provides an inhibitory output to a hypothalamic relay neuron likely in the lateral 

hypothalamus. These LH neurons activate neurons in the superior salivatory nucleus (SSN). 

These SSN neurons are parasympathetic preganglionic neurons that drive the ganglion cells 

for salivation.
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Sympathetic vasoconstriction reduces cutaneous blood flow

The amount of warm blood flow to the skin is a primary determinant of heat transfer to the 

environment. During cool ambient temperatures sympathetic nerve fibers innervating the 

cutaneous vasculature are activated to elicit cutaneous vasoconstriction, thereby decreasing 

heat transfer to the environment and conserving heat. Conversely during warm ambient 

conditions or when core body temperature is increased the cutaneous vasoconstrictor (CVC) 

sympathetic nerve fibers are inhibited thereby increasing blood flow to the skin and 

permitting heat transfer from the body to the environment. Neurons in the MnPO play a 

critical role in determining CVC SNA. In mice, activation of glutamatergic neurons in the 

MnPO increases tail vasodilation [1], presumably by decreasing CVC SNA. Conversely, 

inhibition of neurons in the MnPO causes vasoconstriction in the tail by increasing CVC 

SNA [136], suggesting that there is an output from the MnPO that is inhibitory to CVC 

SNA. The raphe pallidus area (RPa) contains sympathetic premotor neurons for cutaneous 

vasoconstriction [12]. The inhibitory output from the MnPO is likely to be an indirect input 

to the sympathetic CVC premotor neurons in the RPa and may involve activation of 

GABAergic neurons in the medial preoptic area (MPA) that have been suggested to directly 

inhibit the CVC premotor neurons in the RPa [91, 111]. Skin cooling also activates neurons 

in the POA that may directly excite RPa CVC premotor neurons via activation of 

glutamatergic receptors [135]. In turn, the RPa premotor neurons drive cutaneous 

vasoconstriction via excitatory glutamatergic and serotonergic projections to preganglionic 

neurons in the intermediolateral cell column of the spinal cord [11, 75, 101, 103]. In 

addition, some spinally-projecting RVLM neurons are inhibited by POA warming [78] and 

contribute to the CVC SNA [102, 104, 111], although the RVLM plays a minor role in CVC 

activity compared to sympathetic premotor neurons in the RPa [112]. The neural pathway 

conveying thermal information from the POA to the RVLM is not known.

Active cutaneous vasodilation

Humans, unlike rodents, have cutaneous sympathetic nerve fibers whose activation results in 

active cutaneous vasodilation (reviewed in [53]). The sympathetic fibers responsible for 

cutaneous active vasodilation are cholinergic, as opposed to the noradrenergic cutaneous 

vasoconstrictor fibers, and release acetylcholine as well as other co-transmitters including 

pituitary adenylate cyclase activating polypeptide and vasoactive intestinal peptide to elicit 

vasodilation. It is also likely that the peripheral production of nitric oxide mediates a 

component of active cutaneous vasodilation. The central pathways that drive cutaneous 

active vasodilation in human skin remain unknown

Evaporative heat loss is important for heat defense

Sweating

Sweating can be elicited by local heating of the POA [74], and humans show thermally-

induced sweating-related activation in the POA [34]. In contrast to the RPa location of 

premotor neurons controlling CVC and thermogenic effectors the premotor neurons for cat 

paw sweating are located in the rostral ventromedial medulla (RVMM or parafacial area) 

[123]. A functional MRI study has demonstrated that a homologous parafacial region in 
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humans shows activity during conditions that elicit sweating [35]. The descending pathway 

from the warm sensitive neurons in the POA to the sympathetic sudomotor neurons in the 

RVMM parafacial area has not been clearly defined. However, since WSNs are GABAergic 

and activation of neurons in the RVMM elicits sweating, the pathway from the WSNs to the 

RVMM sudomotor sympathoexcitatory neurons is unlikely to be direct. An area lateral to 

the periaqueductal gray (PAG) has been suggested as a potential synaptic relay for the 

sweating response [35].

Salivary secretion and saliva spreading behavior

Rodents do not sweat but instead use salivary secretion and grooming behavior to spread 

saliva over their cutaneous surface for evaporative heat loss. The submaxillary and 

sublingual glands are innervated by the chorda tympani and are responsible for thermally-

induced largely parasympathetically –mediated saliva secretion [128]. The superior 

salivatory nucleus in the hindbrain contains the parasympathetic preganglionic neurons for 

salivation from the submaxillary and sublingual glands [48]. Salivation can be elicited by 

heating the anterior hypothalamus [54]. Details of the pathways from the anterior 

hypothalamus to the superior salivatory nucleus are still unclear. Thermal salivation was 

diminished by lesions in anterior hypothalamus [142], the lateral hypothalamus [128] and 

the ventromedial hypothalamus [36]. The lateral hypothalamus provides input to the superior 

salivary nucleus [117]. Therefore the most parsimonious pathway for thermal salivation 

would be that the POA activates lateral hypothalamic inputs to the SSN. Interestingly, 

grooming behavior can be elicited by heating the posterior but not anterior hypothalamus/

POA, suggesting that at least some thermoregulatory behavioral responses can be elicited 

from areas other than the POA [134]. Evaporative cooling through panting is a warming-

evoked response in some mammals. POA warming also elicits panting [74], however the 

efferent pathways from the POA to the respiratory generating networks in the medulla that 

elicit panting are unknown.

BAT thermogenesis and Shivering

Neural pathways regulating BAT have been comprehensively reviewed [84, 85]. We limit 

this review to the fundamental efferent neural circuit for thermal and febrile (see Febrile 

response section below) activations of BAT. During warm ambient conditions the warm-

afferent input to the MnPO (see Thermal afferent pathways section above) increases the 

activity of a subset of MnPO neurons that in turn activate POA neurons that provide an 

inhibitory output to BAT thermogenesis-promoting neurons in the DMH and the RPa. This 

BAT sympathoinhibitory output from the POA likely arises from neurons in the MPA and 

the vLPO [25]. The warm-activated inhibitory output from the POA to neurons in the DMH 

and to sympathetic premotor neurons in the RPa suppresses the activation of the essential 

BAT thermogenesis-promoting neurons, thereby preventing BAT SNA and BAT 

thermogenesis during warm ambient conditions [25, 94]. Conversely, during cool ambient 

conditions the cool-afferent input to the MnPO (see Thermal afferent pathways section 

above) excites MnPO neurons that inhibit the activity of a population of inhibitory neurons 

in the MPA [93]. During cooling and fever, activation of BAT thermogenesis-promoting 

neurons in the DMH likely occurs due to removal of the active thermogenesis-suppressing 

output from MPA together with an activation of glutamatergic receptors on DMH neurons 
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[71]. Subsequent activation of the BAT sympathetic premotor neurons in the RPa, likely via 

a glutamatergic input from the DMH to the RPa [57, 68] increases descending glutamatergic 

and serotonergic input to the spinal cord. Both glutamate [90] and serotonin [69, 70, 72] in 

the spinal cord contribute to BAT activation.

The efferent neural circuit regulating shivering closely parallels that for BAT. The shivering 

circuit involves the activation of essential thermogenesis-promoting neurons in both the 

DMH and the RPa [92]. During warm ambient conditions the POA provides inhibitory 

output for shivering [148], likely via inhibition of neurons in the DMH. This inhibitory input 

to the DMH may originate from the MPA and/or the vLPO [25]. Parallel to the pathway for 

BAT, cooling has been proposed to activate shivering-promoting neurons in the DMH by 

removing the tonically-active, inhibitory input from the POA [92], although whether 

removal of inhibitory inputs to the DMH evokes shivering remains to be determined. The 

shivering-promoting neurons in the DMH in turn activate somatic muscle premotor neurons 

for shivering in the RPa. In contrast to the neural circuit for the sympathetic control of BAT 

where RPa neurons activate sympathetic preganglionic neurons in the IML, descending input 

from the RPa for shivering activates alpha and gamma [137] motor neurons in the ventral 

horn of the spinal cord. Activation of the gamma motor neurons may contribute to the 

increase in muscle tone preceding overt shivering and to the threshold and intensity of 

shivering [120, 121]. Although direct descending projections from RPa neurons to the 

ventral horn somatomotor neurons have been demonstrated [2, 147], the precise pathways 

and neurochemical mechanism(s) by which the alpha and gamma motor neurons are 

activated during shivering remain to be defined.

Thermoregulatory behaviors

Behavior is an efficient and effective means of thermoregulation. Behavioral 

thermoregulation encompasses a broad range of activities including both preemptive and 

reactive responses. These behaviors include wearing clothing appropriate for predicted 

environmental conditions (such as putting on a jacket prior to going outside in the winter) 

and adjusting the thermostat in a room that is uncomfortably warm or cool. Another 

important behavioral response is the thermogenic contribution of increases in somatic motor 

activity [87, 105, 149]. Little is known about the central neural circuits involved in 

behavioral thermoregulation. Thermoregulatory behaviors are not affected by lesions of the 

thalamus even though these lesions eliminate cortical responses to thermal input [95, 144]. 

This observation is unexpected since the thalamocortical pathway is important for the 

perception of thermal input [26, 27] and our perceptions are so tightly linked to our behavior 

that we are apt to attribute the later to the former. These data serve to highlight the fact that 

thermal perception may not, at least in some circumstances, be the primary causal drive for 

thermoregulatory behaviors. Some thermoregulatory behaviors are unaffected by lesions of 

POA [4]. This observation is surprising given that direct changes in POA temperature or 

activation of neurons in this region can elicit thermoregulatory behaviors [6, 20, 118, 133, 

146, 149]. Interestingly, lesions of the LPB impair some forms of behavioral 

thermoregulation [144]. Perhaps there are redundant pathways for behavioral 

thermoregulation involving both the thalamocortical pathway and the POA, such that 
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removal of the LPB removes critical input to both of these pathways and is thereby capable 

of impairing behavioral thermoregulation.

Febrile response

Prostaglandin E2 (PGE2) produced by endothelial cells in the POA in response to pyrogens 

(such as lipopolysaccharide, a component of the outer membrane of gram-negative bacteria) 

acts on EP3 receptors in the POA to elicit febrile responses [64, 119]. Within the POA, EP3 

receptors are located on neurons in the MPA and MnPO [89]. Some data have suggested that 

it is EP3 receptor activation in the MnPO that is necessary for febrile responses [64, 136]. 

Alternatively, putative warm-sensitive neurons in the MPA may be inhibited by PGE2 to 

elicit fever [83]. Consistent with this hypothesis, EP3 receptor activation couples to Gi 

proteins to decrease cAMP [97] and WSN activity is decreased by prostaglandin [110]. 

Nonetheless, several observations suggest that the prostaglandin evoked febrile response 

may be more complex than a simple model where EP3 receptor activation inhibits WSNs. 

For example, EP3 receptors can also couple to stimulatory GTP-binding proteins [97] and 

cold responsive neurons in the POA are activated by PGE2 [37, 77], suggesting the 

possibility that PGE2 may not only remove warm-defense inhibitory outputs from the POA 

but may also activate excitatory cold-defense outputs from the POA. In addition, EP3 

receptor activation converts temperature-insensitive neurons into temperature-responsive 

neurons [129], although this mechanism has yet to be demonstrated in vivo. Although the 

EP3 receptor is required for fever [64], other prostaglandin receptors contribute to febrile 

responses. EP1 receptors are located in the POA [100], and EP1 receptor-deficient mice have 

an impaired fever response [99]. More studies are necessary to clarify the roles of specific 

neuronal populations and receptors within the POA that contribute to febrile responses.

Summary

The fundamental neural circuitry for body temperature homeostasis includes thermal 

afferent input impinging upon key neurons in the POA that integrate thermal input arriving 

via the spinal parabrachial-preoptic area afferent pathway (Figure 1) with local POA 

temperature to elicit thermoeffector outputs. These thermoeffector outputs include unique 

neural pathways regulating BAT thermogenesis, shivering, CVC, evaporative heat loss via 

sweating (and saliva spreading in rodents), as well as behavioral responses (Figure 2). Great 

progress over the last several decades has been made in defining these neural pathways. 

Future work aimed at further defining these pathways and adding newly discovered ancillary 

neural inputs to this fundamental neural circuitry will provide important information with 

implications for thermoregulation and metabolism.
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Figure 1. 
Model for the neuroanatomical pathways and neurotransmitters conveying thermal afferent 

input from the periphery to the preoptic area. Dashed projections indicate pathways that 

have not been conclusively demonstrated to function as suggested or that may involve 

indirect multisynaptic connections. DH, dorsal horn; DRG, dorsal root ganglia; Dyn, 

dynorphin; GLU, glutamate; LPBd, dorsal lateral parabrachial nucleus; LPBel, external 

lateral lateral parabrachial nucleus; MnPO, median preoptic nucleus; MPA, medial preoptic 

area; TRPM8, transient receptor potential subfamily M member 8; TRPV1, transient 

receptor potential vanilloid 1; NTS, nucleus tractus solitarius; vLPO, ventral portion of the 

lateral preoptic area.
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Figure 2. 
Functional neuroanatomical model of the efferent thermoeffector pathways for 

thermogenesis, vasomotion, and evaporative heat loss. Dashed projections indicate pathways 

that are unknown and may involve multisynaptic connections. 5HT, 5-hydroxytryptamine 

(serotonin); α, alpha motor neuron; Ach, acetylcholine; BAT, brown adipose tissue; CAVD, 

cutaneous active vasodilation; CVC, cutaneous vasoconstriction; DMH, dorsomedial 

hypothalamus; γ, gamma motor neuron; GABA, gamma aminobutyric acid; GLU, 

glutamate; IML, intermediolateral cell column; LH, lateral hypothalamus; MnPO, median 

preoptic nucleus; MPA, medial preoptic area; NE, norepinephrine; NO, nitric oxide; PG, 

parasympathetic ganglion cell; RPa, raphe pallidus area; RVLM, rostral ventrolateral 

medulla; SG, sympathetic ganglion cell; SSN, superior salivatory nucleus; VH, ventral horn; 

VIP, vasoactive intestinal peptide; vLPO, ventral portion of the lateral preoptic area.
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