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Abstract

Diffusion MRI affords valuable insights into white matter microstructures, but suffers from low 

signal-to-noise ratio (SNR), especially at high diffusion weighting (i.e., b-value). To avoid time-

intensive repeated acquisition, post-processing algorithms are often used to reduce noise. Among 

existing methods, non-local means (NLM) has been shown to be particularly effective. However, 

most NLM algorithms for diffusion MRI focus on patch matching in the spatial domain (i.e., x-

space) and disregard the fact that the data live in a combined 6D space covering both spatial 

domain and diffusion wavevector domain (i.e., q-space). This drawback leads to inaccurate patch 

matching in curved white matter structures and hence the in-ability to effectively use recurrent 

information for noise reduction. The goal of this paper is to overcome this limitation by extending 

NLM to the joint x – q space. Specifically, we define for each point in the x – q space a spherical 

patch from which we extract rotation-invariant features for patch matching. The ability to perform 

patch matching across q-samples allows patches from differentially orientated structures to be 

used for effective noise removal. Extensive experiments on synthetic, repeated-acquisition, and 

HCP data demonstrate that our method outperforms state-of-the-art methods, both qualitatively 

and quantitatively.
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1. Introduction

Diffusion MRI (DMRI) relies on its sensitivity to the displacement of water molecules to 

probe tissue microstructure. To be able to characterize fine microstructural details, the 

diffusion weighting (i.e., b-value) needs to be sufficiently high, allowing, for example, more 

accurate separation of fiber bundles crossing at small angles and greater sensitivity to the 

restricted diffusion of water molecules trapped inside axons. However, due to the significant 
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attenuation of the MR signal at high diffusion weightings, the low signal-to-noise ratio 

(SNR) poses significant challenges to subsequent analysis.

A straightforward means to improve SNR is by repeating and averaging scans (Johansen-

Berg and Behrens, 2013), which however inevitably prolongs acquisition times and is hence 

impractical in clinical settings. In view of this, post-acquisition denoising methods have 

been widely adopted (Wiest-Daesslé et al., 2007, 2008; Descoteaux et al., 2008; Becker et 

al., 2012; Manjón et al., 2013; Becker et al., 2014; Lam et al., 2014; Yap et al., 2014; 

Varadarajan and Haldar, 2015; Veraart et al., 2016; St-Jean et al., 2016; Chen et al., 2019). 

Among existing methods, non-local means (NLM) (Buades et al., 2005) has been shown to 

be particularly good at preserving edges when reducing noise. NLM avoids blurring by 

averaging over recurrent image patterns collected via patch matching.

NLM has been applied to reducing noise in DMRI data (Wiest-Daesslé et al., 2007, 2008; 

Descoteaux et al., 2008; Yap et al., 2014). Existing NLM methods denoise diffusion-

weighted (DW) images as individual images, a multi-spectral vector image, or parametric 

maps given by a diffusion model (Wiest-Daesslé et al., 2007). However, these methods 

mainly focus on patch matching in the spatial domain (i.e., x-space), despite the fact that 

DMRI data live in a combined space consisting of both spatial x-space and diffusion 

wavevector q-space. This causes NLM to be less effective in locating self-similar patterns in 

highly curved white matter structures, resulting in smoothing artifacts caused by averaging 

over differentially oriented structures. Another limitation of NLM is the rare patch effect 
(Duval et al., 2011; Deledalle et al., 2012; Salmon and Strozecki, 2012). This phenomenon 

happens when matching structures cannot be found, leading to the degradation of fine details 

and causing halos around object boundaries. A natural solution to this problem is to expand 

the search extent (Prima and Commowick, 2013; Chen et al., 2016c) so that the possibility 

of finding matching structures can be increased. However, this significantly increases 

computation time and might result in false-positive matches.

To overcome these limitations, in this paper we extend NLM beyond x-space to include q-

space for improved denoising in DMRI. Specifically, for each point in x – q space, we first 

define a patch covering a q-space neighborhood. We then perform patch matching in x – q 
space and assign a weight, indicating neighborhood similarity, for each pair of points in the 

joint space. Finally, the denoised signal at each point in x – q space is estimated via 

weighted averaging.

The advantage afforded by this extension is fourfold: (i) Non-local information can now be 

harnessed not only over x-space, but also over q-space, allowing information to be borrowed 

across DW images for effective denoising; (ii) Information from structures oriented in 

different directions can be used more effectively for denoising without introducing artifacts; 

(iii) Patch matching complexity can be significantly reduced by leveraging the fact that 

diffusion signal profiles generally have smooth and simpler shapes; (iv) The simpler shapes 

also imply that better patch matches can be found more easily, therefore mitigating the rare 

patch effect.
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Before noise reduction, we first transform the DMRI data, using Koay’s inversion technique 

(St-Jean et al., 2016; Koay et al., 2009a), so that noise is Gaussian-distributed. This is 

essential for DMRI data acquired using modern multi-coil MRI techniques, which typically 

exhibit stationary/non-stationary Rician/noncentral χ (nc-χ) noise distributions.

Comprehensive experiments on synthetic, repeated-acquisition, and HCP data demonstrate 

that x – q space non-local means (XQ-NLM) removes noise effectively while preserving 

structures and improves the quality of derived quantities, such as generalized fractional 

anisotropy (GFA) (Tuch, 2004), orientation distribution function (ODF), and fiber tracts. We 

compared our method with state-of-the-art methods, including adaptive NLM (ANLM) 

(Manjón et al., 2010), non-local spatial and angular matching (NL-SAM) (St-Jean et al., 

2016), and Marchenko-Pastur principle component analysis (MPPCA) (Veraart et al., 2016). 

Experimental results confirm that our method consistently gives the best performance both 

qualitatively and quantitatively.

A preliminary version of this work has been presented at a conference (Chen et al., 2016a). 

In this journal version, we (i) extend our method to work with a wider range of noise types 

resulting from multi-coil MRI and different methods of magnitude signal reconstruction, (ii) 

perform quantitative evaluation using a ground truth generated using repeatedly acquired 

data, (iii) include new results for synthetic and real data with additional metrics covering 

voxel- and tract-based assessments, (iv) compare our method with state-of-the-art denoising 

methods (i.e., NLSAM and MPPCA), and (v) include additional discussions that are not part 

of the conference publication.

The rest of the paper is organized as follows. We will first flesh out in Section 2 the key 

components of the proposed method. We will then demonstrate the effectiveness of our 

method in Section 3 using synthetic and real data. Additional discussions are provided in 

Section 4 before concluding the paper in Section 5.

2. Methods

Our method consists of two major components, i.e., noise adaptation and noise reduction. 

We first transform the signal for Gaussian-distributed noise and then remove noise using x – 

q space non-local means. An overview of our method is shown in Fig. 1.

2.1. Noise adaptation

2.1.1. Noise types in multi-coil MRI—The noise distribution of the composite 

magnitude signal (CMS) (Aja-Fernández and Vegas-Sánchez-Ferrero, 2016) given by 

modern multi-coil MRI techniques is dependent on how the k-space signal is sampled and 

how it is used to reconstruct the magnitude signal. For practical purposes, it is commonly 

assumed that noise in the real and imaginary parts of k-space is generated using a zero-mean 

stationary Gaussian process with equal variance (Gudbjartsson and Patz, 1995; Aja-

Fernández and Vegas-Sánchez-Ferrero, 2016).

Sum of squares (SoS) and spatial matched filter (SMF) are widely used for CMS 

reconstruction. For N coils with uncorrelated noise, SoS reconstruction from fully-sampled 
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k-space data leads to spatially stationary nc-χ noise distribution with 2N degrees of 

freedom, whereas SMF leads to spatially stationary Rician noise distribution (Dietrich et al., 

2008). If noise is correlated across coils, the noise distribution of the reconstructed CMS 

becomes spatially non-stationary.

To accelerate acquisition, parallel MRI subsamples the k-space. Two widely used methods 

are sensitivity encoding (SENSE) (Pruessmann et al., 1999) and generalized autocalibrating 

partially parallel acquisition (GRAPPA) (Griswold et al., 2002). The CMS reconstructed by 

SENSE follows a non-stationary Rician distribution (Aja-Fernández et al., 2014). The noise 

of the CMS reconstructed from GRAPPA data using SoS and SMF follows the non-

stationary nc-χ and Rician distributions, respectively (Aja-Fernández et al., 2014).

2.1.2. Signal transformation—Before denoising, we transform the CMS so that its 

noise becomes Gaussian-distributed, similar to St-Jean et al. (2016). This involves 

estimating the location parameter and Gaussian noise standard deviation of the nc-χ 
distribution and then performing signal transformation using the nc-χ cumulative 

distribution function (CDF) and the inverse Gaussian CDF (Koay et al., 2009a). Such signal 

transformation reduces the complexity of the denoising algorithm by not having to deal with 

the nc-χ nature of the noise (St-Jean et al., 2016; Koay et al., 2009a).

The estimation of noise standard deviation is key to accurate signal transformation. For 

spatially stationary noise, the noise standard derivation can be estimated from the image 

background via a method called probabilistic identification and estimation of noise 

(PIESNO) (Koay et al., 2009b). For spatially non-stationary noise, a number of methods can 

be used (Manjón et al., 2010; St-Jean et al., 2016; Manjón et al., 2013; Veraart et al., 2016). 

For instance, adaptive NLM (ANLM) (Manjón et al., 2010) and NLSAM (St-Jean et al., 

2016) estimate the noise standard deviation using self-recurrent information. The local PCA 

method (Manjón et al., 2013) introduces noise estimators for single (SIBE) or multiple 

(MUBE) baseline (b = 0 s/mm2) images. MUBE performs PCA decomposition on multiple 

baseline images and then uses the noise PCA component to estimate the noise standard 

deviation. SIBE uses a similar strategy, but performs PCA decomposition on DW images. 

Using random matrix theory, the Marchenko-Pastur distribution can be used to determine an 

appropriate eigenvalue threshold for determining the noise PCA components (Veraart et al., 

2016). This method, called MPPCA (Veraart et al., 2016), simultaneously estimates the 

threshold and the noise standard deviation. The nc-χ bias in the estimated noise standard 

deviation is corrected using the method described in Koay and Basser (2006). In this work, 

we use PIESNO and MPPCA, respectively, for stationary and non-stationary noise 

estimation.

2.2. Noise reduction

2.2.1. x – q space non-local means—We propose to utilize patch matching in both x-

space and q-space for effective denoising. For each voxel at location xi ∈ ℝ3, the diffusion-

attenuated signal measurement S(xi, qk) corresponding to wavevector qk ∈ ℝ3 is denoised by 

averaging over non-local measurements with similar neighborhoods. Note that the signal is 

Chen et al. Page 4

Med Image Anal. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gaussian-distributed after the transformation described in the previous section. We estimate 

the denoised signal as

NLM(S)(xi, qk) = ∑
(x j, ql) ∈ 𝒱i, k

w[i, k; j, l]S(x j, ql), (1)

where 𝒱i, k is the search neighborhood in x – q space associated with (xi, qk), w[i, k; j, l] is 

the weight indicating the q-patch similarity between (xi, qk) and (xj, ql), which is determined 

using patch matching as described next.

Instead of restricting patch matching to x-space (Wiest-Daesslé et al., 2007, 2008; 

Descoteaux et al., 2008; Yap et al., 2014), we introduce x – q space patch matching via 

patches defined in q-space. For each point in x – q space (xi, qk) we define a spherical patch, 

𝒩i, k, centered at qk with fixed qk = ∣qk∣ and subject to a neighborhood angle αp. The 

samples on this spherical patch are mapped onto a disc using azimuthal equidistant 

projection (AEP, Section 2.2.2) before computing rotation invariant features via polar 

complex exponential transform (PCET, Section 2.2.3) for patch matching. Fig. 2 illustrates 

how patch matching is carried out in x – q space. The search radius in x-space is s (2s + 1 in 

diameter) and the search angle in q-space is αs. Matching between different shells is 

allowed.

In practice, q-space is not always sampled in a shell-like manner. In this case, we project 

measurement samples onto spherical patches. Each sampling point in q-space (xi, qk) can be 

seen as defining a virtual shell with radius ∣qk∣. We project the signals onto this shell to form 

𝒩i, k for patch matching. This is done for example by projecting the signal measured at (xi, 

qk′), i.e., S(xi, qk′), to xi,
∣ qk ∣
∣ qk′ ∣qk′ , taking a value that is modulated by an exponential 

function of difference in b-values, i.e.,

S(xi, qk′) exp −
( bk′ − bk)2

hprojection
2 , (2)

where bk = t∣qk∣2 and bk′ = t∣qk′∣2 are the respective b-values, t is the diffusion time. The 

contribution of S(xi, qk′) is controlled by hprojection.

2.2.2. Azimuthal equidistant projection (AEP)—Before feature computation, we 

first project each spherical patch onto a disc using AEP (Wessel and Smith, 2001). This 

provides a good basis for subsequent computation of invariant features for matching. The 

AEP is selected due to its ability to map the coordinates on a sphere to a plane where the 

distances and azimuths of points on the sphere are preserved with respect to a reference 

point (Wessel and Smith, 2001). The reference point, which in our case corresponds to the 

center of a spherical patch, will project to the center of a disc. As illustrated in Fig. 3, 
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viewing the reference point as the ‘North pole’, all points along a given azimuth θ will 

project along a straight line from the center of the disc. In the projection plane, this line 

subtends an angle θ with a “vertical” line delineating θ = 0. The distance from the center to 

another projected point is given as ρ. We represent the reference point q0 =
q0

∣ q0 ∣  as spherical 

coordinates (ϕ0, λ0), with ϕ referring to latitude and λ referring to longitude. We project (ϕ, 
λ) to a corresponding point (ρ, θ) in a 2D polar coordinate system, where ρ is the radius and 

θ is the angle. Based on Wessel and Smith (2001), the relationship between (ϕ, λ) and (ρ, θ) 

is as follows:

cos ρ = sin ϕ0 sin ϕ + cos ϕ0 cos ϕ cos(λ − λ0), (3a)

tan θ =
cos ϕ sin(λ − λ0)

cos ϕ0 sin ϕ − sin ϕ0 cos ϕ cos(λ − λ0) . (3b)

The projection can be described as a two-step mapping:

q (q, ϕ, λ) (q, ρ, θ) . (4)

AEP maps a q-space spherical patch 𝒩 to a 2D circular patch 𝒩. Note that AEP changes 

only the coordinates but not the actual values of the signal vector. If we let S(𝒩) be a vector 

containing the values of all diffusion signals in 𝒩, then S(𝒩) = S(𝒩).

Note that extra care needs to be taken when using the above equations to take into 

consideration the fact that diffusion signals are antipodal symmetric. Prior to performing 

AEP, we map antipodally all the points on the sphere to the hemisphere where the reference 

point is located.

2.2.3. Polar complex exponential transform (PCET)—After AEP, we proceed with 

the computation of rotation invariant features. We choose to use the polar complex 

exponential transform (PCET) (Yap et al., 2010) for its computation efficiency and its 

rotation-invariance property as demonstrated in Yap et al. (2010). Rotation invariance allows 

matching of patches that have different orientations. Denoting an element of S(𝒩) as S(x, q, 
ρ, θ), the PCET of order n, ∣n∣ = 0, 1, 2, …, ∞, and repetition l, ∣l∣ = 0, 1, 2, …, ∞, is 

defined as

Mn, l(𝒩) = 1
π∫(x, q, ρ, θ) ∈ 𝒩

[Hn, l(ρ, θ)]∗S(x, q, ρ, θ)ρ d ρ d θ, (5)

where [·]* denotes the complex conjugate and Hn,l(ρ, θ) is the basis function defined as 

Hn,l(ρ, θ) = ei2πnρ2
 eilθ. It can be easily verified that ∣ Mn, l(𝒩) ∣ is invariant to rotation (Yap 
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et al., 2010). Interested readers are referred to Yap et al. (2010) for mathematical and 

implementation details. ∣ Mn, l(𝒩) ∣ ’s up to maximum order m, i.e., −m ≤ l, n ≤ m, are 

concatenated into a feature vector M(𝒩).

2.2.4. Patch matching—Let M(𝒩i, k) be the feature vector of the projected patch 𝒩i, k, 

the matching weight w[i, k; j, l] is defined as

w[i, k; j, l] = 1
Zi, k

wM[i, k; j, l]wb[i, k; j, l], (6)

with

wM[i, k; j, l] = exp −
M(𝒩i, k) − M(𝒩 j, l) 2

2

hM
2 (i, k)

, (7)

wb[i, k; j, l] = exp −
( bk − bl)

2

hb
2 , (8)

where Zi,k is a normalization constant to ensure that the weights sum to one:

Zi, k = ∑
(x j, ql) ∈ 𝒱i, k

wM[i, k; j, l]wb[i, k; j, l] . (9)

Here hM(i, k) is a parameter controlling the attenuation of the first exponential function. As 

in Coupé et al. (2008), we set hM(i, k) = 2βMσi, k
2 ∣ M(𝒩i, k) ∣, where βM is a constant (Coupé 

et al., 2008) and σi, k is the noise standard deviation. Similarly, hb = 2σb controls the 

attenuation of the other exponential function, where σb is a scale parameter.

3. Experiments

3.1. Datasets

3.1.1. Synthetic data—For quantitative evaluation, a synthetic multi-shell dataset was 

generated using Phantomαs (Caruyer et al., 2014), a toolbox for simulating DMRI data with 

complex fiber geometries. We use the geometric model designed for ISBI 2013 HARDI 

challenge,1 which consists of various configurations such as branching, crossing, and 

kissing. The parameters used for data simulation were chosen to be consistent with the real 

1http://hardi.epfl.ch/static/events/2013_ISBI/.
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data described in Section 3.1.3: b = 1000, 2000, 3000 s/mm2, 90 gradient directions per 

shell, 55 × 55 voxels with resolution 2 × 2 mm2.

Stationary and non-stationary nc-χ noise with 1, 4, and 8 channels and level 5%, 7.5%, 10% 

was added to the data. For an N-channel receiver coil, the measured signal YN with nc-χ 
noise is given by (Constantinides et al., 1997; Koay and Basser, 2006; Koay et al., 2009a)

YN = ∑
k = 1

N
[(μR(k) + XR(k))2 + (μI(k) + XI(k))2], (10)

where μR(k) and μI(k) are respectively the real and imaginary parts of the true complex 

signal from the kth channel. XR(k) and XI(k) are two random variables that follow the same 

Gaussian distribution with standard deviation γσ : XR(k) ∼ 𝒩(0, γσ) and XI(k) ∼ 𝒩(0, γσ). In 

the absence of noise, the true signal μN can be expressed as

μN = ∑
k = 1

N
μR

2 (k) + μI
2(k) . (11)

The nc-χ distribution depends only on μN and not the actual signals from the individual 

channels. Therefore, the noisy signal can be generated by

YN = (μN + XR(1))2 + ∑
k = 2

N
(XR(k))2 + ∑

k = 1

N
(XI(k))2 . (12)

The number of channels affects the noise distribution and the severity of noise floor (Aja-

Fernández and Vegas-Sánchez-Ferrero, 2016). For stationary noise, we set γ = 1. For 

nonstationary noise, γ varies spatially. We set σ as p percent of the maximum data intensity 

value v, i.e., σ = v(p/100). Examples of stationary and non-stationary γ-maps used in this 

work are shown in Fig. 4. Example images for different numbers of channels are shown in 

Fig. 5.

3.1.2. Repeated-acquisition data—We acquired the brain DMRI data of an adult 25 

times using a Siemens 3T Magnetom Prisma MR scanner with the following imaging 

protocol: b = 3000 s/mm2, 42 gradient directions, 140 × 140 imaging matrix, voxel size 1.5 

× 1.5 × 1.5 mm3, TE = 89 ms, TR = 2513 ms, 32-channel receiver coil. The images were 

reconstructed using SENSE1 (Sotiropoulos et al., 2013), resulting in non-stationary Rician 

noise distribution. We performed signal transformation (Eichner et al., 2015) and eddy 

correction (Andersson and Sotiropoulos, 2016) for each of the 25 datasets. The datasets were 

then averaged to form a gold standard with improved SNR for evaluation purposes. 

Informed written consent was obtained from the subject and the experimental protocol was 
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approved by the Institutional Review Board of the University of North Carolina (UNC) 

School of Medicine. The study was carried out in accordance with the approved guidelines.

3.1.3. Multi-shell HCP data—The diffusion dataset of one subject randomly selected 

from the Human Connectome Project (HCP) (Van Essen et al., 2013) was used for 

evaluation. Instead of the minimally preprocessed data, we used the unprocessed data to 

avoid alteration of the noise distribution (Veraart et al., 2013). A customized Siemens 3T 

Connectome Skyra housed at Washington University in St. Louis was used for scanning. The 

imaging protocol was as follows: 145 × 174 imaging matrix, 1.25 × 1.25 × 1.25 mm3 

resolution, TE = 89 ms, TR = 5,500 ms, 32-channel receiver coil. CMS reconstruction was 

performed using SENSE1 (Sotiropoulos et al., 2013), resulting in non-stationary Rician 

noise distribution.

3.2. Experimental setting

3.2.1. Parameter settings—For all experiments, the following parameters were used 

for x – q space non-local means denoising (XQ-NLM):

1. Following Coupé et al. (2008), we set s = 2 voxels.

2. Instead of βM = 1 as suggested in Coupé et al. (2008), we set βM = 0.1 since we 

have a greater number of patch candidates by considering the joint x – q space. 

Based on the theory of kernel regression (Silverman, 1998), reducing the 

bandwidth when the sample size is large reduces bias.

3. The maximum order of PCET was set to m = 4, which we found to be sufficient 

for patch characterization.

4. The smallest non-zero value for ∣ bk − bl ∣ is around 10 (i.e., 

3000 − 2000 ≈ 10). We set σb = 10/2 = 5.

5. Since we were using shell-sampled data in our evaluations, we set hprojection to a 

small value (0.1) to disable projection.

6. In our case, the minimal angular separation of the gradient directions is around 

15° for each shell. We set the q-space patch angle and q-space search angle to 

twice of this value, i.e., αp = αs = 2 × 15° = 30°.

3.2.2. Methods for comparison—We compared XQ-NLM with the following 

methods:

1. ANLM: ANLM (Manjón et al., 2010) is an extension of the NLM algorithm that 

removes spatially non-stationary noise. Based on Manjón et al. (2010), we set the 

patch radius to 1.

2. NLSAM: NLSAM (St-Jean et al., 2016) consists of three major steps, i.e., (i) 

Signal transformation so that the signals are Gaussian-distributed; (ii) 4D block 

construction by considering DW images within an angular neighborhood; (iii) 

Noise removal using sparse representation. Based on St-Jean et al. (2016), we set 

the patch radius to 1 and use 5 angular neighbours.
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3. MPPCA: By observing the fact that noise-only eigenvalues follow a 

Marchenko–Pastur distribution, MPPCA (Veraart et al., 2016) determines the 

threshold for PCA denoising automatically. Based on Veraart et al. (2016), we set 

the window size of MPPCA to 5 × 5 × 5.

For fair comparison, we used the non-stationary noise field estimated by MPPCA for 

ANLM, NLSAM, and XQ-NLM. For stationary noise, the noise standard deviation was 

determined using PIESNO (Koay et al., 2009b).

3.2.3. Evaluation methods—Quantitative and qualitative evaluations were performed 

in our experiments.

1. Peak signal-to-noise ratio (PSNR): We used PSNR as the metric for 

performance evaluation. PSNR is defined as

PSNR = 20 log10
MAX
RMSE, (13)

where RMSE is the root mean square error computed between the denoised DW 

images and the ground truth within the brain region; MAX is the maximum 

signal value.

2. RMSE map: Pixelwise accuracy was evaluated using the RMSE computed 

between the denoised signal vector at each voxel location with respect to the 

ground truth.

3. GFA: We computed the GFA (Tuch, 2004) based on Aganj et al. (2010), as 

implemented in Dipy (Garyfallidis et al., 2014), for evaluation.

4. Mean absolute difference (MAD): We computed the absolute difference (AD) 

map between each GFA image and the gold standard. The AD values were 

averaged within the brain region to obtain the MAD value.

5. ODFs: We further evaluated the influence of denoising on fiber ODF estimates. 

Based on the method presented in Yap et al. (2016), we computed the fiber ODFs 

and visually inspected their quality.

6. PFFD: We detected the fiber peaks and computed the probability of false fiber 

detection (PFFD) rate, defined as (Daducci et al., 2014)

∣ PTrue − PEstimated ∣
PTrue

× 100 % , (14)

where PTrue and PEstimated are the numbers of ground truth peaks and estimated 

peaks, respectively.

7. Tract bundles: Based on the estimated fiber ODFs, we used a multi-directional 

streamline algorithm (Mori et al., 1999; Stieltjes et al., 2001) for whole brain 
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tractography. The number of ODF peaks detected per voxel was restricted to 3. 

The voxels with FA values larger than 0.4 were selected as seeds. The stopping 

FA value was set to 0.2 and the maximum allowed turning angle was 60°. 

Following Wakana et al. (2007), we extracted each tract bundle of interest using 

a set of regions of interest (ROIs).

3.3. Results

3.3.1. Patch matching—We first evaluated the performance of the proposed q-space 

patch matching. The results, shown in Fig. 6, indicate that the new patch matching scheme is 

robust to the variation of local fiber orientations. This allows XQ-NLM to use information 

from differentially oriented signal profiles for effective denoising. Fig. 7, generated using 

real data, confirms the observations from Fig. 6 and demonstrates that XQ-NLM is capable 

of locating recurrent information in curved white matter structures.

3.3.2. Synthetic data—The PSNR results shown in Figs. 8 and 9 indicate that all 

methods improve the PSNR, but XQ-NLM performs best for all noise levels. MPPCA 

outperforms NLSAM when the number of channels is small. With the increase of noise level 

and number of channels, the performance of MPPCA drops dramatically and performs 

worse than NLSAM. Compared with NLSAM, the second best method, the largest 

improvement given by XQ-NLM is 6.42 dB in the case of 10% stationary Rician noise.

The denoised DW images, shown in Fig. 10, indicate that XQ-NLM is able to preserve sharp 

edges and effectively remove noise, thanks to the robust q-space patch matching mechanism, 

as demonstrated in Fig. 6. In contrast, ANLM and NLSAM blur edges and MPPCA is 

unable to sufficiently remove noise.

For better comparison, we computed the RMSE map of a denoised dataset with respect to 

the ground truth. The results, shown in Fig. 11, indicate that, compared with the baseline 

methods, XQ-NLM significantly reduces the RMSE. The improvement is especially 

apparent at the boundaries, compared with ANLM. NLSAM slightly improves the results, 

but is still problematic at boundaries. MP-PCA performs better than ANLM and NLSAM for 

edges, but fails to remove noise sufficiently. Overall, XQ-NLM yields superior performance 

with edge-preserving denoising.

The ODFs, shown in Fig. 12, indicate that XQ-NLM gives results that are very close to the 

ground truth. In contrast, ANLM, NLSAM and MPPCA lead to incorrect results, as marked 

by the white arrows. When the smoothing effect is strong, as in ANLM, spurious peaks are 

more likely to occur at the boundaries. From the results given by ANLM in Fig. 12, we can 

observe that spurious peaks are introduced to single direction ODFs. These incorrect peaks 

are introduced from the neighboring two-direction ODFs due to boundary smoothing, as can 

be observed from Fig. 10. The PFFD means and standard deviations computed for the ROIs 

shown in Fig. 12 confirm that all fiber peaks are successfully recovered after denoising by 

XQ-NLM. MPPCA and NLSAM reduce PFFD but are still imperfect. ANLM induces 

spurious peaks and increases PFFD.
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3.3.3. Repeated-acquisition data—Fig. 13 indicates that XQ-NLM gives the lowest 

mean GFA MAD among the compared methods. Fig. 14 shows the GFA images of one 

randomly selected dataset. XQ-NLM gives a sharper GFA image with preserved details even 

in the cortical regions. The corresponding GFA AD maps, shown in Fig. 15, indicate that 

XQ-NLM gives on overall the lowest AD values, further confirming the advantages of XQ-

NLM. The superior performance of XQ-NLM can be attributed to the fact that XQ-NLM is 

able to preserve edges while effectively remove noise. ANLM and NLSAM over-smooth and 

MP-PCA under-smooths the data, causing the GFA estimates to deviate from the true values.

3.3.4. Multi-shell HCP data—The results shown in Fig. 16 indicate that XQ-NLM 

yields markedly improved edge-preserving results in the cortical regions compared with 

ANLM, NLSAM, and MPPCA, especially at boundaries.

The influence of denoising on ODFs can be seen in Fig. 17. We can observe that XQ-NLM 

yields cleaner results with less spurious peaks. This improvement is essential for correctly 

tracing the axonal directions.

Finally, the tract bundles described in Table 1 were extracted for evaluation. The results, 

shown in Fig. 18, indicate that XQ-NLM gives smooth and rich tracts. In contrast, the tracts 

given by ANLM is over-smoothed and a significant number of tracts are missing. The noisy 

data and the data denoised by NLSAM and MPPCA give spurious tracts.

4. Discussion

4.1. Factors contributing to the effectiveness of XQ-NLM

XQ-NLM demonstrates superb denoising and edge-preserving performance, which can be 

attributed mainly to the following factors:

• Patch matching in q-space allows information from curved structures to be used 

for denoising. This dramatically increases the effective sample size and improves 

the chance of finding matching information.

• NLM can be seen as kernel regression in patch space (Yap et al., 2014) and large 

kernel bandwidths are known to introduce bias (Silverman, 1998). The increase 

in sample size allows XQ-NLM to utilize a tighter matching criterion, i.e., 

smaller kernel band-widths, so that estimation bias can be reduced.

• The diffusion signal profile captured in each voxel is in general smooth with less 

abrupt changes. This again improves effective sample size because sharp changes 

generally imply structural peculiarity and hence greater challenges in finding 

matching information.

• Diffusion signal profiles have simpler shapes. This implies greater recurrence in 

signal patterns and hence more effective NLM denoising with lesser artifacts 

caused by the rare patch effect (Duval et al., 2011; Deledalle et al., 2012; Salmon 

and Strozecki, 2012).
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4.2. Mitigating noise-induced bias

Unlike Gaussian noise, the signal dependency of nc-χ noise complicates the analysis of the 

CMS. The noise floor resulting from nc-χ noise leads to biased diffusion model fitting and 

inaccurate signal averaging. This can be avoided by employing signal transformation 

techniques, such as the one described in Section 2.1.2. Alternatively, if phase images are 

available, real-valued diffusion data can be extracted based on the approach described in 

Eichner et al. (2015). Essentially, the method eliminates shot-to-shot phase variations of 

complex-valued diffusion data so that real-valued signals with zero-mean Gaussian noise 

can be extracted.

4.3. Computational efficiency

We compared the computational times of the different methods using the repeated-

acquisition data described in Section 3.1.2. Only one of the 25 datasets was used in this 

evaluation. XQ-NLM and ANLM were implemented using C++ based on the Insight 

Segmentation and Registration Toolkit (ITK).2 MP-PCA3 and NLSAM4 were compiled 

from source code. The speed was evaluated using a computer equipped with a four-core 2.9 

GHz Intel Core i7 CPU. The results, shown in Table 2, indicate that XQ-NLM, while slower 

than MP-PCA and ANLM, is faster than NLSAM. The speed of XQ-NLM can be improved 

by using preselection strategies (Coupé et al., 2008) to quickly discard irrelevant patches so 

that they are not involved in the computation.

4.4. Future directions

In DMRI, patch-based methods have a wide range of applications, including denoising 

(Wiest-Daesslé et al., 2007, 2008; Descoteaux et al., 2008; Yap et al., 2014), atlas building 

(Saghafi et al., 2017; Kim et al., 2017; Yang et al., 2017), fiber orientation estimation (Chen 

et al., 2016b; Ye et al., 2016), resolution enhancement (Chen et al., 2018), statistical group 

comparison (Chen et al., 2015), etc. Our x – q space patch matching strategy can be 

extended for these applications to better leverage the directional nature of DMRI data for 

performance improvements.

5. Conclusion

In this paper, we have proposed an improved NLM algorithm that caters to the spatio-

angular characteristics of DMRI data. Our method, called XQ-NLM, performs patch 

matching in x – q space, allowing information from highly curved white matter structures to 

be used for effective noise removal. Extensive experiments demonstrate that XQ-NLM 

improves the SNR of DW images, preserves structural details, and reduces spurious fiber 

peaks that result from noise.

2https://itk.org/ITK.git.
3https://github.com/MRtrix3/mrtrix3.
4https://github.com/samuelstjean/nlsam.
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Fig. 1. 
Method overview.
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Fig. 2. 
Patch Matching in x – q Space. Illustration of patch matching involving 4 shells in q-space 

and a search radius of 2 voxels (5 voxels in diameter) in x-space. The search neighborhood 

𝒱 is a combination of the sub-neighborhoods {𝒱( j, r)}
j = 1, …, 53, r = 1, …, 4

 (green) 

associated with different locations {xj}j=1, …,53 and b-values {br}r=1, …,,4, i.e., 

𝒱 = ∪ j, r 𝒱( j, r), where 𝒱( j, r) ≡ 𝒱(x j, br). Patch matching is carried out between the 

reference patch (blue) and each candidate patch (yellow) in the search neighborhood 𝒱. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 3. 
Azimuthal Equidistant Projection (AEP). Mapping of a spherical patch to a disc.
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Fig. 4. 
Noise Simulation. 5% 4-channel nc-χ noise with spatially constant and varying γ-maps. 

Note that the γ-map for stationary noise is constant. DW images with b = 1000 s/mm2 are 

shown.
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Fig. 5. 
Synthetic Data. Some examples of the synthetic data (b = 1000 s/mm2) for stationary and 

non-stationary noise with different numbers of channels.
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Fig. 6. 
q-Space Patch Matching – Synthetic Data. Fiber ODFs are shown in the top row for 

reference. The middle row shows the profiles of the diffusion signals. Patch matching is 

performed using the point marked by the red arrow as the reference. The bottom row shows 

the matching results of signal profiles in different orientations. Warm colors indicate greater 

agreement, cool colors indicate otherwise. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. 
q-Space Patch Matching – Real Data. Similar to Fig. 6, but showing the results in the genu 

of the corpus callosum of a real dataset.
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Fig. 8. 
PSNR Comparison – Stationary Noise. Quantitative evaluation of denoising performance 

using synthetic data with spatially stationary noise.
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Fig. 9. 
PSNR Comparison – Non-Stationary Noise. Quantitative evaluation of denoising 

performance using synthetic data with spatially non-stationary noise.
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Fig. 10. 
DW Images – Synthetic Data. Synthetic data (b = 1000 s/mm2) with 5% 4-channel spatially 

non-stationary nc-χ noise was used in the evaluation.
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Fig. 11. 
RMSE Maps. Similar to Fig. 10, but showing RMSE maps. The color bar is capped at 1000, 

which is 10% of the maximum intensity value. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. 
Fiber ODFs – Synthetic Data. White matter fiber ODFs for synthetic data. The PFFD means 

and standard deviations for the marked regions are shown at the bottom.
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Fig. 13. 
GFA MAD. Means and standard deviations of the MAD values of the GFA images given by 

the different methods.
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Fig. 14. 
GFA Images. GFA images of one randomly selected dataset.
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Fig. 15. 
GFA AD Maps. Gold standard GFA image and the AD maps of Fig. 14.
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Fig. 16. 
DW Images – HCP Data. DW images of the real data (b = 1000 s/mm2) denoised by various 

methods.
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Fig. 17. 
Fiber ODFs – HCP Data. White matter fiber ODFs in various regions.
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Fig. 18. 
Tract Bundles. Tract bundles given by the noisy data and denoised data generated using 

various methods.

Chen et al. Page 34

Med Image Anal. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 35

Table 1

Tract bundles used for evaluation.

Bundle Description

FMinor The frontal projection of the corpus callosum (i.e., forceps minor)

FMajor The occipital projection of the corpus callosum (i.e., forceps major)

GCC Genu of corpus callosum

CST Corticospinal tract

IFO Inferior fronto-occipital fasciculus
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Table 2

Comparison of computation times.

ANLM NLSAM MPPCA XQ-NLM

Time (mins) 33.2 332.2 3.5 115.5
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