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Abstract
BACKGROUND
Fibrosis is the single most important predictor of significant morbidity and
mortality in patients with chronic liver disease. Established non-invasive tests for
monitoring fibrosis are lacking, and new biomarkers of liver fibrosis and function
are needed.

AIM
To depict the process of liver fibrosis and look for novel biomarkers for diagnosis
and monitoring fibrosis progression.

METHODS
CCl4 was used to establish the rat liver fibrosis model. Liver fibrosis process was
measured by liver chemical tests, liver histopathology, and Masson’s trichrome
staining. The expression levels of two fibrotic markers including α-smooth
muscle actin and transforming growth factor β1 were assessed using
immunohistochemistry and real-time polymerase chain reaction. Dynamic
changes in metabolic profiles and biomarker concentrations in rat serum during
liver fibrosis progression were investigated using ultra-performance liquid
chromatography coupled to quadrupole time-of-flight mass spectrometry. The
discriminatory capability of potential biomarkers was evaluated by receiver
operating characteristic (ROC) curve analysis.

RESULTS
To investigate the dynamic changes of metabolites during the process of liver
fibrosis, sera from control and fibrosis model rats based on pathological results
were analyzed at five different time points. We investigated the association of
liver fibrosis with 21 metabolites including hydroxyethyl glycine, L-threonine,
indoleacrylic acid, β-muricholic acid (β-MCA), cervonoyl ethanolamide (CEA),
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phosphatidylcholines, and lysophosphatidylcholines. Two metabolites, CEA and
β-MCA, differed significantly in the fibrosis model rats compared to controls (P <
0.05) and showed prognostic value for fibrosis. ROC curve analyses performed to
calculate the area under the curve (AUC) revealed that CEA and β-MCA differed
significantly in the fibrosis group compared to controls with AUC values
exceeding 0.8, and can clearly differentiate early stage from late stage fibrosis or
cirrhosis.

CONCLUSION
This study identified two novel biomarkers of fibrosis, CEA and β-MCA, which
were effective for diagnosing fibrosis in an animal model.

Key words: Ultra-performance liquid chromatography-mass spectrometry; Metabonomics;
Liver fibrosis; Biomarker; Cervonoyl ethanolamide; β-muricholic acid
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Core tip: Carbon tetrachloride induced model is stable and comparable with viral
hepatitis. Metabolic changes occur during the progression of fibrosis. We investigated
the association of liver fibrosis with 21 metabolites, and two of them, cervonoyl
ethanolamide and β-muricholic acid, differed significantly in the fibrosis model rats
compared to controls (P < 0.05) and showed prognostic value for fibrosis. The receiver
operating characteristic curve analysis results showed that both metabolites had excellent
diagnostic value and could be used in clinical diagnosis in the future.
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INTRODUCTION
Liver fibrosis is a common pathological process of all chronic liver diseases, which can
be caused by a number of factors, including long-term alcohol abuse, viral infection,
fatty liver disease, metabolic disease, and cholestasis[1,2].  The mechanisms of liver
fibrosis  and  cirrhosis  are  considered  similar;  fibrosis  occurs  via  a  non-specific
mechanism  involving  excessive  accumulation  of  extracellular  matrix  proteins,
including collagen. This accumulation causes hepatic stellate cell activation, which
persists as long as there is liver injury in most cases of chronic liver disease[3].

Liver fibrosis can be divided into four stages (0-4): Stages 0 and 1 represent normal
liver; stage 2 is mild fibrosis; stages 3 and 4 indicate severe and advanced liver fibrosis
that results in cirrhosis. Importantly, liver fibrosis can be reversible at any stage prior
to the development of liver cirrhosis[4]. Therefore, in chronic liver disease, fibrosis
level  is  the  most  important  predictor  of  significant  morbidity  and  mortality.
Assessments of liver injury are currently based on clinical symptoms and biopsies of
the liver.  Alanine aminotransferase (ALT) is  a simple and inexpensive surrogate
marker for liver disease; however, significant fibrosis may still be present in some
patients who had normal ALT levels, and there is no better index than ALT level to
predict advanced fibrosis[5,6]. The gold standard for assessing liver fibrosis is still liver
biopsy.  Currently,  magnetic  resonance  imaging  (MRI)-  and  ultrasound-based
elastography is widely used to assess hepatic steatosis and fibrosis. However, in the
early stages of fibrosis, these techniques lack sensitivity and specificity, and cannot be
used to determine inflammation and cell damage[7]. Thus, there is a need for novel
liquid biomarkers, which, in combination with fibroscan and MRI, might provide
significant advances in diagnosis and monitoring fibrosis progression. Metabonomics,
an  effective  and  noninvasive  diagnostic  method  that  provides  quantitative
measurements of metabolite changes in biofluids, is a powerful tool for biomarker
discovery and helpful for understanding the pathophysiology of a disease[8-11].  In
recent  years,  most  metabolomic studies  have compared only two groups,  as  the
results are easy to interpret. However, the natural course of disease and treatment
processes vary widely, and few studies have focused on the dynamic processes of
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metabolic profiles and biomarkers.
In this study, we investigated biomarker concentrations and dynamic changes in

metabolic profiles during liver fibrosis progression using ultra-performance liquid
chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC/Q-
TOF-MS).  The  objective  of  this  study  was  to  investigate  the  potential  utility  of
metabonomic biomarkers for the early diagnosis of liver fibrosis and function.

MATERIALS AND METHODS

Animal model of liver fibrosis
A total of 100 6-week-old Sprague-Dawley rats, weighing 180-200 g, were obtained
from the Experimental Animal Center of Zhejiang Academy of Medical Sciences,
which were housed under a 12-h daylight/darkness cycle and in an air-conditioned
animal  room with  50% humidity.  All  experimental  procedures  were  conducted
according  to  protocols  approved by  the  Research  Ethics  Committee  of  the  First
Affiliated  Hospital,  School  of  Medicine,  Zhejiang  University  (No.  201543).  The
animals  were  randomly  divided into  five  groups  (n  =  20  each).  To  induce  liver
fibrosis, rats were injected subcutaneously with CCl4 (Sigma-Aldrich, St. Louis, MO,
United States) in olive oil (v/v, 50%, Sigma-Aldrich) at a dose of 0.5 mL per 100 g of
body weight, twice weekly for 12 wk. The rats in the control group were administered
oil using the same injection procedure. The rats were sacrificed at weeks 1, 4, 8, and 12
to collect blood samples and liver tissues.

Pathological observation
The liver tissues were rapidly isolated and immersed into 4% (w/v) paraformalde-
hyde, embedded in paraffin, deparaffinized, and rehydrated with distilled water. The
liver sections were stained with hematoxylin and eosin (HE) using a routine protocol,
and with Masson’s  trichrome (MTC) using an MTC staining kit  (Sigma-Aldrich)
according to the manufacturer’s instructions. The injury score of fibrosis was graded
as described by Ishak[12]; ten representative views of each histological section from
every rat were randomly selected and all rat models were scored.

Chemical analysis
Blood samples were collected via the caudal vein and placed into 1.5 mL centrifuge
tubes. According to pathological results, serum samples were selected for MS and
biochemical detection. The samples were centrifuged at 4 °C at 3000 rpm for about 15
min after incubation at room temperature for 30 min. Then, the serum samples were
sent to the central clinical laboratory of the First Affiliated Hospital for total protein
(TP), albumin (ALB), globulin (GLO), alkaline phosphatase (AKP), ALT, aspartate
aminotransferase (AST), bile acid (BA), total bilirubin (TBIL), and creatinine (CR)
concentration assays. The remaining serum was stored at - 80 °C for metabonomic
analyses.

Liver immunohistochemistry
For immunohistochemistry, the paraffin sections were incubated at 4 °C overnight
with primary antibodies against rat α-smooth muscle actin (α-SMA, 1:400; Abcam,
United Kingdom) and rat  transforming growth factor-β1 (TGF-β1,  1:500;  Abcam,
United Kingdom).  Next day,  the sections were washed with phosphate buffered
saline (GenomSciences, Hangzhou, Zhejiang Province, China) three times and then
incubated at 37 °C for 60 min with horseradish peroxidase-conjugated secondary
antibody (1:1000; Abcam). Then, the sections were incubated with diaminobenzidine
tetrahydrochloride solution (DAB kit, Abcam) for 10min, washed with distilled water,
and counterstained with hematoxylin at room temperature. Finally, liver sections
were sealed with neutral resin and examined microscopically.

Reverse transcription-polymerase chain reaction (PCR) and quantitative real-time
PCR
Total RNA from each liver sample was extracted with Trizol reagent (Invitrogen,
United States), and cDNA was synthesized using QuantiTect Reverse Transcription
Kit [TAKARA Biotechnology (Dalian) Co., Ltd, Dalian, Liaoning Province, China],
according to the manufacturer’s instructions. The primers used were: 5‘-CGA TAG
AAC ACG GCA TCA TCA C-3’ (forward) and 5’-GCA TAG CCC TCA TAG ATA
GGC A-3’ (reverse) for α-SMA; and 5’-CCT GGA AAG GGC TCA ACA C-3’ (forward)
and 5’-CAG TTC TTC TCT GTG GAG CTG A-3’ (reverse) for TGF-β1. Quantitative
real-time PCR was used to assess the mRNA levels of TGF-β1 and α-SMA [QuantiTect
SYBR Green RT-PCR kit, TAKARA Biotechnology (Dalian) Co., Ltd.] on the 7500 Real
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Time  System  (Life  Technologies,  Carlsbad,  California,  United  States).  All  PCR
products  were  normalized  to  expression  levels  of  β-actin  used  as  an  internal
standard[13].

Sample preparation and UPLC/Q-TOF-MS analysis
A total of 100 μL of each sample was mixed vigorously with 300 μL of precooled
acetonitrile after the serum samples were thawed at 4 °C, followed by centrifugation
at 14000 rpm at 4 °C for 10 min. Then, the supernatants were transferred to specific
glass tubes for UPLC-MS analyses. To condition the column, quality control samples
(10 μL of supernatants) were obtained from each sample and tested five times before
the analysis, and after every eight samples throughout the procedure.

Analytical conditions of UPLC-MS
The  Acquity  UPLC  system  (Waters,  Milford,  MA,  United  States)  was  used  for
chromatographic separations, which was equipped with an Acquity UPLC BEH C18
analytical column (I.D. 2.1 mm × 100 mm, particle size 1.7 μm, pore size 130 Å). MS
detection was performed with a mass spectrometer, which was equipped with an
electrospray  ionization  source,  using  the  negative  ion  electrospray  mode.  The
nitrogen drying gas was set at a velocity of 600 L/h, and the temperatures of source
and desolvation were 120 °C and 350 °C, respectively. The cone gas velocity was 50
L/h. The sampling cone voltage was set at 40.0 and the capillary voltage at 3.0 kV; the
collision gas was argon, and the collision energy was set at 5.0 eV. According to the
stability of the individual metabolites, tandem MS (MS/MS) analyses were performed
with the mass spectrometer set at various collision energies, ranging from 30 to 80 eV.

Biomarker selection and identification
The raw UPLC–MS data files were normalized with MassLynx v4.1 software (Waters).
The final peak ratio file, containing retention time, m/z, and signal intensity of the
peaks,  was  analyzed  with  SIMCA-P+  13.0  software  (Umetrics,  Umeå,  Sweden).
Principal component analysis (PCA) and orthogonal partial least squares discriminant
analysis  (OPLS-DA)  were  combined  to  analyze  the  data.  The  biomarkers  were
identified based on m/z, retention time, and typical MS/MS fragment and pattern.
According to the variance analyses and variable importance in the projection (VIP) of
the  metabolites,  the  candidate  biomarkers  were  selected.  To  identify  potential
biomarkers,  the  HMDB  database  (http://hmdb.ca/)  and  PubChem  compound
database (http://www.ncbi.nlm.nih.gov) were searched. The final determination of
biomarkers was confirmed by comparison with corresponding standards. Metabolite
set enrichment and pathway analyses were based on MetaboAnalyst (www.meta-
boanalyst.ca).

Statistical analyses of biomarkers
The diagnostic value of the selected biomarkers was analyzed using discriminant
analyses and compared to blood biochemical parameters. The discriminant analyses
relied on Fisher’s functional coefficient and stepwise statistical analyses. To evaluate
the discriminatory capability of potential biomarkers, we used receiver operating
characteristic (ROC) curves. All statistical analyses were conducted with SPSS 19.0
software (SPSS, Inc.,  Chicago, IL,  United States),  and P  < 0.05 was considered to
indicate statistical significance.

RESULTS

Dynamic changes in blood biochemistry
Blood biochemical parameters, including TP, ALB, GLO, AKP, ALT, AST, BA, TBIL,
and CR, were measured during the fibrosis process to examine liver function (Figure
1). Serum levels of ALB, TP, and GLO showed a gradual decrease. ALT and AST
levels showed a significant increase at week 1. AKP, total BA (TBA), and TBIL levels
increased significantly over time (P < 0.05); CR levels showed no obvious trend.

Morphological changes in the liver
Liver tissues were collected from each group at five time points and subjected to
histological examination using HE and MTC staining. Liver tissues from the fibrosis
model  groups  showed  a  series  of  severe  morphological  changes,  including
inflammation, fatty metamorphosis, and necrosis compared to the normal lobes of the
control  group.  The fibrosis  model  livers  showed fatty  metamorphoses,  sinusoid
congestion,  and hemorrhage at  week 1.  At week 4,  the livers showed fibroblasts
between  the  portal  area  and  the  interlobular  area,  and  further  bubble-like
degeneration  and  necrosis.  Increased  numbers  of  fibroblasts  and  hepatic  lobe
reconstruction were observed from weeks 8 to 12 (Figure 2A-E). The injury score of
fibrosis increased gradually compared to the control group (P  < 0.05) (Figure 2F).
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Figure 1

Figure 1  Dynamic changes in serum biochemical parameters during the process of fibrosis. A: Albumin, total protein, and globulin; B: Alanine
aminotransferase, aspartate aminotransferase, and alkaline phosphatase; C: Bile acid, total bilirubin, and creatinine. ALB: Albumin; TP: Total protein; GLO: Globulin;
ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; AKP: Alkaline phosphatase; BA: Bile acid; TBIL: Total bilirubin; CR: Creatinine.

MTC staining at weeks 4 to 12 revealed increasing levels of collagen deposition and
fibrosis accumulation (Figure 2G-K).

Hepatic stellate cell activation markers during the fibrosis process
As shown in Figure 3,  immunohistochemical staining analysis indicated that the
marker of hepatic stellate cell activation α-SMA and hepatic expression of the pro-
fibrogenic marker TGF-β1 showed more and more brown staining over time and
reached the most brown at week 12. These results were further confirmed by the
mRNA expression of α-SMA and TGF-β1, as shown in Figure 3F and L, respectively.

Metabolic profile shift during the fibrosis process
The metabolic profiles in the serum samples were acquired using UPLC/Q-TOF-MS.
Trajectory analyses of the PCA score plots for liver fibrosis at various time points
revealed distinct clustering of the groups. The serum parameters (R2 Y = 0.77, Q2 =
0.657) used for fibrosis classification showed good predictive ability, and several
serum metabolites demonstrated time-dependent changes in the various stages of
liver fibrosis (Figure 4A). OPLS-DA was used to further characterize the metabolic
profiles in various stages of liver fibrosis. The control and liver fibrosis model groups
showed complete separation in the OPLS-DA score plots (Figure 4B). The cumulative
values of R2X, R2Y, and Q2Y in the OPLS-DA model were 0.756, 0.942, and 0.819,
respectively.  Hierarchical  clustering and heat maps were used to investigate the
metabolites detected in the five groups. The normalized intensity of each metabolite
was assessed, and metabolite peaks with similar intensities were clustered together.
The color distribution showed more dark red color at week 1 and week 12, with dark
red representing higher intensity and dark green representing lower intensity (Figure
4C). To document the metabolite changes during 12 wk of liver fibrosis, volcano plots
were constructed with thresholds of ≥ 2-fold change and P  ≤ 0.05 (red dots).  The
metabolites showed the greatest differences at week 1 and week 12 in the fibrosis
group compared to the control group (Figure 4D-G).

Metabolite quantification and identification
Based on the VIP values (VIP > 1)  using the OPLS-DA models,  we identified 21
metabolites that were associated with the CCl4-induced metabolic changes in the liver
fibrosis model rats. These metabolites included hydroxyethyl glycine, L-threonine,
indoleacrylic acid (IAA), β-muricholic acid (β-MCA), cervonoyl ethanolamide (CEA),
phosphatidylcholines  (PCs),  and lysophosphatidylcholines  (LPCs)  (Table  1).  To
evaluate  the diagnostic  value,  discriminant  analyses  were conducted in  the five
different groups based on selected metabolic profiles;  the results showed correct
classification of 96.0% of the originally grouped cases and 90.0% of the cross-validated
grouped cases. Discrimination based on metabolic profiles was superior to that based
on biochemical  parameters,  which  showed correct  classification  of  78.0% of  the
originally grouped cases and 74.0% of the cross-validated grouped cases (Figure 5A
and B).  Correlation  analyses  showed a  good  correlation  between  the  identified
metabolites  (Figure 5C).  In  order  to  further  explore the impact  of  these selected
metabolites, MetaboAnalyst 3.0 software (Metabolomics Pathway Analysis) was used
to analyze the 21 positively identified metabolites to identify possible biochemical
pathways during liver fibrosis. The metabolic pathways that were significantly altered
by liver fibrosis included linoleic acid metabolism, glycerophospholipid metabolism,
alpha-linolenic  acid  metabolism,  glycine,  serine  and  threonine  metabolism,
arachidonic  acid  metabolism,  tryptophan  metabolism,  and  aminoacyl-tRNA
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Figure 2

Figure 2  Histological assessment in each group using hematoxylin and eosin and Masson’s trichrome staining. A-E: Liver tissues were stained with HE in the
control and fibrosis model groups at weeks 1, 4, 8, and 12; F: The injury score of fibrosis in each group; G-K: Liver tissues were stained using MTC in the control and
fibrosis model groups at weeks 1, 4, 8, and 12 (aP < 0.01 vs control). Scale bars: 100 μm. HE: Hematoxylin and eosin; MTC: Masson’s trichrome.

biosynthesis (Figure 5D). Table 2 summarizes the results of the metabolic pathway
analyses.

Biomarker candidates for liver fibrosis
The  MS  chromatographic  intensities  of  the  21  metabolites  were  analyzed  by
independent sample test and ROC analysis in both groups. CEA and β-MCA showed
significant differences (P < 0.05) (Table 1). Combined box-and-whisker plots showed
the key biomarker changes of liver fibrosis progression, from early and intermediate
to cirrhosis stages (Figure 6A and B). These metabolites showed significant differences
at the various stages. Interestingly, the metabolite alterations were most dramatic at
the early stage and less pronounced in the advanced stage. To further validate the
importance of these selected metabolites, ROC analyses were conducted to calculate
the area under the curve (AUC);  the diagnostic  sensitivity and specificity of  the
metabolite cutoffs could be used to distinguish between individuals with cirrhosis,
those  with  fibrosis,  and  normal  controls.  The  results  revealed  that  metabolite
candidates  showed  significant  diagnostic  performance,  i.e.,  with  AUC  values
exceeding 0.8. CEA and β-MCA levels could be used to distinguish between control
and fibrosis groups with high sensitivity and specificity. In addition, these metabolite
levels could be used to clearly separate the early stages of fibrosis from advanced
fibrosis or cirrhosis; the AUCs of TBA and ALT were only 0.795 and 0.576 between
early fibrosis and late stage fibrosis or cirrhosis (Figure 6C-G).

DISCUSSION
Liver  biopsy  remains  the  gold  standard  for  diagnosing  fibrosis  in  chronic  liver
disease; however, liver biopsy has distinct limitations, such as invasiveness, potential
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Figure 3

Figure 3  Immunohistochemistry results and relative mRNA expression levels of α-smooth muscle actin and transforming growth factor β1. A-E:
Immunohistochemical staining for α-SMA; F: qRT-PCR results of α-SMA at each time point; G-K: Immunohistochemical staining for TGF-β1; L: qRT-PCR results of
TGF-β1 at each time point. The data are presented as the mean ± SD (error bars) and were statistically analyzed using a Student’s t-test. aP < 0.01 vs control. Scale
bars: 100 μm. α-SMA: α-smooth muscle actin; TGF-β1: Transforming growth factor-β1; qRT-PCR: Quantitative real-time polymerase chain reaction.

complications, sampling error, bleeding, and risk of injury to neighboring organs[14-16].
These limitations underscore the importance of developing reliable, non-invasive
markers to evaluate the degree of hepatic fibrosis and stages of fibrosis. To date, no
method has been developed to replace liver biopsy as the gold standard.

In this study, the CCl4-induced liver fibrosis model was successfully established in
rats, and liver fibrosis and its severity were determined through HE, MTC, α-SMA,
and TGF-β1 staining of histological sections. Analyses of the sera from the model and
control rats at five time points revealed dynamic changes in metabolites during the
process of liver fibrosis. These dynamic changes, identified in a series of assessments
over time, could reveal the metabolic changes that occur during the progression of
liver fibrosis, particularly in the interface phase between normal status, fibrosis, and
cirrhosis. The heat map directly showed more severely metabolic patterns change at
week 1 and week 12. In the early stage, the injury and death of a large number of
hepatocytes resulted in abnormal liver function indicators, and we believe that this is
the  body’s  stress  response  to  CCl4.  In  the  late  stage,  changes  in  liver  metabolic
capacity occur after injury of hepatocytes, which induces secondary changes of small
molecule  metabolites  in  vivo,  as  well  as  strong  changes  in  metabolic  spectrum.
Screening of potential biomarkers may lead to early diagnosis.

CCl4 is used widely in liver injury animal models, and the CCl4-induced damage is
comparable to that observed with viral hepatitis. Free radicals and reactive oxygen
species with oxidative stress are considered to be the main causes of the liver injury
induced  by  CCl4

[17,18].  Oxidative  stress  and  cell  membrane  damage  disrupt  the
metabolism of hepatic cells. Pathway analyses of CCl4-induced hepatocellular damage
revealed involvement of several metabolic pathways, including alpha-linolenic acid
metabolism;  glycerophospholipid metabolism;  linoleic  acid metabolism;  glycine,
serine,  and  threonine  metabolism;  arachidonic  acid  metabolism;  tryptophan
metabolism; and aminoacyl-tRNA biosynthesis (Figure 5D). The various classes of
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Figure 4

Figure 4  Metabolomic profiling and flux analyses. A: Principle component analysis for the control and fibrosis model groups at weeks 1, 4, 8, and 12; B:
Orthogonal partial least squares discriminant analysis score plots for the control and fibrosis model groups at weeks 1, 4, 8, and 12; C: Heat map generated from the
liquid chromatography-mass spectrometry data using the hierarchical clustering algorithm; D-G: Volcano plot analyses were used to determine the significant
metabolites in the fibrosis model groups compared to controls at weeks 1, 4, 8, and 12. Data points with fold changes > 2 and P < 0.05 are labeled in red.

metabolites exhibited different expression patterns during the progression of liver
fibrosis. From the perspective of variation amplitude, the heat maps and Volcano
plots suggested that more severe metabolic disturbances occurred during the final
cirrhosis stage.

Although the metabolic profile can clearly distinguish fibrosis and control groups,
and liver fibrosis and cirrhosis groups, the use of complex metabolomic matrices in
the clinic requires further study. Therefore, we searched for new potential biomarkers
out of thousands of differential metabolites. Using the OPLS-DA model for biomarker
analysis, we identified 21 markers including hydroxyethyl glycine, L-threonine, IAA,
β-MCA, CEA, PCs, and LPCs. To determine whether the differential levels of these
metabolites were associated with stepwise fibrosis, we compared the levels in serum
samples from CCl4-induced rats and controls at five time points. A comprehensive
workflow was used to identify potential biomarkers, including visualization and
metabolites of sample trajectories, multivariate screening for classification of different
disease states, and stepwise univariate analyses for identification of important stages.
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Table 1  The most prominent metabolites

No. Ret. time m/z Adduct Compound
Independent t-test

Con vs Week 1 Con vs Week 4 Con vs Week 8 Con vs Week 12

1 18.6 786.6003 [M+H]+ PC(18:0/18:2) 0.045 0.005 0.001 0.338

2 18.47 810.5999 [M+H]+ PC(18:0/20:4) 0.000 0.000 0.000 0.000

3 18.34 760.5851 [M+H]+ PC(16:0/18:1) 0.130 0.206 0.000 0.363

4 18.29 834.6003 [M+H]+ PC(18:0/22:6) 0.000 0.002 0.071 0.000

5 17.73 758.5689 [M+H]+ PC(16:0/18:2) 0.499 0.526 0.001 0.000

6 17.61 782.569 [M+H]+ PC(18:2/18:2) 0.000 0.000 0.001 0.000

7 17.49 806.5689 [M+H]+ PC(22:6/16:0) 0.000 0.037 0.808 0.439

8 17.31 782.5693 [M+H]+ PC(16:0/20:4) 0.021 0.000 0.000 0.000

9 17.2 806.5676 [M+H]+ PC(18:2/20:4) 0.000 0.041 0.000 0.000

10 17.13 756.5521 [M+H]+ PC(16:1/18:2) 0.477 0.033 0.003 0.000

11 12.94 524.3707 [M+H]+ LysoPC(18:0) 0.000 0.000 0.000 0.001

12 12.62 524.3714 [M+H]+ LysoPC(18:0) 0.000 0.001 0.003 0.335

13 11.62 496.3383 [M+H]+ LysoPC(16:0) 0.170 0.000 0.000 0.000

14 11.6 991.6714 [2M+H]+ LysoPC(16:0) 0.003 0.639 0.789 0.000

15 11.03 544.3396 [M+H]+ LysoPC(20:4) 0.000 0.000 0.000 0.003

16 10.75 544.3382 [M+H]+ LysoPC(20:4) 0.000 0.000 0.000 0.000

17 9.12 373.2716 M+H Cervonoyl ethanolamide 0.035 0.009 0.000 0.000

18 9.11 817.5807 2M+H β-muricholic acid 0.030 0.041 0.001 0.004

19 3.34 188.0702 M+H Indoleacrylic acid 0.253 0.009 0.000 0.000

20 2.71 120.0802 M+H L-threonine 0.026 0.000 0.000 0.000

21 0.97 120.0799 M+H Hydroxyethyl glycine 0.008 0.007 0.000 0.000

Two metabolites, CEA and β-MCA, were defined as biomarker candidates.
CEA, also known as mead ethanolamide or eicosatrienoyl ethanolamide, is an N-

acylethanolamine  (NAE)[19,20].  NAEs  are  lipid  mediators  produced  from N-acyl-
phosphatidylethanolamine via several pathways. These endogenous bioactive lipids
respond to a variety of stimuli and play critical physiological roles in a number of
biological  processes,  including  pain  perception,  metabolism,  and inflammation,
through different mechanisms[21-23]. NAEs include numerous fatty acid amides, such as
palmitoylethanolamide, oleoylethanolamide, stearoylethanolamide, and CEA, and
have been proposed as potential treatments for many diseases[24,25]. CEA is a novel
eicosanoid;  it  was shown to be an agonist  of  central  (CB1)  and peripheral  (CB2)
cannabinoid  receptors  in  1995 [ 1 4 ] .  Increasing  evidence  indicates  that  the
endocannabinoid system has a critical role in various liver diseases. In particular, the
cannabinoid  receptors  CB1  and CB2 are  upregulated  in  almost  all  chronic  liver
diseases,  as  well  as  cirrhosis  and  related  disorders,  and  these  receptors  can  be
therapeutically antagonized[26-28].  Previous studies revealed that the CB2 agonists
JWH-133 and 4′-O-methylhonokiol  showed protective effects,  such as  decreased
hepatocyte steatosis, inflammation, and liver regeneration[29-31]. In this study, we noted
higher levels of CEA during the process of liver fibrosis, representing continuously
increased concentrations of a CB2 agonist against CCl4-induced liver damage. In
addition, CEA can directly inhibit both CD8- and CD4-T cell responses by reducing
their production of TNF-α, IFN-γ, and IL-17[27].

β-MCA, a natural trihydroxy hydrophilic BA, is a major BA in the rat liver and
found in their BAs[32]. BAs are major endogenous metabolites of cholesterol and are
involved  in  many  metabolic  processes.  Under  normal  conditions,  the  liver  can
effectively absorb BAs through enterohepatic circulation, and bound BAs that are
present at micromolar concentrations in peripheral blood. However, hepatocyte injury
in hepatic diseases leads to synthesis and clearance of BA in the liver and disturbed
intestinal absorption, which is characterized by elevated levels of TBAs. The resulting
high concentrations of BAs can aggravate liver injury and ultimately cause cirrhosis
and liver failure[33]. The serum BA (SBA) test has been suggested to use in clinical
practice to screen for liver diseases[34].  In general, in the case of hepatobiliary and
intestinal diseases, significant changes in individual BA concentrations and their
metabolic characteristics in plasma, urine, and feces can be observed; however, there
is increasing evidence that cirrhosis is closely related to significant changes in SBA
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Table 2  Summary of pathway analysis results

Pathway name Total Expected Hits Raw P -LOG(p) Holm adjust FDR Impact

Glycerophospholipid metabolism 30 0.10699 2 0.004255 5.4597 0.34463 0.34463 0.18333

Linoleic acid metabolism 5 0.017832 1 0.01773 4.0325 1 0.71807 0

Alpha-linolenic acid metabolism 9 0.032097 1 0.031732 3.4504 1 0.85677 0

Glycine, serine, and threonine metabolism 32 0.11412 1 0.10918 2.2148 1 1 0

Arachidonic acid metabolism 36 0.12839 1 0.12213 2.1027 1 1 0

Tryptophan metabolism 41 0.14622 1 0.1381 1.9798 1 1 0

Aminoacyl-tRNA biosynthesis 67 0.23894 1 0.21745 1.5258 1 1 0

FDR: False discovery rate.

levels[10,35]. Elevated SBA levels are a more sensitive test of cirrhosis than conventional
liver function detection methods[36,37]. In this study, the increased levels of β-MCA
during the process of  liver fibrosis  were consistent with the clinical  biochemical
finding of increased concentrations of TBA with fibrosis progression.

The key aim of this study was to develop biomarkers for diagnosing fibrosis in the
early  stages.  In  addition,  the  study  evaluated  the  diagnostic  potential  of  these
biomarkers.  ROC  analyses  were  performed  for  each  metabolite  candidate  in
comparison  with  currently  available  biomarkers,  and  these  novel  biomarkers
achieved effective  classification  of  both  early  and intermediate  cirrhosis  stages.
Interestingly, the traditional clinical biomarkers, TBA (AUC = 0.795) and ALT (AUC =
0.576), were not good enough to distinguish between fibrosis and advanced fibrosis or
cirrhosis (Figure 6), indicating the difficulty in identifying early fibrosis and advanced
fibrosis[6]. This dynamic metabolomic study of the potential biomarkers of stepwise
liver fibrosis might be useful for screening early metabolic characteristics related to
fibrosis. In addition, the UPLC-TOF/MS-based metabolomics analysis contributes to
our knowledge of liver fibrosis. This study identified two novel fibrosis biomarkers;
CEA is involved in anti-inflammation and acts as an antagonist of CB2, and β-MCA is
related to the processes involved in hepatocyte damage. These biomarkers correctly
classified the disease stage in our fibrosis animal model. Moreover, they distinguished
between fibrosis and cirrhosis more clearly than traditional ALT and TBA levels.
Further mechanistic investigations are required to investigate the involvement of
these metabolites in fibrosis progression and histologic changes.
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Figure 5

Figure 5  Metabolite quantification and identification. A and B: Scatter plots of discriminant analyses in five groups based on metabolic profiles and biochemical
parameters; C: Correlation analyses of the metabolic profiles. The color saturation of red and blue represents positive and negative correlation coefficients,
respectively, between markers; D: Overview of pathway analyses based on selected metabolites.
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Figure 6

Figure 6  Biomarker candidates for liver fibrosis. A and B: Dynamic changes in the identified metabolites in each group; C-H: Receiver operator characteristic
curves for the diagnosis of liver fibrosis based on the potential biomarkers, TBA and ALT. TBA: Total bile acid; ALT: Alanine aminotransferase; AUC: Area under the
curve; CEA: Cervonoyl ethanolamide; β-MCA: β-muricholic acid.

ARTICLE HIGHLIGHTS
Research background
Liver fibrosis is a common chronic progressive liver disease, and alanine aminotransferase is a
commonly  used  diagnostic  indicator  for  liver  disease.  Magnetic  resonance  imaging-  and
ultrasound-based elastography has been used for further assessment of hepatic steatosis and
fibrosis, but these techniques are not able to diagnose inflammation and cell damage very well.
Therefore, new liver fibrosis and functional biomarkers are needed as supplements.

Research motivation
Metabolomics  is  an important  component  of  systems biology which provides quantitative
measurements of global changes in individual metabolic characteristics in biological fluids
responding to a variety of physiological and pathological stimuli, and it can be used to discover
new biomarkers for differential diagnosis of disease.

Research objectives
The main objectives were to investigate the dynamic changes in metabolic profiles during the
liver fibrosis progression, and seek for potential novel biomarkers for early diagnosis of liver
fibrosis.
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Research methods
A liver fibrosis model was induced by subcutaneous injection with CCl4. The dynamic changes
in metabolic profiles during the progression of liver fibrosis were analyzed by ultra-performance
liquid chromatography-mass spectrometry, and independent sample test and receiver operating
characteristic analysis were used to identify potential biomarkers.

Research results
A liver fibrosis model was successfully established, which was evaluated by liver chemical tests,
liver histopathology, Masson’s trichrome staining, and the expression levels of α-smooth muscle
actin and transforming growth factor β1. Principal component analysis and orthogonal partial
least squares discriminant analysis were used to characterize the metabolic profiles, which can
clearly  distinguish early  liver  fibrosis  and advanced groups.  We identified 21 metabolites
associated with liver  fibrosis,  and two of  them, β-muricholic  acid (β-MCA) and cervonoyl
ethanolamide (CEA), had excellent diagnostic value.

Research conclusions
The  dynamic  metabolomics  profile  is  useful  for  screening  early  metabolic  characteristics
associated with progression of fibrosis. Two new metabolic biomarkers identified in this study,
β-MCA and CEA, can correctly classify the disease stage in our fibrosis animal model.

Research perspectives
According to the results of rat experiments, further mechanistic studies are needed to investigate
the involvement of these metabolites in fibrotic progression. We also need to collect clinical
samples for further verification, and the markers identified may be used for clinical diagnosis in
the future.
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