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Abstract

Purpose: Presence of a high degree of tumor-infiltrating lymphocytes (TILs) has proven to be 

associated with outcome in patients with non-small cell lung cancer (NSCLC). However, recent 

evidence indicate that tissue architecture is also prognostic of disease specific survival and 

recurrence. We show a set of descriptors (SpaTIL) that capture density and spatial co-localization 

of TILs and tumor cells across digital images can predict likelihood of recurrence in early-stage 

NSCLC.

Experimental design: The association between recurrence in early-stage NSCLC and SpaTIL 

features was explored on 301 patients across four different cohorts. Cohort D1 (n=70) was used to 

identify the most prognostic SpaTIL features and to train a classifier to predict the likelihood of 
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recurrence. The classifier performance was evaluated in cohorts D2 (n=119), D3 (n=112), and D4 

(n=112). Two pathologists graded each sample of D1 and D2; intra-observer agreement and 

association between manual grading and likelihood of recurrence were analyzed.

Results: SpaTIL was associated with likelihood of recurrence in all test sets (log rank p<0.02). A 

multivariate Cox Proportional Hazards analysis revealed a HR of 3.08 (95% confidence interval, 

2.1–4.5, p=7.3×10−5). In contrast, agreement among expert pathologists using tumor grade was 

moderate (Kappa=0.5), and the manual TIL grading was only prognostic for one reader in D2 

(p=8.0×10−3).

Conclusion: A set of features related to density and spatial architecture of TILs was found to be 

associated with a likelihood of recurrence of early-stage NSCLC. This information could 

potentially be used for helping in treatment planning and management of early-stage NSCLC.

Introduction

Early-stage (stages I and II) non-small cell lung cancer (NSCLC) (1,2) is typically treated 

with complete surgical excision. However, even after resecting the entire tumor mass, 30–

55% of patients develop disease recurrence within first 5 years following surgery (3). The 

ability to identify patients who are at a higher risk of recurrence could help selecting those 

patients who may gain maximum benefit with further treatment including adjuvant 

chemotherapy following standard of care surgery.

Non-small cell lung cancer histopathology is characterized by a complex interplay of tumor 

cells, immune cells (lymphocytes, plasma cells, macrophages, and granulocytes), fibroblasts, 

and pericytes/endothelial cells. Recent evidence suggests that the interaction of tumor cells 

with immune cells has a high association with likelihood of disease progression and 

influences tumor development, invasion, metastasis, and patient outcome (1,2). Several 

independent studies (4,5,6,2) meanwhile have also shown an association between patient 

survival and treatment response with an increased density of Tumor-Infiltrating 

Lymphocytes (TILs) in diverse solid tumor types. Additionally, there is substantial evidence 

supporting the fact that increased TIL density is associated with better chemotherapeutic 

response (7,8,9,10).

Studies have also found substantial inter-reader variability in estimating TIL density using 

Hematoxylin & Eosin (H&E) stained slides. This has limited the routine use of TIL density 

as a metric in the clinic as a prognostic marker for NSCLC. Brambilla et al. (6), for instance, 

determined that inter-pathologist agreement was at best moderate (Kappa = 0.59) in 

quantifying TILs on tissue slides. While attempts have been made to establish guidelines for 

standardizing TIL grading in breast cancer (11), these efforts have been lagging in lung 

cancer.

Over the last few years there has been increasing interest in developing automated cell 

segmentation and detection algorithms for identifying and quantifying the extent of TILs 

from routine H&E pathology slide images (12,13,14). These approaches can be broadly 

categorized into a) involving extraction of visual features (12), b) employing morphological 

operations (15,16), and c) using Deep Learning based models (17). However, these 
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approaches have primarily focused on either counting the individual TILs (13,14) or 

estimating the TIL grade, typically as being low, moderate, or high (12,15,16).

Interestingly, there has also been a recent surge in looking at spatial patterns of TILs and 

investigating their relationship with disease outcome. Multiplexed quantitative 

immunofluorescence (QIF) and immunohistochemistry (IHC) based methods have been 

employed for objectively identifying TIL subtypes and correlate the spatial arrangement and 

density of these TIL subtypes with overall survival (OS) in NSCLC (4,18). For instance, 

Schalper et al. (4) found out that increased levels of CD3 and CD8 TILs were significantly 

associated with improved 5-year OS. Similarly, Barua et al. (18) showed that spatial 

interplay between tumor and regulatory T cells was associated with OS in NSCLC. 

Furthermore, Liu et al. (19) demonstrated that presence of CD8+ and FOXP3+ TILs was 

correlated with the response of platinum-based neoadjuvant chemotherapy in advanced 

NSCLC.

Interestingly, computer extracted features of spatial patterns and morphologic attributes of 

TILs from routine H&E slides also appeared to be prognostic. Basavanhally et al. (15) 

explored the use of graph network algorithms to spatially characterize the arrangement of 

machine identified TILs in HER2+ breast cancer H&E images to predict TIL grade (i.e. high 

or low). Yu et al. (20) and Luo et al. (21) extracted quantitative morphological features of 

nuclei and the surrounding cytoplasm from H&E tissue images of early-stage NSCLC 

patients (e.g., area, shape, intensity, texture, density) for predicting survival. In (22), Saltz et 

al. used a deep learning model to identify patches of TILs in images, which were 

subsequently clustered using different similarity metrics. From such patch clusters, different 

indices were computed (Ball and Hall, Banfield and Raftery, C, determinant ratio, etc.) 

which was then found to be correlated with patient survival across different tumor types.

Given the recent evidence that the co-localization of immune and cancer nuclei is prognostic 

of disease outcome (23,20,22,21), this work aims to develop and evaluate new computer-

extracted spatial TIL (SpaTIL) features relating to 1) the spatial architecture of TIL clusters, 

2) co-localization of clusters of both TILs and cancer nuclei, and 3) variation in density of 

TIL clusters across the tissue slide image. Specifically, our goal was to evaluate the 

association between disease recurrence and the SpaTIL features on patients with stage I and 

II of non-small cell lung cancer (NSCLC). Additionally, we also sought to compare the 

SpaTIL features in terms of their ability to predict recurrence in these patients with NSCLC 

against the manually estimated degree of TILs by two thoracic pathologists.

Materials and methods

Datasets

Tissue microarrays (TMAs) obtained from H&E-stained slides collated from three 

independent and well-characterized early-stage NSCLC cohorts in were included in this 

study, representing a total of n=301 patients. The three cohorts are represented by D1 

(n=70), D2 (n=119), and D3 (n=112). A fourth dataset, named D4 (n=112), was also 

included, containing tissue cores corresponding to the same patients in D3 but extracted 

from different regions of the tumor. The corresponding clinico-pathological and outcome 

Corredor et al. Page 3

Clin Cancer Res. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



information from patients in D1-D4 was obtained from retrospective chart review from the 

institutions at which the datasets were collated after obtaining the respective IRB approval.

Patients from D1 and D2 comprised formalin-fixed paraffin-embedded (FFPE) tumor 

sections from previously reported retrospective collections of NSCLC patients (4). 0.6-mm 

cores from each tumor were then arrayed to make up the TMA. A further 116 patients 

provided two cores from the same tumor, to make up TMA datasets D3 and D4. The standard 

TMA preparation protocol is described in (24). D1 and D2 were scanned and digitized using 

an Aperio Scanscope CS whole slide imager at 20× magnification. D3 and D4 were scanned 

and digitized at 20× using a Ventana iScan HT Scanner (serial #: BI15N7205). Finally, a 

1500×1500 pixel image at 20× magnification was extracted and used to represent a unique 

tumor sample derived from each patient D1 was employed for feature discovery and model 

training. This dataset included samples from 350 patients and was collected independently at 

Sotiria General Hospital and Patras University General Hospital between 1991 and 2001. D2 

and D3 were used for independently validating the trained classifier. D2 comprised samples 

from 202 patients and was collected at Yale Pathology between 1988 and 2003. D3 and D4 

(tissue cores corresponding to same patients in D3 but from a different portion of the tumor) 

comprised tissue images from 189 patients and was collected at the Cleveland Clinic 

between 2004 and 2014. D3 and D4 were used to quantitatively assess the ability of the 

approach to deal with intra-tumoral heterogeneity. Figure S1 illustrates the inclusion and 

exclusion criteria for patient selection for this study.

Automatic characterization of TILs

Identification of Lymphocytes—The first step in the process was to identify the spatial 

location of the TILs on digitized H&E images. A watershed-based algorithm (25) was used 

for automatically detecting the nuclei. This method applies a set of mathematical operations 

(fast radial symmetry transform and regional minima) at different scales to identify 

candidate locations for nuclei. This method was chosen based off its documented 

advantages, including simplicity, speed, and the ease with which parameters can be adjusted 

and fine-tuned.

Once nuclei were detected, the approach described in (26) was used to distinguish 

lymphocytes from non-lymphocytes. This approach takes advantage of the fact that TILs 

tend to be smaller compared to cancerous nuclei, they also tend to be more rounded and with 

a darker, more homogeneous staining. Once all the candidate nuclei were identified via the 

watershed approach described above, a machine classifier using 7 image derived features 

related to texture, shape, and color attributes of the segmented nuclei was used to classify the 

individual nuclei as corresponding either to TILs or non-TILs (See Figures 1-b and 1-e).

Quantitative evaluation of spatial arrangement of TILs

Spatial TIL Graph Construction: A graph is a mathematical construct comprising of a 

finite sets of objects (nodes) that capture global and local relationships via pairwise 

connections (edges) between the nodes. Graphs have been previously used to quantitatively 

characterize nuclear architecture in histopathologic images by representing the nuclei as 
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nodes and subsequently quantifying neighborhood relationships (e.g., proximity) and spatial 

arrangement between the nodes (15,27,28)

In order to evaluate a spatial network of TILs and to extract the corresponding SpaTIL 

features, we first identified sets of clusters of proximal TILs and non-TILs respectively. We 

represented the centroids of each of the individual TILs and non-TILs as nodes of a graph. 

Using the approach described in (27,28), each node was connected to others based off the 

weighted Euclidean norm where a weighting function favors the connectivity between 

proximal nodes. Utilizing this process resulted in multiple disconnected subgraphs or 

clusters of TILs being generated. This process was also repeated separately for all the non-

TILs.

SpaTIL features: We extracted two separate sets of SpaTIL features. The first set 

comprised of 20 features related to spatial arrangement of TILs, extracted from the TIL 

cluster graphs. These features included first-order statistics (e.g. mean, mode, median) of the 

following representative descriptors: number of lymphocytes within the clusters, ratio 

between the area of the TIL clusters and area of the TMA spot, ratio between the numbers of 

TILs within the cluster and the cluster area. The second set included 65 features describing 

the relationship between TIL and non-TIL clusters extracted for each image. These included 

the ratio between the density (ratio between the number of nuclei within the cluster and the 

cluster area) of a non-lymphocyte cluster and the density of its closest lymphocyte cluster, 

the intersecting areas of the lymphocyte and non-lymphocyte clusters, a value indicating if 

the nearest neighbor of a lymphocyte cluster is either a lymphocyte or a non-lymphocyte 

cluster. The 85 features are listed in the supplementary material (See Table S1).

Feature selection—The Minimum Redundancy Maximum Relevance (mRMR) feature 

selection method (29) was employed to identify the SpaTIL features that most correlated 

with recurrence in the discovery set D1 while also eliminating features which were grossly 

similar to each other to prevent redundancy.

Comparative strategies

Inter-reader variability in TIL estimation by human readers—Two expert thoracic 

pathologists experienced in grading TILs were asked to determine the infiltration grade for 

each of the images in D1 and D2 via visual evaluation of digitized H&E stained images. An 

in-house custom web application was used by the readers to assign an infiltration score to 

each image. Infiltration options were defined based on findings reported in (4,6) as 0) no-

infiltration (virtual absence of TILs), 1) low (1%−33%), 2) moderate (34%−66%), and 3) 

high (67%−100%).

The agreement among pathologists during the TIL-grading task was measured via two 

quantitative indices: Spearman’s correlation coefficient (30) and Cohen’s Kappa coefficient 

(31). The Kappa index is a widely used measure to determine the agreement among a set of 

experts making categorical judgments, considering agreement may occur by chance.

Computer based estimation of TIL-density—We also extracted TIL-density-based 

(DenTIL) features and compared the prognostic performance of these DenTIL features 
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against the SpaTIL features. The DenTIL features included ratio between the number of 

TILs and the TMA spot area, ratio between the total regions of the TMA spot covered by 

TILS to the total area of the corresponding TMA spot, ratio between the number of TILs and 

the number of non-TILs within a TMA spot, and a grouping value indicating how close the 

TILs are to each other (computed as the sum of the inverse distances between TILs).

Statistical analysis

Classification—A Quadratic Discriminant Analysis (QDA) classifier was trained using 

the top SpaTIL features (QS) identified from D1 to separate the patients into two classes: 

recurrence and non-recurrence. We chose this classifier owing to the fact that it has no hyper 

parameters to tune and is able to learn quadratic boundaries. Therefore, it has been shown to 

be more flexible compared to linear classifiers. Additionally, another QDA classifier was 

trained using DenTIL features (QD) on the training set D1. Following parameter 

optimization, the classifier was locked down using D1.

The performance of the locked down QDA classifiers QS and QD in distinguishing between 

early-stage NSCLC patients who did and did not have recurrence was evaluated on the 

independent validation sets D2, D3, and D4. Classifiers QS and QD assigned a probability of 

recurrence to each image in the test sets. Classifier performance was evaluated via the 

concordance statistic or C-index. The recurrence and non-recurrence labels predicted by QS 

and QD were compared with the ground truth labels (true patient outcomes) to determine 

classifier accuracy and C-index. The C-index obtained for QS on D3 and D4 were 

quantitatively compared to evaluate the effect of spatial tissue sampling on the classifier 

performance.

Statistical and Survival Analysis—Recurrence-free survival (RFS) was defined as the 

time interval between the date of diagnosis and the date of death or recurrence (whichever 

happened first). Patients who were still alive without recurrence at the last reported date 

were labeled as censored. Kaplan-Meier survival analysis was used to examine the 

difference of RFS between different patient groups categorized by the classifier output and 

the difference of RFS in each group was assessed by the log-rank test. Multivariate Cox 

regression analysis was employed to examine the predictive ability of the QS and QD 

classifiers when controlling for the effects of clinical and pathological parameters including 

gender, age, T-stage, and N-stage. P-values were two-sided and all values under 0.05 were 

considered to be statistically significant.

A Kaplan-Meier analysis was also carried out for the DenTIL approach and for the TIL 

density estimation by the human readers. In the case of manual estimation of TIL density, 

patients were split into two groups: High-TIL and Low-TIL. Since pathologists graded each 

case from 0 to 3, case patients with TIL categories of 0 to 2 were considered as being part of 

the low-TIL group and those with scores of 3 were grouped in as part of the high-TIL tumor 

category. This strategy was based on the approaches described in (4,6).
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Experimental Results

Clinico-pathologic Features of the Patient Cohorts

The median follow-up for patients was 40.91 months, 45.33 months, and 70.92 months for 

D1, D2, and D3, respectively. By the end of the study/follow-up, 34 out of 70 patients 

(48.6%) in D1, 54 of 119 (45.4%) in D2, and 34 out of 112 (30.4%) in D3 had developed 

recurrence. Table 1 presents a summary of clinical and pathological features for the whole 

dataset (D1, D2, D3, and D4). Supplemental Table S3 presents the clinical and pathological 

features of cohorts D1, D2, D3, and D4 individually.

The images are all pre-treatment tissue slides. The analysis is performed during the 

diagnosis phase (no treatment at all). Obviously, the treatment may influence the survival 

variable because of the inherent biological variability, i.e., each individual response is 

different, but once the patient is categorized, the treatment is the same for that particular 

category. The kind of treatment is shown in Supplementary Table S5.

Experiment 1: Prognostic ability of SpaTIL in early-stage NSCLC

Supplemental Table S2 and Figure S3 illustrate the top SpaTIL features identified via feature 

selection and their corresponding boxplots, respectively.

Figures 2-c, 3-c, 4-a, and 4-d illustrates the ROC curves and corresponding C-indices for the 

SpaTIL classifier (Qs) for predicting recurrence in NSCLC on D1, D2, D3, and D4. C-indices 

of the binary classifier for the 4 datasets were 0.70, 0.73, 0.70, and 0.71, respectively.

Figures 2-d, 3-d, 4-b, and 4-e illustrate the Kaplan-Meier plots corresponding to the SpaTIL 

features for D1, D2, D3, and D4, respectively. Qs was found to be prognostic for D2 

(p=5.0×10−4, HR: 2.80, 95% confidence interval: 1.64 – 4.80), D3 (p-value = 1.4×10−3, HR: 

4.45, 95% confidence interval: 1.76 – 11.25), and D4 (p-value = 0.02, HR: 4.45, 95% 

confidence interval: 1.26 – 8.46).

Significance of clinical and pathologic variables with patients’ survival time in the test sets 

was evaluated via the log-rank test (Figure S2). A multivariate analysis, controlling the 

effect of major pathological and clinical variables, was performed for the three test cohorts 

(D2, D3, and D4). Table 2 presents the results of the analysis for the three cohorts together 

while Supplemental Table S4 shows the results for each cohort individually. Patients 

identified by the Qs classifier as having poor prognosis had statistically significantly worse 

disease-specific survival. The hazard ratio (HR) was 3.08 (95% confidence interval: 2.1 – 

4.5, p=7.3×10−5), meaning that patients with recurrence were approximately 3 times more 

likely to develop disease recurrence and die from the disease.

Experiment 2: Comparison of Human and Machine based assessment of TIL Density for 
Predicting Recurrence in Early stage NSCLC

Figures 2-a and 3-a show the computed Spearman’s correlation and Kappa index values for 

the two pathologists for D1 and D2, respectively. The overall computed Kappa (considering 

both analyzed datasets) was 0.50. When computed independently for each dataset, Kappa 
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indices were 0.38 and 0.57 for D1 and D2, respectively. On the other hand, the correlation 

coefficients were 0.61 for D1 and 0.79 for D2.

Figures 2-b and 3-b illustrate the Kaplan-Meier plots for both pathologists on D1 and D2, 

respectively. For reader 1, no statistically significant correlation between TIL estimation and 

outcome was observed for D1 (p=0.14) nor D2 (p=0.26). Conversely, for reader 2, a 

significant statistical correlation was observed for set D1 (p=0.01) but not for set D2 

(p=0.07).

Figures 2-e, 3-e, 4-c, and 4-f illustrate the Kaplan-Meier plots corresponding to the QD 

classifier on D1, D2, D3, and D4, respectively. The QD classifier was found to have a 

statistically significant correlation between the classifier and patient outcome for D2 

(p=3.4×10−4); the predictions, however, were not statistically significant for D3(p=0.36) and 

D4 (p=0.36), respectively.

Discussion

Different studies reported the importance of immune response in different cancers (32). Such 

studies have demonstrated a high correlation between TILs density and both disease 

outcome and treatment response, particularly for lung, breast, ovarian, pancreatic, colorectal, 

and skin cancer, to name a few (12,13,11,1,33,6,2,32,22). Pathologists have aimed to 

quantify the number of immune cells and their relationships within a tumor. For example, 

Galon et al. (34) classified tumors with an Immunoscore that relates the density and location 

of immune cells within the tumor. They showed this score yields a prognostic value that can 

complement or even replace the standard TNM classification in colorectal cancer. The 

authors have subsequently made a dedicated effort to promote the Immunoscore in routine 

clinical settings (See http://www.immunoscore.org/). Likewise, Salgado et al. (11), as part of 

the International Immuno-oncology Biomarker Working Group on Breast Cancer (See 

https://www.tilsinbreastcancer.org/), have performed the largest effort to date to establish a 

TIL based quantification protocol. The authors constructed a set of guides that standardize 

the methodology for visual assessment of TILs on H&E slide sections. In lung cancer, 

however, there is a conspicuous lack of a standardized guidelines for TIL scoring/use. 

Although different works have demonstrated the prognostic value of TILs in lung cancer, in 

each of these studies (4,19), the degree of TILs was estimated by visual observation, a time 

consuming, subjective, and often error-prone task. Moreover, several studies have shown a 

limited reproducibility in visual estimation of TILs (6,12).

Computer based approaches for automatic estimation of TILs (12,13,14,15) have helped to 

mitigate the subjectivity and low reproducibility associated with human TIL grading. 

However, different recent works have shown that, besides TIL density, the spatial location of 

immune cells is useful in predicting patient prognosis (32). Such studies appear to suggest 

that the spatial organization of lymphocytic infiltration in the context of nearby cancer cells 

is an important prognostic hallmark of certain types of tumors. This suggests that the study 

of the immune response with respect to patient outcome should take into account not only 

the quantity of immune cells, but also the spatial arrangement of the cancerous and 

surrounding immune cells (20,21,23,35). Previous related studies have found a strong 
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association between the spatial location of nuclei and surrounding cytoplasmic features with 

OS (20,21) and RFS (23,4) in patients with early-stage NSCLC.

In this work, we presented a set of features based on the spatial architecture of TILs 

(SpaTIL), devised to capture the TIL local density and variation in the density, architecture, 

and co-localization of TIL and cancerous cells.

On two TMA datasets comprising of 119 and 112 patients, the SpaTIL classifier yielded CIs 

of 0.73, and 0.70, respectively. A Kaplan-Meier analysis along utilizing the log-rank test 

showed a strong association between the predictions of the SpaTIL classifier and recurrence 

for D2 (p=5.0×10−4), D3 (p=1.0×10−3), and D4 (p=0.01). Likewise, a multivariate Cox 

proportional survival analysis revealed a HR of 3.08 (95% confidence interval: 2.1 – 4.5, 

p=7.3×10−5).

Notably, the cohorts were obtained from different institutions with local (and presumably 

variable) tissue processing and preservation protocols. In addition, slides were stained in 

different institutions and digitalized with two different instruments. The latter appears to 

reflect the robustness of the SpaTIL classifier, its relative resilience to image and color 

variance on account of major pre-analytical variables and with samples from multiple 

different sites.

We also compared the prognostic performance of TIL estimation carried out by two human 

readers. A Kaplan-Meier analysis was conducted for each pathologist; results showed that 

no significant statistical correlation was found between Pathologist 1 and prognosis for any 

dataset (p>0.05) while there was a significant statistical correlation between TIL grade 

estimation of Pathologist 2 and patient outcome for D1 (p=6.0×10−3). In addition, the 

agreement among expert pathologists for D1 and D2 was found to be moderate (K=0.50) and 

comparable to the values previously reported for NSCLC (K=0.59) (6) and breast pathology 

(K=0.72) (36).This moderate agreement might be due to the fact that TIL grading in lung 

pathology lacks a standardized scoring system, hence each pathologist might preferentially 

focus on different areas of the tissue during examination (e.g., epithelium or stroma) or 

consider different cell populations within the “TIL” infiltration (e.g., mononuclear cells 

beyond lymphocytes such as plasmocytes and myeloid cells). Finally, different pathologists 

may have variable expertise evaluating immune cell infiltrates or natural individual variation 

in their perception of colors, shapes, and relative amounts/proportions. In contrast, the 

results obtained by using SpaTIL features are objectively measured and suggest that the 

spatial arrangement of TILs and tumor cells were strongly associated with recurrence in 

early stage NSCLC (p<0.05).

The two papers most closely related to the work presented here are that of Khan et al. (37) 

and Saltz et al. (22). Khan et al. (37) measured the degree of TIL infiltration for each core of 

a TMA as the ratio of lymphocytes to all cells. The infiltration score was found to be 

associated with poor prognosis in breast cancer, specifically in HER2-amplified/positive 

cases (p=0.02). In (22), Saltz et at. used a deep learning model to identify patches from 

whole slide images (WSIs) containing TILs. From these patch clusters, cluster indices were 

calculated, namely Ball and Hall (38), Banfield and Raftery (39), C (40), determinant ratio 
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(41), among others. Five associations between these cluster indices and patient survival were 

found to be significant for different tumor types: Ball-Hall for breast invasive carcinoma 

(p=7×10−3), C-index for lung adenocarcinoma (p=3.0×10−3), Banfield-Raftery for prostate 

adenocarcinoma (p=0.01), Determinant Ratio for prostate adenocarcinoma (p=0.01), and 

Banfield-Raftery for skin cutaneous melanoma (p=1.0×10−3). While this study (22) clearly 

suggests the prognostic relevance of spatial arrangement of TILs, the SpaTIL features 

capture not just the spatial arrangement of TILs, but also the spatial interplay and co-

localization of TILs and cancer nuclei. While studies involving IHC and QIF images 

(4,18,19) have shown the importance of looking at the spatial architecture and interplay of 

different TIL families, to the best of our knowledge, the SpaTIL approach represents the first 

attempt to capture the spatial architecture and arrangement of TILs and non-TILs from 

routine H&E images alone.

Additionally, the approaches of both Khan et al. (37) and Saltz et al. (22) are actually more 

similar to the DenTIL classifier which we employed to compare against the SpaTIL features, 

one that invoked the ratio of lymphocytes to all cells in a TMA core and also included other 

TIL based density features. While the results of the DenTIL classifier were found to be 

statistically significant in predicting recurrence for D2, the results were not significant for 

either D3 or D4 hence showing the lack of reproducibility. The corresponding HR and CI 

values for the DenTIL classifier were also found to be lower compared to the SpaTIL 

features across the validation sets D2, D3, and D4.

Our work did however have a few limitations. First, unlike the study of Saltz et al. (22), our 

approach was evaluated on TMAs and not using WSIs. The SpaTIL features were however 

evaluated and compared from tissue punches from different parts of the same tumor (D3 and 

D4). The SpaTIL features were found to prognostic of recurrence in both D3 and D4 

(p≤0.01) and the corresponding C-index and Hazard ratios were also found to be comparable 

(CI=0.70, HR: 4.45 for D3; CI=0.70, HR: 3.26 D4). These findings appear to be in 

concordance with previous studies involving TIL based biomarkers that have suggested that 

results using TMAs are concordant with findings from WSIs (11,4,37). However, additional 

studies comparing the results in TMAs vs WSI will help establish the minimum amount of 

tumor tissue required for optimally calculating SpaTIL features that are prognostic of 

recurrence.

Future work will include additional analysis among larger patient cohorts and eventually 

using prospectively collected samples. Although our cohorts were not characterized using 

alternative prognostic molecular signatures for NSCLC (4,18,19), we anticipate the SpaTIL 

to be complementary with such tests. Additional studies will be required to determine the 

relative contributions, feasibility, and cost-effectiveness of each approach; and the possible 

role of such metrics to predict sensitivity/resistance to novel anti-cancer immunostimulatory 

therapies.

In summary, we presented a novel computational image-analysis based approach that 

exploits a set of density and spatial topological features related to the arrangement of 

clusters of TILs and non-lymphocytes within the tumor area using standard H&E histology 

preparations. We identified a metric that was consistently associated with recurrence/
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prognosis in early stage NSCLC. This work represents the first preliminary step in the 

development of an image-based companion diagnostic test to help identify early-stage lung 

cancer patients at increased risk for recurrence and hence potential candidates for adjuvant 

therapy (e.g., chemotherapy or immunotherapy) following standard of care surgery
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Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

The presence of a high degree of tumor-infiltrating lymphocytes (TILs) has been found to 

be associated with better prognosis in non-small cell lung cancer (NSCLC). There is a 

moderate agreement between pathologists when assessing the degree of TIL presence 

from histopathologic tissue specimens. In this study, we present a new set of computer-

extracted quantitative features (SpaTIL) related to the spatial architecture of TILs, the co-

localization of TILs and cancer nuclei, and the density variation of TIL clusters from 

H&E images. We demonstrate that SpaTIL can predict the likelihood of recurrence in 

early-stage NSCLC. Compared to clinico-pathologic features, these features were 

independently prognostic of disease recurrence. Following additional, independent, 

multi-site validation, this SpaTIL test could be used in a manner similar to genomic-

based companion diagnostic tests to identify those patients who have a higher chance of 

recurrence and who might thus potentially receive added benefit from adjuvant 

chemotherapy following surgical resection.
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Figure 1. 
Representative TMA tissue spots of recurrent (top row) and non-recurrent (bottom row) 

early-stage NSCLC cases. The first column (a, d) shows the original H&E-stained images. 

Identification of TILs (yellow) and non-TILs (cyan) is presented in the second column (b, e). 

The third column (c, f) illustrates the qualitative representation of one of the SpaTIL features 

overlaid on the original images, specifically, the variation in the density of lymphocyte 

clusters. The color bars represent the density measurement (H stands for highly dense 

clusters while L stands for low-density or sparse clusters). Non-recurrence cases are 

characterized by the presence of more high-density clusters while recurrence cases were 

comprised of a larger number of low-density clusters.
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Figure 2. 
Prognostic prediction results for human readers, QD, and QS for D1. a) Bar plot illustrating 

the Kappa index and correlation coefficient computed between readers 1 and 2, b) Kaplan-

Meier curves for readers 1 and 2, c) ROC curve and corresponding CI for QS, d) Kaplan-

Meier plot for QS classifier using recurrence free survival as endpoint, e) Kaplan-Meier plot 

for QD classifier. The number of cases in each category is indicated in the charts.
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Figure 3. 
Prognostic prediction results for human readers, QD, and QS for D2. a) Bar plot illustrating 

the Kappa index and correlation coefficient computed between readers 1 and 2, b) Kaplan-

Meier curves for readers 1 and 2, c) ROC curve and corresponding CI for QS, d) Kaplan-

Meier plot for QS classifier using recurrence free survival as endpoint, e) Kaplan-Meier plot 

for QD classifier. The number of cases in each category is indicated in the charts.
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Figure 4. 
Prognostic prediction results for QD and QS for D3 (top row) and D4 (bottom row). First 

column (a, d) shows the ROC curve and corresponding CI for QS, second column (b, e) 

presents the Kaplan-Meier plots for QS classifier using recurrence free survival as endpoint, 

and third column (c, f) illustrates the Kaplan-Meier plot for QD classifier. The number of 

cases in each category is indicated in the charts.
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Table 1:

Summary of clinical and pathological features for the patients in the whole dataset.

Variable Sub variables N (%)

Number of patients 301

Average age 64.3 +/− 10.5

Sex Male
Female

176 (58.5)
125 (41.5)

N-Pathological 0
1

205 (68.1)
96 (31.9)

T-Pathological 1
2

135 (44.9)
166 (55.1)

Stage I/IA/IB
II/IIA/IIB

221 (73.4)
80 (26.6)

Recurrence Non-recurrence
Recurrence

179 (59.5)
122 (40.5)

Tumor types Adenocarcinoma
Squamous Cell Carcinoma
Others

135 (44.9)
89 (29.6)
77 (25.6)
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Table 2:

Multivariable survival analysis performed on the test sets (D2, D3, and D4) including SpaTIL.

Variable Hazard Ratio
(95% Confidence Interval)

p-value

Gender
Male vs. Female

1.18 (0.85–1.65) 0.32

T-stage
T1 vs. T2

0.98 (0.68–1.40) 0.90

N-stage
N0 vs. N1

0.91 (0.59–1.41) 0.68

Stage
Stage I vs. Stage II

1.01 (0.65–1.58) 0.96

Tumor subtypes
ADCs vs. SCC vs. others

0.92 (0.72–1.19) 0.53

SpaTIL
recurrence vs. non-recurrence

3.08 (2.10–4.51) 7.3×10−5

Two-sided p < 0.05 (in bold) was considered as statistically significant.
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