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Abstract

The Cancer Genome Atlas (TCGA) catalogued alterations in the Kelch-like ECH-associated 

protein 1 (KEAP1) and nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway in 

6.3% of patient samples across 226 studies, with significant enrichment in lung and upper airway 

cancers. These alterations constitutively activate NRF2-dependent gene transcription to promote 

many of the cancer hallmarks, including cellular resistance to oxidative stress, xenobiotic efflux, 

proliferation, and metabolic reprogramming. Almost universally, NRF2 activity strongly associates 

with poor patient prognosis and chemo- and radio-resistance. Yet to date, FDA-approved drugs 

targeting NRF2-activity in cancer have not been realized. Here, we review various mechanisms 

that contribute to NRF2 activation in cancer, organized around the central dogma of molecular 

biology: 1) at the DNA level with genomic and epigenetic alterations, 2) at the RNA level 

including differential mRNA splicing and stability, and 3) at the protein level comprising altered 

post-translational modifications and protein-protein interactions. Ultimately, defining and 

understanding the mechanisms responsible for NRF2 activation in cancer may lead to novel targets 

for therapeutic intervention.
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Introduction

Redox biology encompasses cell biological processes driven by reactive oxygen species 

(ROS)(1). Uncontrolled redox reactions increase levels of oxidative stress and lead to the 

accumulation of ROS and reactive nitrogen species (RNS) within the cell. Elevated levels of 

ROS and RNS damage DNA, RNA, protein, and lipids (1,2); therefore, regulation of redox 

levels within the cell is critical for cellular homeostasis and effective disease prevention 

(1,3–11). The transcription factor nuclear factor erythroid 2-related factor 2 (NFE2L2, 

hereafter referred to as NRF2) is central for the cellular response to ROS and oxidative 

stress. Decades of research confirm that NRF2 activity improves cellular fitness under stress 

and is thus beneficial for normal cellular physiology. It is now increasingly clear that cancer 

cells subvert NRF2 activity to promote tumor growth and dissemination (reviewed in depth 

by Rojo de la Vega et al. (12)).

In 2012 The Cancer Genome Atlas (TCGA) consortium reported whole-exome sequencing 

(WES) and RNA-sequencing (RNA-seq) of tumors from patients with lung squamous cell 

carcinoma (LUSC; 178 patients) and lung adenocarcinoma (LUAD; 183 patients) (13,14). In 

addition to known tumor suppressors (i.e. TP53) and oncogenes (i.e. KRAS), both studies 

revealed significant and mutually exclusive alterations to NRF2 (19% of LUSC; not 

significantly mutated in LUAD) and to its negative regulator Kelch-like ECH-associated 

protein 1 (KEAP1; 12% of both LUAD and LUSC) (13,14). Looking across all organ 

systems, 226 TCGA studies have catalogued genetic mutations and copy-number alterations 

to the KEAP1-NRF2 signaling pathway, most notably lung (LUSC and LUAD; 31.4% and 

24%, respectively), uterine (20.6%), head and neck (17.4%), esophageal (19.8%), and 

bladder carcinomas (14.8%) (13–19).

As reviewed in the following sections, non-genomic mechanisms of NRF2 activation are 

also common in cancer. Recently, a Pan-Can analysis of NRF2 transcriptional activity 

revealed 32 direct NRF2 cancer target genes (20). Evaluation of their composite expression 

across more than 9,000 TCGA samples demonstrated NRF2 hyperactivity in expected tumor 

types (e.g. LUSC, HNSCC) as well as in tumor types lacking strong genomic evidence of 

NRF2 pathway activity (e.g. Liver/LIHC, Kidney/KIRP, Pancreas/PAAD, Stomach/STAD) 

(20). Collectively, conservative estimations from mutation rates and projected cancer 

incidence suggest that more than 86,000 patients in the US will be diagnosed with NRF2-

mutant/hyperactive cancer in 2018 (15–19,21). Of the 1,735,350 new cases of diagnosed 

cancer predicted by the American Cancer Society for the US population in 2018, 5% or 

more of these cases are estimated to be NRF2 pathway mutant and hyperactive (21). These 

mutational rates likely underrepresent the true number of NRF2 hyperactive tumors, given 

the various non-genomic mechanisms of NRF2 activation discussed in this review.
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KEAP1-NRF2 signaling

A broad range of aberrant NRF2 activity levels can contribute to cellular pathology. Low 

levels of NRF2 activity lead to increased intracellular ROS, damage to cellular structures 

(e.g. DNA, mitochondria, proteins, and lipids), and apoptosis (1,4,7,22). Consequently, cells 

with low levels of NRF2 and elevated ROS are at risk for neurodegeneration, cardiovascular 

disease, and chronic inflammation (4,7,8,23–27). In contrast, high NRF2 activity leads to 

cellular resiliency in the face of various stressors, including ROS, genotoxic stress, and 

metabolic stress (3,9,25,28). Thus, mutations and alterations that increase NRF2 activity 

contribute to cancer progression and the development of chemo- and radio-resistance (29).

Under basal conditions, cytosolic KEAP1 functions as an adapter for the E3 ubiquitin ligase 

Cullin-3 (CUL3) and constitutively targets NRF2 for ubiquitylation and degradation via the 

ubiquitin proteasome system (UPS) (30,31). Upon exposure to oxidative stress or xenobiotic 

challenge, reactive cysteine residues within KEAP1 are modified leading to a 

conformational change in KEAP1 structure that prevents the degradation of NRF2 

(4,7,9,10,30,32–39). De novo synthesized NRF2 accumulates and translocates to the nucleus 

where it heterodimerizes with small musculoaponeurotic fibrosarcoma (sMAF) proteins, 

MAFF, MAFG, and MAFK (40–42). NRF2-sMAF heterodimers bind to antioxidant 

response elements (ARE)/electrophile responsive elements (EpRE) to promote the 

transcription of more than 200 genes (3,43). NRF2 transcription regulates the expression of 

genes that govern various processes within the cell including: 1) antioxidant response, 2) 

drug detoxification, 3) cellular metabolism, and 4) inflammation (4,7–9,12,25,27,44). While 

great progress has been made, much remains to be learned of how NRF2 and its target genes 

contribute to cancer progression and therapeutic response.

NRF2 activation in cancer: Genomic alterations to DNA

Alterations to NFE2L2, CUL3, and KEAP1 frequently occur at the genomic level, resulting 

in enhanced NRF2 protein expression and transactivation activity (5,6,9,25,27,31,45–58). 

NFE2L2, located on a copy-number-amplified region of chromosome 2q31.2, can be 

genetically modified through promoter demethylation, copy-number amplifications (CNA), 

oncogene-induced transcription of NRF2 via cMYCERT2, BRAFV619E, and KRASG12D, or 

by gain-of-function (GOF) somatic mutations in the DLG or ETGE motifs required for 

KEAP1 association (Fig. 1A) (13,14,31,51,54,56,59–63). Genomic alterations to NFE2L2 
vary with tumor site and type. Demethylation of the NFE2L2 promoter frequently occurs in 

lung and colorectal cancers (CRC); in contrast, CNA of NFE2L2 appears most prominently 

in ovarian and head and neck tumors (15,16). The mutational signature of NFE2L2 is also 

distinct within tumors affecting the same organ. For example, NFE2L2 mutations within the 

DLG and ETGE motifs required for KEAP1 association frequently occur in LUSC; however 

NFE2L2 mutations rarely appear in LUAD (15,16). The mechanisms underlying these 

differences in tumor-specific mutation spectra and CNAs remain unclear but could reflect 

the genomic instabilities inherent to each tumor.

CUL3, located on a copy-number-deleted region of chromosome 2q36.2, is functionally 

inactivated by homozygous deletion or by loss-of-function (LOF) mutations, resulting in 
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loss of KEAP1-dependent NRF2 ubiquitylation and subsequent NRF2 stabilization (Fig. 1A) 

(13,14). CUL3 deletions arise most frequently in bladder and head and neck tumors, 

whereas uterine (7.75%) and LUSC (7%) cancers generally possess CUL3 mutations 

(15,16). In contrast to the comprehensive analyses of NFE2L2 or KEAP1 mutations, the 

functional consequences of patient-derived CUL3 mutations remains understudied 

(31,59,61,64). Inactivating mutations in CUL3 may disrupt CUL3 homodimerization, 

CUL3-KEAP1 heterodimerization, or CUL3 neddylation (65,66). In comparison to KEAP1 
and NFE2L2, mutations in CUL3 occur less frequently, perhaps reflecting the critical role of 

CUL3 as an E3 ligase for a family of broad complex, bric-à-brac, tramtrack (BTB)-

containing proteins beyond just KEAP1 (15,16). A summary of NFE2L2, CUL3, and 

KEAP1 across TCGA samples from 8,871 patients is provided in Table S1.

KEAP1, located in a copy-number-neutral region on chromosome 19p13.2, can be 

functionally inactivated by promoter hypermethylation, homozygous deletion, or by KEAP1 
LOF mutations (Fig. 1A) (13,31,46,58). KEAP1 promoter methylation appears in breast, 

colon, and lung carcinomas and is known to accelerate tumor progression (67,68). 

Intriguingly, homozygous deletions of KEAP1 are rare, suggesting that normal and tumor 

cells rely on NRF2-independent functions of KEAP1 (Fig. 1A) (15,16). In fact, KEAP1 

ubiquitylates proteins involved in cell cycle regulation such as MCM3, although the 

biological function of this interaction remains understudied (69,70). KEAP1 mutations occur 

most frequently in LUAD and LUSC tumors (15,16). Previous studies estimate that 75% of 

KEAP1 LUSC and 92% of KEAP1 LUAD somatic missense mutations abrogate KEAP1 

protein function (31,59). Of these functional mutations, more than 50% presumably result in 

hypomorphic suppression of NRF2 transcriptional activity (31,59). Differences in NRF2 

transcriptional programming between KEAP1 functionally inactive and hypomorphic classes 

of mutations may reveal differentially expressed genes with clinical importance.

NRF2 activation in cancer: Transcriptional alterations to mRNA

Changes in RNA expression and stability of NFE2L2, CUL3, and KEAP1 can also lead to 

increased expression of NRF2 protein and its downstream targets. Cellular mRNA levels can 

be regulated by microRNAs (miRNA), alternative splicing events, and by RNA binding 

chaperones. miRNAs are short, noncoding RNAs that bind to the 3’-untranslated regions 

(UTR) of mRNAs resulting in changes to mRNA stability (71). Alternative splicing of 

mRNA can result in functionally inactive or unstable proteins. Additionally, association of 

mRNAs with RNA binding proteins or RNA chaperones can lead to altered transcript levels 

for a given gene (71).

NRF2 transcript levels in cancer are regulated by miRNAs and alternative splicing of exon 2 

or the combination of exons 2 and 3. To date, more than 20 miRNAs have been reported to 

impact NRF2 RNA levels. For example, a miRNA library screen using the ARE reporter 

assay identified four miRNAs that regulate NRF2: miR-507, −634, −450a, and 129–5p 

whose downregulation was observed in patient samples with esophageal squamous cell 

carcinoma (ESCC) (72). A summary of miRNAs regulating NFE2L2 mRNA (along with 

miRNA tables for CUL3 and KEAP1) is provided in Table S2. Downregulation of miRNAs 

that decrease NRF2 mRNA in patient samples could also result in NRF2 stabilization; 
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however, no studies have identified candidates (73). NRF2 transcripts are also alternatively 

spliced in patient samples (45). A 2017 analysis of RNA-seq transcript variants from patient 

samples with elevated NRF2 activity in the absence of KEAP1 or NFE2L2 mutations 

identified alternatively spliced transcripts of NRF2 lacking exon 2 or both exons 2 and 3. 

Exon 2 contains the DLG and ETGE motifs required for KEAP1 association; thus, KEAP1 

is unable to ubiquitylate and degrade these alternatively spliced NRF2 variants (Fig. 1B) 

(45). Currently, this alternative splicing event has only been detected in LUSC and head and 

neck squamous cell carcinomas (HNSCC); however, additional studies of other tumor types 

may identify additional instances of NFE2L2 alternative splicing (45).

Of the few reports describing miRNAs that regulate CUL3, only miR-101 and miR-455 have 

been shown to target CUL3 and activate NRF2 signaling (Fig. 1B) (74,75) However, 

whether the downregulation of miR-101 in other tumor types or miR-455 found in CRC 

results in elevated NRF2 activity remains unclear.

A number of miRNAs impacting KEAP1 have been reported, including miR-200a, miR-7, 

miR-432, and miR-141 (Fig. 1B) (76). Of these miRNAs, only miR-200a definitively 

activates NRF2 signaling in breast cancer cells; consequently, a careful examination of 

miRNAs regulating KEAP1 expression in patient tumors merits further examination. RNA-

binding proteins also regulate KEAP1 mRNA stability. For example, the RNA-binding motif 

47 (RBM47) protein associates with both KEAP1 and CUL3 mRNA (77,78). RBM47 

association with KEAP1 mRNA results in increased protein expression levels in the A549 

LUAD mutant KEAP1 cancer cell line, suggesting that tumors may downregulate RBM47 in 

order to decrease KEAP1 transcript levels (77). RBM47 is downregulated in breast cancer 

where it suppresses breast cancer progression and metastasis (78). Given the many functions 

of NRF2 in cancer progression, it is possible that RBM47 loss promotes breast cancer 

progression in part through NRF2 activation (77,78). Further studies of the family of RBM 

proteins in cancer may reveal proteins regulators that control the levels of NFE2L2, CUL3, 

or KEAP1 mRNA.

NRF2 activation in cancer: Post-translational modifications and alterations 

to the KEAP1-NRF2 protein interaction networks (PINs)

NRF2 at the protein level

NRF2 is a cap’n’collar (CNC) basic leucine zipper (bZIP) transcription factor comprised of 

605 (human; 597 murine) amino acids (Fig. 2A) (79,80). NRF2 contains seven NRF2-ECH 

homology (Neh) domains, each with distinct functions and post-translational modifications 

(Fig. 2A). NRF2-sMAF heterodimerization is required for sMAF activation as sMAF 

proteins lack transactivation domains; therefore, sMAF homodimers act as functional 

repressors. Overexpression of sMAF proteins results in decreased NRF2 transcriptional 

activity; however, no studies have described differential gene expression or mutations of 

sMAF family proteins within tumors (81). Interestingly, a number of miRNAs targeting 

sMAF proteins are known to be altered in the TCGA Pan-Can dataset; however, whether 

these miRNAs promote NRF2 activation remains to be determined (82). The Neh2 domain is 

essential for KEAP1 cytosolic regulation of NRF2 and contains the two motifs required for 

Cloer et al. Page 5

Cancer Res. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



KEAP1 association (the 29DLG31 and 79ETGE82 motifs for human NRF2) as well as the 

seven lysine residues targeted by KEAP1-dependent ubiquitylation 

(4,7,9,10,23,27,48,53,83,84). The Neh2 domain also contains serine 40 (S40) that is 

phosphorylated by protein kinase C (PKC) (57,85,86). PKC phosphorylation at S40 results 

in KEAP1-NRF2 dissociation and nuclear localization of NRF2. Unexpectedly, NRF2 target 

gene expression is not significantly altered by PKC-dependent S40 phosphorylation of 

NRF2 (57,85,86). The Neh6 domain contains two beta-transducin repeat-containing E3 

ubiquitin protein ligase (BTrCP; hereafter BTRC) degron motifs: 343DSGIS347 and 
382DSAPGS387 for human NRF2 (48,83,84). BTRC associates with the Skp1-Cullin 1 

(CUL1) F-box containing complex (SCF) to form the ubiquitylation complex that targets 

NRF2 for proteasomal degradation within the nucleus of cells (48,83,84). Serine 

phosphorylation of the DSGIS motif by glycogen synthase kinase 3-beta (GSK3B) drives 

the NRF2-Neh6-BTRC association, resulting in NRF2 degradation (48,83,84). Whether 

BTRC alterations contribute to NRF2 activity in cancer has not been reported, but given the 

lack of NRF2 mutations in the DSGIS motif, it likely does not play a major role (15,16). 

Dynamic changes to NRF2 phosphorylation, ubiquitylation, or interacting proteins alter 

NRF2 protein levels and subcellular localization; consequently, these events should be 

carefully examined in various tumor types to determine the functional impact on NRF2 

transcriptional activity.

CUL3 at the protein level

Human and murine CUL3 is a 768 amino acid protein comprised of three domains: a low-

complexity region, a CULLIN domain, and a CULLIN-neddylation domain (Fig. 2A) 

(65,66). Neddylation of CUL3 by the Nedd-8 activating enzyme (NAE) is required for 

ubiquitylation activity, and small molecule NAE inhibitors such as MLN4924 result in 

stabilization of CUL3 substrates, including robust NRF2 transcriptional activation (87). 

Current clinical trials are testing the efficacy of MLN4924 in patients with hematologic 

malignancies. Whether NRF2 activation impacts the efficacy of MLN4924 treatment, either 

as a single agent or in combination with conventional chemotherapies, remains untested.

KEAP1 at the protein level

KEAP1 was identified in 1999 via a yeast two-hybrid (Y2H) screen utilizing the Neh2 

domain of NRF2 as bait (88). Human and murine KEAP1 is comprised of 624 amino acids, 

27 of which are cysteines (25 in mouse). KEAP1 contains a BTB domain, an intervening 

region (IVR, also known as the BACK domain), and a C-terminal double glycine region 

(DGR) composed of six KELCH repeat domains (Fig. 2A) (3,7,9,89). Modifications to 

specific amino acid residues alter KEAP1 homodimerization, CUL3 or NRF2 association, or 

KEAP1 redox sensing via one or more of its reactive cysteines. Mutations which disrupt 

these essential functions of KEAP1 protein result in NRF2 stabilization and increased 

transcriptional activity in cancer. KEAP1 mutations span the entire coding sequence of 

KEAP1 as indicated by the mutation density of 149 mutations for KEAP1; however, 

additional studies examining classes of KEAP1 inactivating mutations demonstrated 

enrichment for KEAP1-inactivating and hypomorphic mutations at highly conserved and 

frequently mutated amino acid residues within the KEAP1 protein (Fig. 2A) (31,90). In 
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general, predicting the effects of KEAP1 mutations found in tumors upon NRF2 signaling 

remains difficult and thus requires the use of biochemical and functional assays.

In addition to mutations, several studies have identified NRF2 competitive- binding proteins 

that prevent KEAP1 association with the DLG or ETGE of NRF2 resulting in impaired 

NRF2 ubiquitylation. The expression of these competitive binders in both in vitro and in 
vivo models of cancer contribute to NRF2 hyperactivity and confer protection from DNA 

damaging agents in a NRF2-dependent manner (91–97). These competitive-binding partners 

include: 1) ETGE-containing proteins, dipeptidyl peptidase 3 (DPP3), partner and localizer 

of BRCA2 (PALB2), Wilms Tumor suppressor (WTX), minichromosome maintenance 

complex component 3 (MCM3), nuclear factor erythroid 2-related factor 1 (NFE2L1), and 

cyclin-dependent kinase 20 (CDK20); 2) DPSTGE-containing protein p62/Sequestosome 1 

(p62/SQSTM1); 3) DLT-containing protein inhibitor of apoptosis stimulating protein of p53 

(PPP1R13L; hereafter iASPP), which associates with the KRR motif of NRF2 required for 

KEAP1 association; and 4) cyclin-dependent kinase inhibitor 1A (CDKN1A; hereafter p21), 

which contains a 154KRR motif analogous to the arginine triad motif of KEAP1 (Fig. 2B) 

(69,70,91,94–99). Proteomic analysis of the KEAP1 protein interaction network (PIN) 

revealed that 42.8% (18/42 proteins) of high-confidence interactors contained either an 

ETGE, ESGE, or both motifs (91). Although not all of these interactors have been 

independently validated or examined in patient samples, overexpression of these proteins 

may result in increased NRF2 transcriptional activity and merit further examination. In 

addition to proteins containing ETGE or ESGE motifs, proteins containing a DPSTGE, DLT, 

or KRR motif should be considered as potential novel KEAP1-interacting proteins and/or 

competitive-binders. Across the proteome, a significant number of proteins contain putative 

binding motifs for KEAP1 and NRF2; a summary of all proteins containing KEAP1- and 

NRF2-binding motifs is provided in Table S3 (100). Of 6,689 unique proteins containing 

KEAP1 and NRF2-binding motifs, only 532 are known to interact with NRF2, CUL3, or 

KEAP1 (Table S3). Differential expression of these proteins in the absence of direct 

alterations to KEAP1, CUL3, or NFE2L2 may result in elevated NRF2 expression and 

transcriptional activity. In fact, increased DPP3 expression in LUSC and breast cancer 

results in increased expression of NRF2 target genes (91,101).

Intriguingly, proteins that associate with KEAP1 impact KEAP1 stability without disrupting 

the KEAP1-NRF2 binding interface. For example, RNA-binding motif 45 (RBM45) is 

known to bind and stabilize KEAP1 protein in motor neurons with Amyotrophic lateral 

sclerosis (ALS) (102). Although changes in RBM45 expression in tumors has not been 

extensively studied, recent proteomic studies examining reactive cysteines in KEAP1-mutant 

NSCLC cancer cell lines revealed protein-protein interactions between the cysteine-reactive 

nuclear factor receptor subfamily 0 group B member 1 (NR0B1), and RBM45 (103). The 

protein complex of NR0B1, RBM45, and SNW domain containing protein 1 (SNW1) 

promotes NRF2-dependent transcription further establishing a role for RBM45 in KEAP1-

NRF2 signaling in cancer cells (103).

Post-translational modifications (PTMs) that functionally inactivate KEAP1 also exist. 

KEAP1 ubiquitylation results in p62-dependent autophagic degradation of KEAP1 (104). 

KEAP1 phosphorylation also occurs, although the functional impact of these events is 
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unclear (105). KEAP1 can also be metabolically modified as seen in papillary renal cell 

carcinomas deficient for the tumor suppressor fumarate hydratase (FH) (106,107). The loss 

of FH results in the formation of S-(2-succinyl) adducts (2SC) on C151 and C288 that may 

increase NRF2 transcriptional activity by modifying KEAP1 structure (Fig. 2C) (6,51,106). 

KEAP1 is also metabolically modified by S-glutathionylation (KEAP1-SSG) which 

inactivates KEAP1 repression of NRF2 and results in NRF2 nuclear localization (108,109). 

Additionally, it was recently reported that the mitochondrial metabolite itaconate activates 

NRF2-dependent transcription through alkylation of KEAP1 on C151, C257, C273, C288 

and C297. Although a role for itaconate has been identified in peritoneal tumors, studies 

examining the interplay between itaconate, KEAP1, and NRF2 hyperactivation in cancer 

have not yet been reported (110,111). Recently, Bollong et al. identified a new PTM for 

KEAP1, methylimidazole crosslink between proximal cysteine and arginine residues 

(MICA) (112). MICA occurs as a result of cysteine modification by methylglyoxal (MGO), 

a glycolytic metabolite, and promotes formation of a KEAP1 high-molecular weight dimer 

resulting in increased NRF2 transcription (112). Additional studies in patient samples may 

identify novel KEAP1 PTMs from oncometabolites.

Clinical applications of NRF2 in the context of cancer prevention and 

treatment

NRF2 activation in the context of cancer is often described as having a unique duality: 

NRF2 activation prior to tumor initiation or progression is chemopreventive whereas NRF2 

activation for an established tumor enables increased proliferation and resistance to chemo- 

and radiotherapies. The tumor promoting effects of NRF2 activation has been poetically 

described as “the dark side” of NRF2 (55). Therefore, clinical diagnostic testing for pathway 

activation as well as the development of small molecule inducers and inhibitors of NRF2 

may prove beneficial for patient treatment depending on context and tumor development.

Many studies suggest therapeutic applications for NRF2 inducers in the prevention of cancer 

as well as for the treatment of neurodegenerative disorders and chronic inflammation 

(3,7,9,10,23,26,28,113–117). NRF2 small molecule inducers are thought to inactivate 

KEAP1 function through degradation of KEAP1 protein, slowed KEAP1 conformational 

cycling, covalent modifications of KEAP1, or through dissociation of the KEAP1-NRF2 

complex resulting in NRF2 stabilization and transcriptional activity (7,118,119). Tert-
butylhydroquinone (tBHQ) decreases KEAP1 half-life by promoting autophagic degradation 

of KEAP1 (104). Sulforaphane decreases the rate of KEAP1 conformational cycling, 

perhaps slowing the rate of NRF2 ubiquitylation or degradation (104,120). Mechanistically, 

many of the NRF2 small-molecule inducers modify reactive cysteines in KEAP1, resulting 

in its functional inactivation (35). Inducers have been broadly categorized into five classes 

based on the KEAP1 cysteine reactivity profile (7,36,118,121). Class I inducers are KEAP1 

C151-dependent; class II inducers are specific to the C288 residue in the IVR of KEAP1; 

class III molecules require KEAP1 C151, C273, and C288; class IV compounds activate 

NRF2 through other cysteine residues in KEAP1 and do not require C151, C273, C288. 

Examples of class IV-reactive cysteines include C226 and C613 which are responsive to 

transition metal ions (i.e. As3+, Cd2+, Se4+, and Zn2+), and are capable of forming a 
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disulfide bridge following exposure to hydrogen peroxide or hydrogen sulfide (122–124). 

C434 can also be targeted by class IV compounds, specifically 8-nitroguanosine 3′,5’-cyclic 

monophosphate (8-nitro-cGMP) (3). The primary mechanism of Class V NRF2 inducers is 

disruption of the KEAP1-NRF2 interaction (7,25,118). Examples of class I-V inducers are 

provided in Table S4. Although not assigned to a specific class, the NEDD8-activating 

enzyme inhibitor (NAE1; hereafter, MLN4924) and the CYP450 inhibitor oltipraz also 

induce NRF2 activation (107,125–130). To date, the CYP450 inhibitor oltipraz and 

sulforaphane, an isothiocyanate derived from broccoli sprouts, are the only NRF2 inducers 

to reach phase I and II clinical trials for the prevention of cancer (107,127,128,131,132).

Multiple reports have established that hyperactivation of NRF2 is detrimental for survival in 

cancer patients (5,8,9,25,47,49,52,133–135). Therefore, developing NRF2-specific 

chemotherapeutics for the treatment of NRF2-hyperactive cancers has become a major goal 

(51,136). NRF2 inhibitors function primarily through disruption of nuclear NRF2 

transcriptional activity and have been historically identified through high-throughput 

screening (HTS) of NRF2-ARE transcriptional activity (137). Examples of these compounds 

include all-trans retinoic acid (ATRA), ARE expression modulator 1 (AEM1), ML385, 1-(2-

Cyclohexylethoxy)aniline (IM3829), brusatol, and lobetasol proprionate (CP) (57,138–141). 

ML385 disrupts NRF2-sMAF heterodimerization via direct association with the Neh1 

domain of NRF2 (141). CP results in NRF2 nuclear degradation in a BTRC-dependent 

manner. Both of these small molecules highlight how molecular understanding of the 

mechanisms driving NRF2 regulation and activation can yield candidates for therapeutic 

intervention. Although both ML385 and CP were effective in preclinical studies using 

cellular-based assays and animal models of cancer, they remain untested in clinical trials for 

patients with NRF2-hyperactive tumors.

Concluding Remarks

In summary, numerous studies have established multiple genomic, transcriptional, and 

proteomic mechanisms for NRF2 activation in cancer. Identification of these mechanisms 

has further defined NRF2 as an oncogene and KEAP1 as a tumor suppressor across tumor 

types. Increased mechanistic understanding of KEAP1-NRF2 signaling in cancer has not yet 

translated into targeted therapies or diagnostic testing for patients with NRF2-hyperactive 

tumors. Considering the many mechanisms of NRF2 pathway activation observed in cancer, 

it is maybe not surprising that a standardized diagnostic strategy is not available to identify 

patients with NRF2-hyperactive tumors. Many studies have linked NRF2 activation to radio-

resistance and therefore could provide guidance for treatment escalation or de-escalation. 

Transcription-oriented techniques such as RNA-seq or NanoProbe would likely be the most 

applicable. The lack of available lead compounds for NRF2 inhibition may reflect the 

historical challenges associated with targeting transcription factors for treatment of cancer. 

However, the emerging insights into upstream and downstream regulators of KEAP1-NRF2 

signaling, such as kinases, phosphatases and other proteins controlling PTMs and protein-

protein interactions, may provide new opportunities for clinical interventions.
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Figure 1. NRF2-activating genomic and transcriptional alterations to NFE2L2, CUL3, and 
KEAP1 DNA and mRNA.
A. Schematic of genetic and epigenetic modifications to NFE2L2, CUL3, and KEAP1 DNA. 

Densities of copy-number alterations across chromosome 2 (NFE2L2 and CUL3) and 

chromosome 19 (KEAP1) are shown for LUSC (light red) and HNSCC (dark red).

B. Schematic of alterations to NFE2L2, CUL3, and KEAP1 mRNA. NFE2L2 mRNA is 

regulated by more than 20 miRNAs and by alternative splicing. Two alternative splicing 

events for NFE2L2 have been detected in two different NRF2 isoforms in LUSC and 

HNSCC. CUL3 and KEAP1 are regulated by 2 and 4 miRNAs, respectively. Association of 

CUL3 and KEAP1 mRNA with RBM47 results in decreased mRNA transcripts.
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Figure 2. NRF2-activating alterations to NRF2, CUL3, and KEAP1 protein and protein-protein 
interactions.
A. Schematic of post-translational alterations to NRF2, CUL3, and KEAP1 proteins and 

protein-interaction networks. Protein domains are annotated for NRF2, CUL3, and KEAP1 

along with functional interactions for each domain. Essential amino acid residues for protein 

function are indicated at the corresponding residue. Nuclear export sequence (NES); nuclear 

localization sequence (NLS); Creb-binding protein (CREBBP); Retinoid X receptor alpha 

(RXRA); chromodomain helicase DNA binding protein 6 (CHD6). Kernel density 

estimations (KDE) are provided above each protein and demonstrate the oncogenic 

mutational signature for NRF2 (n=140), and the tumor suppressor signature for CUL3 

(n=33) and KEAP1 (n=149). KDEs reflect mutation data for only the top five cancer sites 

with the most frequent mutations in NRF2, CUL3, and KEAP1 from cBioPortal.
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B. Cartoon illustrating NRF2-competitive binding proteins containing KEAP1- and NRF2-

binding motifs.

C. Cartoon illustrating metabolite-dependent PTMs of KEAP1, namely the formation of 2-

SC adducts on KEAP1 protein as a consequence of fumarate hydratase (FH) enzyme loss 

observed in renal cell carcinoma or itaconate-cysteine (I-C) adducts observed in 

lipopolysaccharide (LPS)-activated macrophages. S-glutathionylated KEAP1 (KEAP1-SSG) 

and methylimidazole crosslink between proximal cysteine and arginine residues (MICA) are 

also listed.
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