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In Brief
Pathway analysis of PTM data
sets is typically performed at a
gene-centric level because of
the lack of appropriately curated
PTM signature databases. We
have developed a PTM signa-
tures database (PTMsigDB) pro-
viding curated phosphorylation
signatures of kinases, perturba-
tions and signaling pathways to
enable site-specific PTM signa-
ture enrichment analysis (PTM-
SEA). Application of PTM-SEA to
phosphoproteomes of several
cell lines perturbed with growth
factors, cell cycle inhibitors, or a
specific PI3K inhibitor demon-
strated the potential of our site
centric approach to study dys-
regulated pathways in cancers.
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Signaling pathways are orchestrated by post-translational
modifications (PTMs) such as phosphorylation. However,
pathway analysis of PTM data sets generated by mass
spectrometry (MS)-based proteomics is typically per-
formed at a gene-centric level because of the lack of
appropriately curated PTM signature databases and
bioinformatic tools that leverage PTM site-specific infor-
mation. Here we present the first version of PTMsigDB, a
database of modification site-specific signatures of per-
turbations, kinase activities and signaling pathways cu-
rated from more than 2,500 publications. We adapted the
widely used single sample Gene Set Enrichment Analysis
approach to utilize PTMsigDB, enabling PTM Signature
Enrichment Analysis (PTM-SEA) of quantitative MS data.
We used a well-characterized data set of epidermal
growth factor (EGF)-perturbed cancer cells to evaluate
our approach and demonstrated better representation of
signaling events compared with gene-centric methods.
We then applied PTM-SEA to analyze the phosphopro-
teomes of cancer cells treated with cell-cycle inhibitors
and detected mechanism-of-action specific signatures of
cell cycle kinases. We also applied our methods to
analyze the phosphoproteomes of PI3K-inhibited human
breast cancer cells and detected signatures of com-
pounds inhibiting PI3K as well as targets downstream
of PI3K (AKT, MAPK/ERK) covering a substantial frac-
tion of the PI3K pathway. PTMsigDB and PTM-SEA can
be freely accessed at https://github.com/broadinstitute/
ssGSEA2.0. Molecular & Cellular Proteomics 18: 576–593,
2019. DOI: 10.1074/mcp.TIR118.000943.

Identifying signaling pathways that are dysregulated in dis-
eases such as cancer is crucial for understanding the molec-
ular mechanisms underlying the disease and ultimately for

developing better treatments. Post-translational modifica-
tions (PTMs)1 of proteins play a key role in practically every
cellular process by regulating activity, localization and inter-
action of proteins. Mass spectrometry (MS)-based proteom-
ics facilitates profiling of tens of thousands of PTM sites in a
single experiment, most importantly phosphorylation, acety-
lation and ubiquitylation. Because of tremendous improve-
ments in mass spectrometry technologies as well as sample
processing workflows, large-scale analyses of PTMs have
now become feasible for entire patient cohorts. This is exem-
plified by recent Clinical Proteomics Tumor Analysis Consor-
tium (CPTAC) landmark studies of breast and ovarian cancer,
in which pivotal findings were derived from phosphopro-
teomic analyses of up to 174 patient tumor samples (1, 2). For
example, regulation of specific phosphorylation pathways re-
vealed a novel breast cancer subtype that was unique to the
phosphoproteomes of the tumors and could not be observed
in RNA, DNA or protein space (1). Such analyses require
well-annotated molecular signaling pathways and ideally
would incorporate the role of specific modified sites rather
than gene products alone. However, databases annotating
biological pathways such as KEGG (3), Reactome (4) or
MSigDB (5) are gene-centric and do not capture information
for individual PTM sites. Therefore, pathway analysis of
acquired phosphoproteomes typically involves collapsing
discrete measurements of PTM sites on proteins into a
single measurement represented by e.g. the mean or me-
dian of corresponding sites, which are mapped to their
respective gene symbols. This procedure allows the result-
ing data set to be used for gene-centric pathway analysis,
sacrificing the additional information provided by individual
PTM sites (Fig. 1) and likely diluting the signal represented
in the phosphoproteome data. The information loss is es-
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pecially profound if multiple phosphosites on the same pro-
tein are differentially abundant. The lack of appropriately
curated databases has impeded development of bioinfor-
matics analysis tools that leverage site-centric PTM signa-
tures. Further, existing tools that can be directly applied to
site-centric data sets, such as PHOXTRACK (6), KSEA (7–9),
KEA (10), IKAP (11) or PSEA (12), are solely intended to
detect signatures of kinase activity in phosphorylation data
by screening for known kinase substrate sites, and do not

encompass analysis of molecular signaling pathways or
signatures of kinase inhibition.

1 The abbreviations used are: PTM, post translational modification;
PTM-SEA, PTM signature enrichment analysis; GSEA, gene set en-

richment analysis; ssGSEA, single sample gene set enrichment anal-
ysis; PTMsigDB, PTM signatures database; MSigDB, molecular sig-
natures database; NP, NetPath; WP, WikiPathways; FDR, false
discovery rate; EGF, epidermal growth factor; KEGG, kyoto encyclo-
pedia of genes and genomes; PSP, PhosphoSitePlus; LINCS, library
of integrated network-based cellular signatures; NaCl, sodium chlo-
ride; EDTA, ethylenediaminetetraacetic acid; Ni, nickel; HPLC, high
pressure liquid chromatography; MS, mass spectrometry; LC-MS/
MS, liquid chromatography-MS/MS; GCT, gene cluster text; GMT,
gene matrix transposed.

FIG. 1. Pathway analysis of phosphoproteome data sets. A, The majority of proteins have multiple phospho-acceptor sites that can be
differentially occupied and vary in abundance levels measured by MS. The four examples illustrate three proteoforms with varying number of
phosphorylation sites (represented by amino acid residue and position in protein sequence) which are quantified with different fold changes
(represented as numbers in parenthesis). Protein A exemplifies the presence of two protein isoforms carrying an isoform-specific phosphor-
ylation site. B, Gene-centric pathway analysis typically involves combining fold changes of multiple sites mapping to the same gene symbol
by calculating a center value of abundance (mean or median) or by choosing a single site characterized by high degree of variance (thus
information) across a sample cohort. Additional information provided by multiple phosphorylation sites on a single protein as well as different
sites on protein isoforms are not considered. Resulting gene-centric expression matrix can then be queried against gene-centric pathway
databases such as Reactome, KEGG or MSigDB, in which each pathway is represented as a collection of gene symbols. C, Site-centric
pathway analysis takes all quantified phosphorylation sites into account and requires a database of pathways annotated using individual
phosphorylation sites. For that purpose, we developed PTMsigDB, annotating signatures of pathways, kinases and perturbations at the level
of sites. Each site is annotated with the direction of regulation in a signature, i.e. whether its abundance is decreased or elevated, exemplified
by blue and red arrows, respectively. Quantitative, site-centric phosphoproteomic data can be directly queried against PTMsigDB to identify
signatures of phosphosites that correlate with annotated signature sets in PTMsigDB.
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Here we present the first iteration of PTMsigDB, a collection
of PTM site-specific signatures that have been assembled
and curated from published data sets (Fig. 1). The current
version is comprised exclusively of phosphorylation signa-
tures but serves as a foundation for signatures of other PTMs
like ubiquitination or acetylation to be added in the future.
Although PTMsigDB enables kinase signature analysis similar
to published tools described above, it additionally includes
many curated signature sets of PTM sites mined from Phos-
phoSitePlus (13), Netpath (14) and WikiPathways (15) that
have been i) quantitatively characterized in specified pertur-
bation studies; ii) are known substrates of kinases; or iii) are
known to be activated/deactivated in signaling pathways. A
unique feature of PTMsigDB is the annotation of each PTM
site with the direction of regulation, i.e. increased or de-
creased abundance upon a specific perturbation or in the
context of signaling through a canonical pathway. We further
present an extension of the widely used single sample Gene
Set Enrichment Analysis (ssGSEA) (16, 17) that enables PTM
Signature Enrichment Analysis (PTM-SEA) illustrated here for
MS-based phosphoproteomics data sets.

We first assessed the utility of our approach using a well-
characterized, literature-derived phosphoproteome data set
of epidermal growth factor (EGF)-perturbed HeLa cells (18)
and compared PTM-SEA to regular gene-centric ssGSEA. We
next applied PTM-SEA to phosphoproteomes of human cell
lines treated with different cell cycle inhibitors that have been
profiled in the Library of Integrated Network-Based Cellular
Signatures (LINCS) (19, 20). Finally, to demonstrate the value
of PTM-SEA in perturbation studies targeting clinically rele-
vant cancer pathways, we applied our tools to analyze a deep
phosphoproteome of a PI3Ka-inhibited breast cancer cell line.

EXPERIMENTAL PROCEDURES

Assembly of PTMsigDB—The foundation of PTMsigDB is PTM
sites curated by PhosphoSitePlus (PSP). All sites present in
PTMsigDB were either directly derived from, or subsequently mapped
to PSP. Each site in PTMsigDB is annotated with the PSP site group
id, flanking amino acid sequence (� 7 amino acids) and UniProt
accession number (Table I, supplemental Table S1). Each site in our
database is annotated with the reported direction of regulation upon
a specific perturbation or in a molecular pathway. We note that we do
not capture functional annotations of PTM sites in PTMsigDB, such as
activating or inactivating effect on the modified protein.

PTMsigDB is stored in Gene Matrix Transposed (GMT) format, a
simple flat file format utilized by the gene-centric molecular signature
database MSigDB (16, 21). Signature sets were assembled using
three different modes of curation: i) entirely manual specification by
domain experts (NetPath, WikiPathways, PSP kinase-substrate sig-

natures); ii) semi-automatic specification (PSP perturbation signa-
tures); and iii) fully automatic specification (LINCS perturbation sig-
natures). Each signature is a unique collection of confidently localized
PTM sites. Because sites are single amino acid residues, PTMsigDB
requires single site-centric data matrices, and multiply phosphory-
lated peptides must be resolved into single site-centric data.

Although in this manuscript we focus on human signature sets, we
have also started to derive signatures for mouse and rat (Table II,
supplemental Table S2). Below we describe in more detail how sig-
nature sets of different categories have been assembled.

Signature Extraction from PSP Perturbation Data—Perturbation
signatures were derived from PTM sites manually curated from liter-
ature describing the phosphoproteomic impact of perturbations such
as small molecules and growth factors. The initial database repre-
sented results from 2,483 perturbation studies. Many studies em-
ployed common perturbations (for instance, the same small molecule)
with different experimental conditions (such as different cell lines,
dosages or time points). To manage the bias inherent in such differ-
ential representation of perturbations we assembled “consensus-
signatures” that combined results consistently reported across differ-
ent studies of a common perturbation. For each perturbation P we
extracted all PTM sites that were increased or decreased in abun-
dance by P. For each PTM site S belonging to the P-altered set we
then required a minimum of two independent studies that reported S
to be regulated by P in the same direction (Fig 2A). Requiring con-
sistency between two independent studies balanced the competing
interests of retaining large numbers of signatures and PTM sites per
signature and maximizing the likely relevance of such signatures to
novel perturbation data sets. Each site in this category is annotated
by the Pubmed identifier (PMID) of the corresponding publication in
the Description field of the GMT file.

Kinase-Substrate Signatures from PSP—The file Kinase_Substrate_
Data set contains a list of experimentally-determined kinase sub-
strates and metadata curated from the literature by PSP and was
downloaded from their website (https://www.phosphosite.org/static-
Downloads) on March 21, 2018. Kinase-substrate signatures were
parsed from the downloaded file using an in-house developed R-
script. Briefly, all annotated substrate sites for each kinase were
extracted and a minimum of five distinct sites was required to form a
kinase signature. The script was used to parse kinase signatures for
human, mouse and rat.

Signatures of Molecular Signaling Pathways from NetPath—Anno-
tation of pathways with phosphorylation was performed manually by
domain experts and was based on 909 publications. All sites were
first mapped to PSP and were annotated by flanking amino acid
sequence and site group id. Only sites that could be mapped to PSP
and that were consistently annotated with either increased or de-
creased levels were retained. Each site in this category is annotated
by either the Pubmed identifier (PMID) or by a string concatenating
first author and publication year of the corresponding manuscript.
This information can be found the Description field of the GMT file.

Signatures of Molecular Signaling Pathways from WikiPathways—
All human, mouse and rat specific pathways in gpml format
were downloaded from (https://www.wikipathways.org/index.php/
Download_Pathways) on March 20, 2018. An in-house developed

TABLE I
Representation of PTM sites in PTMsigDB

Database format Site accession Example

Uniprot-centric Uniprot_acc;site-type;direction Q06609;Y315-p;u
Flanking sequence �/�7aa flanking seq-type;direction ETRICKIYDSPCLPE-p;u
PSP site group id site_grp_id-type;direction 448324-p;u
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R-script was used to parse each file representing a single pathway
and to extract information about annotated phosphorylation sites. A
minimum of five distinct sites was required to form a signature. All
signature sets were exported in GMT format.

Perturbation Signatures from LINCS Database—Perturbation data
derived from the P100 assay (19) were downloaded from Panora-
maWeb (https://panoramaweb.org/project/LINCS/P100/begin.view)
(22) on August 30, 2017. We retrieved level 4 data (L4) which were
sample-normalized (columns), QC’d and plate-normalized (rows)
comprising a total of 189 perturbations and 12 human cell lines. Data
for the P100 assay were acquired in PRM or in DIA mode and
analyzed using Skyline (23). A more detailed description of the differ-
ent data processing steps, including the analysis of DIA data, are
described in (24). We first normalized P100 probes to the DMSO
control experiment, which was present in each 96 well plate, by sub-
tracting the average log2 DMSO ratio followed by Z-score transforma-
tion (per sample column). To derive signatures for a specific perturba-
tion we considered probes with Z-scores more extreme than � 2 per
sample column observed in at least two samples (replicates or cell lines)
measured on the same 96 well plate. Perturbations measured on mul-
tiple plates were combined into a single perturbation signature set. All
metadata (plate number, cell line, dose, etc.) for each site of a signature
can be found in the Description field. All sites were mapped to PSP and
were annotated by flanking amino acid sequence and site group id. A
minimum of five distinct sites was required to form a signature and
signature sets were exported in GMT format.

Single Sample Gene Set Enrichment Analysis (ssGSEA)—Gene Set
Enrichment Analysis (GSEA) (16) is a tool for determining enrichment
of gene sets using genes differentially expressed between two phe-
notypes measured in a sufficient number of replicates. The approach
to apply GSEA on a single, pre-ranked data vector representing gene
abundance, especially from a single sample, has been introduced in
(17) and is typically referred to as the signature projection method or
single sample GSEA (ssGSEA). Briefly, expression values of genes in
one sample are rank-ordered and an enrichment score for a signature
S is calculated based on the difference in the Empirical Cumulative
Distribution Functions (ECDFs) of genes in S and the set of all genes.
This ECDF difference between signature S and remaining genes
(�ECDF) is calculated by walking down a rank-sorted list of genes,
increasing a running-sum statistic when a gene belongs to S, and
decreasing the running-sum statistic if the gene does not belong to S.
The enrichment score ES reflects the degree to which genes in S are
overrepresented at the top or bottom of the ranked-ordered list. Two
methods have been proposed to calculate ES: the original GSEA
publication (16) described a weighted Kolmogorov-Smirnov-like sta-
tistic defined as maximal distance between both ECDFs:

ES � max��ECDF�

Alternatively, the ES can be calculated as the area under the delta
ECDF

ES ��
1

p

�ECDF

with p being the maximal rank of genes in the sample.

To account for different signature sizes, and correlations between
gene set and the data set, a normalized enrichment score (NES) is
calculated by permuting the genes in the sample using a user-defined
number of permutations n (typically n � 1000):

NES �
ES

1
n�i�1

n ESi

Permutations are also used to calculate a p value for a given NES
of a signature S:

Ps � 1/�x�1
n I�x� where I�x� � �1 if ES�x� � ES

0 otherwise

Calculated p values can be further corrected for multiple hypoth-
esis testing.

ssGSEA 2.0 and PTM-SEA Specific Modifications—We obtained
the R program for ssGSEA analysis developed by the original authors
and re-implemented parts of the software to optimize execution
speed (support of multiple CPU cores). We further modified the han-
dling of missing values in the data set more robust by discarding them
before calculating pathway enrichment scores and implemented sup-
port for GCT (Gene Cluster Text) v1.3 files which enable storing data
and metadata in a single text file. Import, export and manipulation of
GCT files was implemented using the cmapR R-package (https://
github.com/cmap/cmapR). We further extended the generated output
of the original implementation of ssGSEA by utilizing GCT v1.3 meta-
data fields. For instance, for each scored gene set information on the
number of scored genes and total percentage of genes scored set are
included in the results files.

We extended the regular ssGSEA algorithm to enable site-specific,
directional (Fig 2B) PTM signature enrichment analysis by incorporat-
ing directionality into the scoring scheme (Fig 2C). Each part of a
directional signature set is scored separately by first calculating en-
richment scores (ES) of PTM sites annotated with increased abun-
dance (ESu). If the signature set contains PTM sites that were anno-
tated with decreased abundance, a separate enrichment score (ESd)
for those sites is calculated. Both scores are combined into a single
enrichment score by calculating: ES � ESu � ESd. The resulting
combined score reflects a measure of correlation between annotated
sites in a signature and the abundance ranks of the signature in the
actual data: positive values indicate positive correlation; negative
values indicate anti-correlation. Normalized enrichment scores and p
values are calculated on the combined score based on a user-defined
number of permutations applied to a single sample column.

PTM-SEA is Available on GenePattern (25), a powerful platform to
deploy and run software and entire analysis pipelines in a web
browser, and can be accessed using the following URL: https://
tinyurl.com/PTM-SEA-GP. Source code, documentation and instruc-
tions to run ssGSEA2.0/PTM-SEA on a local computer and on
GenePattern are available on GitHub and can be accessed using the
following URL: https://github.com/broadinstitute/ssGSEA2.0.

Preprocessing of Data Sets for Site-specific PTM-SEA—The input
to the PTM-SEA R program is a single site-centric data matrix, m,
stored in GCT format and a signature set database in GMT (Gene

TABLE II
Extending PTMsigDB to other model organisms

Organism No. signatures total No. perturbation signatures No. kinase signatures No. pathway signatures

Human 491 223 (1045 sites) 220 (7,104 sites) 48 (1164 sites)
Mouse 119 48 (254 sites) 71 (1133 sites) -
Rat 82 39 (203 sites) 42 (614 sites) 1 (17 sites)
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Matrix Transposed) format. Each row in m represents a single phos-
phorylation site confidently localized to a specific amino acid residue,
with measured abundances across samples specified in columns in
m. Multiple phosphorylation sites detected on the same peptide must
be converted into separate site-specific entities for every site. Al-
though some proteomics software packages, such as MaxQuant (26),
readily produce single site-centric PTM reports, the use of other
software packages might require additional preprocessing steps. To
resolve the abundance of phosposites that have been measured on
different phospho-proteoform peptides we used the abundance
measured on the monophosphorylated version. If no monophospho-
rylated peptide version has been observed, we reported the abun-
dance of the peptide carrying the least number of phosphate groups.
Because we cannot disambiguate the abundance of multiple phos-
phosites measured on the same peptide in general, each site was
assigned the measured abundance of the corresponding peptide and
reported as separate rows in m. Lastly, if a site was measured on two
or more equivalent peptides (e.g. one site exclusively detected on two
doubly phosphorylated peptides), we reported the average abun-
dance of corresponding peptides.

The general PTM-SEA workflow, including necessary pre-process-
ing steps and description of data file formats is depicted in supple-
mental Fig. S1.

Parameters for PTM-SEA and ssGSEA2.0—Abundance levels of
proteins/genes or PTM sites were first rank-normalized (sample.
norm.type � “rank”). Rank-normalized profiles were further Z-scored
(correl.type � “z.score”) and weighted (weight � 0.75). To obtain
signature enrichment scores we calculated the difference of the
ECDFs of the sites part of the signature and of all sites (statistic �
“area.under.RES”) as described in (17). Normalized enrichment
scores (NES) and p values were calculated using 10,000 permutations
(nperm � 10000). We note that 1,000 permutations were typically
enough to obtain stable p values. Although p values were calculated
on a sample-by-sample basis, we further corrected permutation-
derived p values for multiple hypothesis testing using the method
proposed by Benjamini and Hochberg (27) using the entire data set
(global.fdr � ‘TRUE’).

Sharma et al. EGF Data Set—We retrieved supplemental Table S2
from the manuscript by Sharma et al. (18). The authors used the
MaxQuant software suite (26, 28) to obtain label-free intensity esti-
mates of phosphosite abundances. We converted absolute intensities
into relative ratios by dividing each phosphosite by its average inten-
sity measured in six replicates of DMSO-treated control samples and
subsequently applied log2 transformation. We performed the conver-
sion to ratio data to intrinsically compare the effect of EGF and
nocodazole treatment to the DMSO control experiment. We note that
this conversion was not required to apply PTM-SEA, as PTM-SEA can
also be directly applied to non-ratio data. All phosphosites with
localization probability 	 0.75 and a DMSO ratio observed in at least
one sample were considered in further analyses (n � 27,307).

Ablelin et al. Drug Perturbation Data Set—The results of the dis-
covery data described in (19) were downloaded from MassIVE using
accession number MSV000079524. We downloaded the datafile
Supp_DataDet1_P100_Discovery.gct and re-formatted the GCT id
column to match the UniProt-centric format of PTMsigDB, as de-
scribed above (supplemental Fig. S1). The resulting GCT file could be
readily used for PTM-SEA using parameters described above. Be-
cause this discovery data set was used to derive the targeted P100
probes (from which we curated LINCS signature sets) we removed all
P100 signatures from PTMsigDB prior to analysis to avoid a potential
contamination of training and test data sets.

Cluster Analysis—All cluster analyses were based on hierarchical
clustering using average linkage and Euclidean distance metric. Heat-

maps were generated in R using the pretty heatmap package (pheat-
map) or in Morpheus (https://software.broadinstitute.org/morpheus).

CCLE PI3K Perturbation Experiment—

Cell Culture and Treatment—T47D cells were cultured in RPMI
medium with 10% FBS and 1% Penicillin/streptomycin. Cells were
plated in 15 cm plates at a final density of 3.25e6 and 2e6, respec-
tively, in a total volume of 29 ml, and incubated at 37 °C under
standard culture conditions. Forty-five hours (approximately) after
plating, 1 ml of BYL719 diluted in RPMI�FBS�P/S medium was
added to the treated plates to achieve a final concentration of 1uM,
with 1 ml of DMSO-dilution in RPMI�FBS�P/S medium added to the
control-plates. Plates were then placed back in the 37 °C incubator.
Plates were o harvested at 6-h and 24-h time points. For each time
point, BYL719-treated and DMSO-treated plates were removed from
the incubator in batches of 2, placed on ice, and washed once with
ice-cold PBS. Cells were then scraped off the plate in fresh ice-cold
PBS and placed in 15 ml conical tubes on ice. The process was
repeated in batches of 2 until all plates for that specific time point and
treatment were collected into a single 15 ml conical tube. Cells were
then spun at 1200 RPM in a 4 °C centrifuge for 10 min. PBS was
removed by aspiration, and the cell pellet was resuspended in ice
cold PBS for a third wash. The cell suspension was then distributed,
proportionally, into individual Eppendorf tubes intended for proteom-
ics profiling, RNAseq and immunoblotting analysis. Eppendorfs were
spun at 3000rpm in a 4 °C table top centrifuge, the PBS supernatant
was manually removed, and cell pellets were snap frozen in a 70%
ethanol/dry ice bath. Frozen pellets were stored at �80C° until proc-
essing for proteomics experiments. Time course treatments were
performed in technical triplicates, each performed on different days.

Lysis and Digestion—Cell pellets were lysed in 50 mM Tris-HCl
buffer (pH 8.0) containing 8 M Urea, 75 mM NaCl, 1 mM EDTA,
protease and phosphatase inhibitors as previously described (29).
Protein concentration was determined using a bicinchoninic acid
(BCA) protein assay (Pierce, Thermo Fisher Scientific, Bremen, Ger-
many). Following reduction with 5 mM dythiothreitol (DTT) for 30min at
room temperature (RT) and alkylation with 10 mM iodoacetamide for
45min at RT in the dark, urea concentration was reduced to 2 M and
samples were digested with Endoproteinase LysC (Wako Chemicals,
Richmond, VA) at an enzyme-to-substrate ratio of 1:50 for 2 h at 30 °C
followed by sequencing grade trypsin (Promega, Madison, WI) at an
enzyme-to-substrate ratio of 1:50 overnight at 30 °C. Reactions were
quenched the next day with formic acid added to a final concentration
of 1%. The samples were desalted using tC18 SepPak 200 mg car-
tridges (Waters, Milford, MA). Briefly, the cartridges were conditioned
with 3 ml of Acetonitrile (ACN) followed by 3 ml of 50% ACN containing
0.1% formic acid (FA). After equilibrating cartridges with 3 
 4 ml of
0.1% trifluoroacetic acid (TFA)/water, samples were loaded and washed
with 3 
 3 ml of 0.1% TFA/water followed by 1 
 3 ml of 1%FA/water.
Samples were eluted with 2 
 1.5 ml 0.1% FA/50% ACN, frozen at
�80 °C and dried down by vacuum centrifugation.

Labeling—For the quantitative phosphoproteomics experiment, 10
samples were labeled with TMT 10-plex reagent (Lot Number:
PE201534A) (Thermo Fisher Scientific) following the manufacturer’s
protocol. Briefly, 1 mg of each sample was reconstituted in 1 ml of
HEPES buffer at pH 8.5. Eight milligram of each of the TMT10 re-
agents was reconstituted in 410�l of ACN and added to the corre-
sponding sample (Table III). After incubation at RT with shaking for 1 h
the reactions were quenched by adding 80�l of 5% hydroxylamine to
each and incubating at RT with shaking for 15min. The samples were
combined and dried down by vacuum centrifugation. The combined
sample was reconstituted in 0.1% FA/3% ACN and desalted using
tC18 SepPack 500 mg cartridge as described above. Eluate was
dried down completely.
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Phosphoptyrosine (pY) Antibody Enrichment—The sample was re-
constituted in 3 ml of immunoaffinity purification (IAP) buffer consist-
ing of 50 mM MOPS at pH 7.2, 10 mM sodium phosphate, and 50 mM

NaCl. One aliquot of pY1000 antibody beads (Cell Signaling Technol-
ogies, Danvers, MA) was washed 3 times with 1.5 ml IAP buffer.
Washed antibody beads were added to the sample and incubated at
4 °C with end-over-end rotation for 1 h. After spinning down the
antibody beads, the flow-through was collected to be desalted for the
deep phospho-profiling. The beads were further washed 4x in 1.5 ml
of ice-cold PBS, and pY-containing peptides eluted with 2 
 50�l of
0.15% TFA, desalted using C18 stage tips as described before (29)
and dried down.

Flow-through was desalted using tC18 SepPack 500 mg cartridge
as described above and eluate was dried down.

Basic Reversed Phase (bRP) Fractionation of Peptides—Desalted
flow-through sample was fractionated on Agilent 1100 HPLC system
using Zorbax 300 Extend-C18 4.6 mm ID x 250 mm length column
with buffers A and B of 5 mM ammonium formate pH 10.0, in 2 and
90% ACN, respectively. Sample was reconstituted in 900�l of buffer
A and 2 injections of 425 �l were performed. Sample was fractionated
at a flow rate of 1 ml/min with the following gradient: 0 –16% buffer B
for 6min, 16 - 40% buffer B for 60min, 40 - 44% buffer B for 4min,
44 - 60% buffer B for 5min and isocratic hold at 60% B for 14min.
One-minute fractions were collected throughout the entire gradient
for both injections into the same 96-deep well plate (GE Healthcare,
Chicago, IL). Collected fractions were pooled into 24 fractions using
a concatenation strategy as described before (29). Fractions were
acidified with FA for a final concentration of 0.1%. 150 �l (5%) from
each of the fractions was transferred into an autosampler vial and
dried down for LC-MS/MS analysis of the proteome. The remaining
95% of the 24 fractions was dried down for detection and quanti-
fication of phosphopeptides.

Immobilized Metal Affinity Chromatography (IMAC) of the Frac-
tions—Ni-NTA Superflow Agarose beads (Qiagen, Venlo, The Neth-
erlands) were used for IMAC enrichment of the peptides as described
previously (29). Briefly, an appropriate amount of bead slurry for 24
fractions was transferred to an Eppendorf tube and washed with
HPLC water. Beads were stripped of Ni by incubating with 100 mM

EDTA for 30 min at RT with end-over-end rotation and iron was added
by incubating with 10 mM iron chloride (FeCl3) for 30min at RT with
end-over-end rotation. Beads were washed 3
 in 1 ml HPLC water
and resuspended in an appropriate volume of 1:1:1 (v/v/vol) ratio
ACN/Methanol/0.01% Acetic acid for aliquoting of 30 �l of slurry
(corresponding to 10�l of beads) for each fraction. Dried-down frac-
tions were reconstituted in 1 ml of binding buffer (0.1% TFA/80%
ACN) and added to the beads. Samples were incubated for 30 min at
RT with gentle shaking. After spinning down the beads, the superna-
tant consisting of unbound peptides was removed and beads recon-
stituted with phosphopeptides in 200 �l of binding buffer. Beads were
transferred to stage tips for elution and desalting of the phosphopep-
tides as previously described (29). Eluted phosphopeptides were
dried down completely.

LC-MS/MS Analysis of pY and IMAC Samples—pY and IMAC
samples were resuspended in 9 �l of 0.1% FA/3% ACN and 4 �l of
each was analyzed on a Q Exactive Plus mass spectrometer (Thermo
Fisher Scientific) coupled to Easy-nLC 1000 liquid chromatography

system (Thermo Fisher Scientific) with buffers A and B of 0.1% FA in
3 and 90% ACN, respectively. Peptides were separated at a flow rate
of 200 nl/min on 75 �m ID picofrit columns (New Objective, Woburn,
MA) packed in-house to 22–25 cm length with Reprosil-Pur C18-AQ
1.9 �m beads (Dr. Maisch GmbH, Ammerbuch-Entringen, Germany)
and heated to 50 °C. IMAC samples were separated with a solvent B
ramp of 2 - 6% in 1min followed by a linear gradient of 6–30% in
84min for a total run time of 110 min. Eluted peptides were analyzed
in data-dependent mode acquiring MS1 scan at 70,000 resolution
with automatic gain control (AGC) set to 3e6 followed by MS/MS on
the 12 most abundant ions with resolution of 35,000, AGC of 5e4 with
maximum inject time of 100ms, isolation width of 1.6Da with 0.3Da
offset, normalized collision energy (NCE) set to 31(optimized for the
specific QE Plus), peptide match function set to preferred, isotope
exclusion function enabled, and dynamic exclusion set to 30 s. pY
samples were separated in 2 
 4 �l injections of the sample with a
154min LC-MS/MS method where linear gradient of 6–35% solvent B
was performed in 120min. MS parameters were as described above
other than the maximum inject time for MS/MS being set to 120ms
and dynamic exclusion set to 5 s.

CCLE Perturbation Data Analysis—Raw mass spectrometry data
was analyzed using Spectrum Mill Workbench v5.1 (pre-release) (Agi-
lent Technologies, Santa Clara, CA) as described before (29). Briefly,
extracted MS/MS spectra were searched against human UniProt
protein sequence database (downloaded on 12/28/2017) comple-
mented with 264 commonly observed lab contaminants (65,068 da-
tabase entries). Enzyme definition was defined as “trypsin allow P” for
full tryptic specificity and up to five missed cleavages were allowed.
Carbamidomethylation of cysteines was set as a fixed modification
together with TMT10 isobaric labels at lysine residues (N termini
would be considered regardless if it was TMT-labeled). Acetylation of
protein N termini, oxidation of methionine and phosphorylation of
serine, threonine and tyrosine were set as variable modifications with
a precursor MH� shift range of 0 to 272 Da. Database spectral
matching was performed by Spectrum Mill search engine using �20
ppm mass tolerance for precursor ions and product ions. Peptide-
spectrum matches (PSMs) were automatically designated as confi-
dently assigned using the Spectrum Mill autovalidation module em-
ploying a target-decoy search strategy to control false discovery rate
(FDR). Individual PSMs were rolled up to phosphorylation sites that
were separately FDR-controlled resulting in an estimated FDR �1.3%
at the level of individual phosphorylation sites. Phosphorylation sites
that could be unambiguously assigned to specific serine, threonine
and tyrosine residues as automatically determined by Spectrum Mill
software (1) were considered for further analyses (n � 24,035). TMT
reporter ion intensities were corrected for isotope impurities using a
previously described strategy (30) integrated into Spectrum Mill. TMT
reporter ion ratios for BYL719/DMSO treatments of the first two
replicates were calculated by matched replicates (e.g. BYL719R1/
DMSOR1) (Table III). The third replicate did not have a paired control
experiment and the average reporter ion intensity of both DMSO
replicates was used as denominator. TMT reporter ion ratios were
log2 transformed and median-centered for subsequent analysis.

Experimental Design and Statistical Rationale—The PI3K perturba-
tion experiment comprised a single cell line (T47D, n � 1), analyzed at
6h and 24h time points, of inhibitor (BYL719) and paired control

TABLE III
TMT-10 reporter ion channel layout for PI3Ka inhibitor experiment

Channel 126 127N 127C 128N 128C 129N 129C 130N 130C 131

Pert DMSO DMSO DMSO DMSO BYL719 BYL719 BYL719 BYL719 BYL719 BYL719
Time 6h 24h 6h 24h 6h 24h 6h 24h 6h 24h
Replicate R1 R1 R2 R2 R1 R1 R2 R2 R3 R3
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(DMSO) treatments. The BYL719 treatments were measured in three
biological replicates, whereas the control experiments were meas-
ured in two biological replicates to accommodate the entire experi-
ment in a single TMT-10 plex (Table III). BYL719/DMSO ratios were
calculated and median-normalized as described above. To combine
the triplicate measurements in each time point into a single readout as
input for PTM-SEA, we employed a moderated one-sample t test
using the limma R-package. This appropriately accounted for the
variance observed across replicates captured in a p value. The re-
sulting vector of p values was log-transformed and multiplied by the
sign of the average log2 reporter ion ratio:

s � �site:ps � � 10 log10�p value� sign�log� fold change��

The transformed p values were used as input for PTM-SEA. We
did not rank-normalize the transformed p values (sample.norm.
type � ‘none’) and set the weight parameter to 1 (weight � 1) to
incorporate the magnitude of the transformed phosphosite p values
into the calculation of enrichment scores and p values for each
signature.

RESULTS

Signature Sets in PTMsigDB—We developed PTMsigDB, a
curated phosphosite-centric resource of molecular signatures
of perturbations, kinase activity and molecular pathways. The
foundation of PTMsigDB is PhosphoSitePlus (PSP) (13), a
comprehensive systems biology resource for PTMs, which
provides high-quality curation and annotation of PTMs at the
individual residue level. We define a collection of PTM sites,
whose levels are collectively regulated in a curated pathway
or upon a perturbation, as a signature set. To derive signature
sets, and to build up PTMsigDB, we mined PhosphoSitePlus
(PSP), NetPath (NP), WikiPathways (WP) and the LINCS da-
tabases. Depending on the source of a signature, the curation
process was either entirely manual (WP, NP), semi-automated
(PSP kinase signatures, PSP perturbation signatures) or fully
automated (LINCS). Manually curated signature sets repre-
senting molecular pathways were assembled by human do-
main experts. For signatures sets derived in a semi-auto-
mated or fully automated manner, we required that consistent
results (site and direction of change) be reported by more than
one independent study (see Methods for details) (Fig 2A,
supplemental Fig. S2A).

Signature sets in PTMsigDB can be separated into three
categories: 1) Perturbation signatures derived from treatment
of cells with perturbations such as small molecules or growth
factors (PSP, LINCS); 2) Signature sets of molecular signaling
pathways (NP, WP); and 3) Kinase-substrate signatures (PSP).
The different categories contain different numbers of signa-
ture sets, associated proteins and PTM sites (Table IV, sup-
plemental Fig. S2B). In total, PTMsigDB contains 491 signa-
ture sets comprising 8029 phosphorylation sites on 2650
proteins. To assess the proportion of sites of known functional
relevance, we compared sites in PTMsigDB to regulatory PTM
sites in PSP, a set of functionally annotated sites that regulate
downstream cellular processes, molecular functions and pro-
tein-protein interactions that we refer to as a “gold standard”
of annotated PTM sites. Of 6,685 human phosphosites in the

PSP regulatory site collection, 70% were present in signa-
tures of PTMsigDB, emphasizing the functional relevance of
most phosphorylation sites in PTMsigDB (supplemental Fig.
S2C).

Kinases are key players in molecular signaling and a single
kinase can play an essential role in multiple different path-
ways. Depending on the essentiality of a kinase, its substrate
site can be assigned to several molecular pathways or per-
turbation signatures in PTMsigDB. To assess the degree of
essentiality of phosphosites in PTMsigDB, we determined for
each site the number of signatures they contribute to.
Whereas the most redundant, and hence essential, sites oc-
cur in about 20% of all signatures, the median redundancy
across all phosphosites was 2.5 signatures. Interestingly, six
of the 10 most redundant PTM-sites in our database were
T-x-Y activation loops of several mitogen activated protein
kinases (MAPKs) underlining their essential role in a large
number of molecular signaling pathways (Table V). Although
this observation is consistent with gene-centric databases
(MAPK3 is the most redundant gene symbol in MSigDB 5.1),
in PTMsigDB we capture the increased phosphorylation levels
of the activation loop (MAPK3 Thr-202 and Tyr-204), and so
provide a direct readout of enzyme activation rather than
merely elevated gene expression levels of MAPK3 as repre-
sented in MSigDB.

Tyrosine phosphorylation of proteins presents the key
mechanism to propagate extracellular signals, mediated by
growth factor ligands, into the cell via receptor tyrosine ki-
nases (RTKs), a class of transmembrane proteins which in-
duce intracellular signal cascades and ultimately initiate cell
proliferation (31). Compared with its low frequency in the
human proteome (2.6%), tyrosine sites were overrepresented
in PTMsigDB (20.4%) (supplemental Fig. S2D), once again
emphasizing the functional relevance of phosphorylation sites
in PTMsigDB.

A unique advantage of PTMsigDB over other pathway da-
tabases is the annotation of each PTM site with its reported
direction of change upon a specific perturbation or signaling
event. For instance, stimulation with growth factors results
in an activation of specific signaling cascades; thus, PTM
sites involved in these cascades are typically up-regulated,
whereas inhibitory perturbations such as kinase inhibitors
result in down-regulation of affected PTM sites. Although
most signature sets in PTMsigDB were unidirectional (i.e.
solely consisted of either up- or downregulated sites (Fig 2B),
about 30% of signature sets were bidirectional and contained
sites with both increased and decreased levels. However,
most bidirectional signature sets were dominated by sites
demonstrating up-regulation. For instance, requiring an arbi-
trarily chosen minimum of five PTM sites per category (in-
creased/decreased abundance) resulted in 28 signatures that
were distinctly bidirectional (Fig 2B). With ongoing collection
of high-quality quantitative MS-based PTM data and associ-
ated curation efforts, we expect to see more site-specific
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phosphorylation signatures of a bidirectional nature. To ac-
count for the additional information provided by annotated
direction of abundance changes, we adapted the scoring
scheme of the widely used single sample Gene Set Enrich-
ment Analysis (ssGSEA) algorithm (17) (see Methods). The

resulting signature score reflects the degree of correlation
between signature and data set. Positive signature scores
indicate positive correlation, scores around zero indicate no
correlation and negative scores indicate anti-correlation be-
tween signature and data (Fig 2C).

FIG. 2. PTMsigDB signature sets and scoring scheme. Signatures sets in PTMsigDB are divided into three categories (perturbations,
kinases and signatures of molecular pathways) derived from four major sources (PhosphoSitePlus, NetPath, WikiPathways, LINCS). A,
Perturbation signatures from PhosphoSitePlus were assembled from a total of 2483 publications. To reduce experimental noise we require that
each site be consistently reported by at least two independent studies (consensus signatures). Experimental noise can be introduced by use
of different cell systems (e.g. in vivo versus in vitro), different protocols (e.g. dosage of perturbation) or different technologies (e.g.
low-throughput versus high throughput). B, Bar chart depicting the distribution of unidirectional (all sites of a signature are annotated with
decreased OR increased abundance levels) and bidirectional (sites of a signature include both decreased AND increased abundance levels)
signature sets. C, Modified scoring scheme of the single sample Gene Set Enrichment Analysis (ssGSEA) algorithm enables scoring of
directional signature sets. For each direction a running-sum statistic (y axis) is calculated by walking down the ranked list of PTM sites in the
data set (x axis). An enrichment score (ES) reflected by the area under the resulting curve is calculated for each direction (ESu for “up” sites
and ESd for “down” sites) separately and combined by subtracting ESd from ESu. D, Heatmap depicting the overlap between phosphorylation
sites commonly affected by kinase-inhibitors. The similarity matrix is based on the number of shared phosphosites between signatures. The
upper and lower triangular matrices are normalized by the total number of sites of signatures listed in rows and columns, respectively.

TABLE IV
Categories of signatures in PTMsigDB Numbers refer to human signatures

Category Source Annotation type No. of signatures No. of sites No. of regulatory sites

Perturbation PSP Manual and Semi-automated 112 223 977 756 (77.4%)
Perturbation LINCS Fully automated 111 72 10 (13.9%)
Pathway NetPath Manual curation 35 48 1082 498 (46.0%)
Pathway WikiPathways Manual curation 13 145 141 (97.2%)
Kinase PSP Manual and Semi-automated 220 7104 4,475 (63.0%)
Total 491 8029 4,676 (58.2%)
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PTMsigDB includes phosphosite signatures of 45 kinase
inhibitors (KI), a class of small molecules that revolutionized
cancer therapies by enabling targeted inhibition of pathways
dysregulated in specific cancers. Whereas most KI signature
sets were assembled automatically from the LINCS database
(see Methods), fifteen of these KI signatures sets were as-
sembled semi-automatically from a set of manually curated
phosphorylation sites derived from PSP. These signature sets
comprised inhibitors targeting ABL, EGFR, mTOR, cMET,
MEK, PI3K, ROCK and SRC kinases and were assembled
from 131 phosphorylation sites with only moderate overlap
(Fig 2D). To group KIs according to their phosphosite signa-
tures we constructed a distance matrix based on the number
of phosphosites shared between KI signatures which we
subsequently subjected to hierarchical clustering. Interest-
ingly, KIs targeting PI3K (LY294002, wortmannin) and MEK
(PD98059, U0126) clearly cluster together whereas signatures
of KIs targeting other kinases such as EGFR and mTOR were
not characterized by high overlap in phosphosites pointing to
different downstream effects introduced upon kinase inhibi-
tion. Although the vast majority of phosphosites from KI sig-
natures were annotated with decreased abundance levels
upon KI treatment, 17 out of 131 sites were annotated with
increased abundance levels including Y861 on PTK2 (erlo-
tinib) andY977 on PLCG1 (imatinib). A list of all KI signature
sets, including fully-automatically derived signatures, can be
found in supplemental Table S3.

Modified Amino Acid Residues in PTMsigDB Are Robustly
Represented Across Databases and Organisms—Gene-cen-
tric pathway databases such as KEGG, Reactome and
MSigDB use gene symbols as standardized primary identifiers
(32). However, there is no standardized nomenclature for
protein accession numbers. Protein database resources such
as UniProt (33), NCBI RefSeq (34) or Ensemble (35) have
distinct accession number schemes, which makes it difficult
to compare proteins across databases. Moreover, underlying

gene models of a given protein, such as translation start sites
(TSS) or exon-intron boundaries, can vary across databases
and between different database releases. This directly affects
the representation of modified protein residues in terms of
protein accession and residue number. Approaches to cir-
cumvent this issue include the use of amino acids flanking the
modified residue as a unique identifier. However, these flank-
ing residues can vary between isoforms or can be altered by
non-synonymous mutations when searching customized se-
quence databases (36). PSP has developed a robust classi-
fication scheme providing unique identifiers for modification
sites (site group ID) combining homologous and orthologous
sites within proteoforms and between species (13). Every site
in PTMsigDB was either directly derived from, or first mapped
to PSP, thereby ensuring an unambiguous identifier across
proteoforms and species for every PTM site. To ensure a high
degree of compatibility to phosphorylation data sets gener-
ated by different software packages and searched against
different protein sequence databases, PTMsigDB represents
signatures using three different identifiers for phosphorylation
sites: i) PSP site group ID; ii) UniProt; iii) Flanking sequence
(Table I). Although the PSP site group ID provides an unam-
biguous representation of PTM sites within protein families
and across species (13), using this type of identifier restricts
the analysis to PTM sites present in PSP. We generally rec-
ommend using the flanking sequence as site identifier, be-
cause these are more invariant to updates made to protein
sequence databases. The database format was kept generic
and can be readily used to incorporate signatures of other
PTMs beyond phosphorylation.

PTM-SEA Captured Underlying Signaling Cascades in EGF-
and Nocodazole-treated HeLa Cells—To assess our approach
in the context of known biology we applied PTM-SEA to a
recent high quality study of the well-characterized phospho-
proteome of HeLa cells (18). In this study the authors evalu-
ated the phosphoproteome dynamics of HeLa S3 cells stim-

TABLE V
Most essential phosphosites in PTMsigDB. Site annotations were derived from UniProt

Site Gene
symbol Protein name Site annotations (UniProt) No.

signatures

P27361;Y204-p
P27361;T202-p

MAPK3 Mitogen-activated protein kinase 3 Dually phosphorylated on Thr-202 and Tyr-204,
which activates the enzyme.

93
90

P31749;S473-p AKT1 RAC-alpha serine/threonine-protein
kinase

In kinase domain, needed to activate enzyme. 82

P28482;Y187-p
P28482;T185-p

MAPK1 Mitogen-activated protein kinase 1 Dually phosphorylated on Thr-185 and Tyr-187,
which activates the enzyme.

85
79

P62753;S235-p RPS6 40S ribosomal protein S6 Phosphorylated at Ser-235 and Ser-236 by
RPS6KA1 and RPS6KA3; phosphorylation at these
sites facilitates the assembly of the
preinitiation complex

55

P49841;S9-p GSK3B Glycogen synthase kinase-3 beta Inactivated by phosphorylation at Ser-9 (Probable). 54
Q16539;Y182-p
Q16539;T180-p

MAPK14 Mitogen-activated protein kinase 14 Dually phosphorylated on Thr-180 and Tyr-182
by the MAP2Ks MAP2K3/MKK3, MAP2K4/MKK4 and
MAP2K6/MKK6 in response to inflammatory cytokines, environmental
stress or growth factors, which activates
the enzyme.

49
46

Q15149;T4030-p PLEC Plectin P100 probe 47
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ulated with epidermal growth factor (EGF) and arrested in
mitosis by nocodazole treatment. Because signatures of both
EGF and nocodazole perturbation are part of PTMsigDB, this
study provided a useful benchmark data set to assess the
utility of our approach. The authors report 	50K phosphory-
lation sites, of which 	36K sites could be confidently local-
ized to a specific residue and so were used in subsequent
analysis. We first converted the label-free intensity values into
ratios to the control experiment (DMSO) and subsequently
applied PTM-SEA to project phosphosites to signature sets.
PTM-SEA showed strongest enrichment of the EGF and no-
codazole signatures in PTMsigDB in replicate samples of
corresponding treatments (FDR � 1%) (Fig 3A). In addition,
we detected cell cycle-related signatures in the nocodazole
treated samples, which was used to mitotically arrest cells.
For instance, signatures of cell cycle kinases CDK1, CDK2
and Aurora B were enriched. Among depleted signatures

were kinases involved in DNA damage response (ATR, ATM)
and the EGFR pathway.

Samples treated with EGF showed enrichment of signa-
tures of other growth factors (fibroblast growth factor, FGF1;
hepatocyte growth factor, HGF), signatures of different cyto-
kines (tumor necrosis factor, TNF; erythropoietin; EPO, and
interleukin IL1B, IL2 IL33 pathway, IL11 pathway), signatures
of signaling pathways (e.g. MAPK signaling pathway; thymic
stromal lymphopoietin pathway, TSLP; AGE/RAGE pathway)
and kinases acting downstream of these pathways (ERK2,
p90RSK). No consistent enrichment or depletion of signatures
was observed in the DMSO-treated control samples. Focus-
ing solely on kinase enrichment scores, we compared PTM-
SEA to KSEA (KSEA App) (7, 9) which demonstrated good
agreement between both scoring approaches (supplemental
Fig. S3). Taken together, these results demonstrated that
PTM-SEA captured underlying signaling cascades stimulated

FIG. 3. Phosphoproteome signatures of EGF and nocodazole treatment in HeLa cells. We applied PTM-SEA to a phosphoproteome data
set from the literature. Sharma et al. (18) studied phosphoproteome dynamics of EGF treatment in HeLa S3 cells. To mitotically arrest the cells,
the antineoplastic agent nocodazole was used. Because PTMsigDB contained signatures for both perturbations, this data set was used as a
benchmark to evaluate PTM-SEA. A, Heatmap depicting normalized enrichment scores (NES) of signatures (rows) in PTMsigDB that were
consistently enriched or depleted at FDR � 0.01 in replicate measurements of EGF/nocodazole treatments (marked by asterisks). Hierarchical
clustering of enrichment scores separated samples (columns) by experimental condition (EGF, nocodazole and control). Enrichment scores of
nocodazole and EGF signature showed highest magnitude in the respective experiments and are highlighted in red. B, Silhouette analysis
comparing hierarchical clustering of site-centric (left panel) and gene-centric (right panel) signature enrichment scores into three clusters. The
bar chart depicts silhouette scores (x axis) of each sample (y axis) colored according to the assigned cluster. Average silhouette scores for each
cluster are depicted at the right side of the bar charts. C, Signature enrichment scores of the nocodazole perturbation signature calculated
using site-centric (left panel) and gene-centric (right panel) approach. Numbers indicate the median NES and FDR in replicate measurements
of respective perturbations (x axis).
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by EGF or nocodazole treatment, beyond kinase activity
signatures.

PTM-SEA Increased Enrichment of Expected Signaling Sig-
natures—We then used the same data set to compare the
performance of PTM-SEA’s site-centric approach (in which
individual sites were considered) to a gene-centric pathway
analysis (in which multiple sites on the same gene were com-
bined), and assessed how well each approach captured the
underlying signaling events upon EGF and nocodazole treat-
ment. To enable a direct comparison of both approaches we
generated a gene-centric version of PTMsigDB in which sig-
natures were represented as non-redundant sets of gene
symbols without annotated regulatory direction, mimicking
conventional gene-centric pathway databases like MSigDB.
Additionally, in the HeLa data set described above we col-
lapsed abundance of multiple sites mapping to the same gene
symbol to their average DMSO normalized abundance. The
resulting gene-centric expression matrix was projected to
gene set enrichment scores by application of ssGSEA using
the same parameters as described above. We used hierarchi-
cal clustering (supplemental Fig. S4A, S4B) and subsequent
silhouette analysis to assess how well site-centric phospho
signatures and gene-centric pathways captured signaling
events introduced upon stimulation with EGF and cell cycle
arrest by nocodazole. Given a distance matrix D and number
of clusters K, silhouette coefficients represent a measure of
intra-cluster similarity and inter-cluster distance for each clus-
tered item i, and range between �1 and 1. A value close to 1
indicates similarity of item i with all other items in the same
cluster and low similarity to items assigned to neighboring
clusters, whereas negative values indicate closer similarity of
item i to items in neighboring clusters. Silhouette scores were
calculated for each sample (replicate measurements of EGF,
nocodazole and DMSO treatments) using K � 3 as the cluster
number to match the number of different treatments. Impor-
tantly, silhouette scores from site-centric clustering were con-
sistently higher than those from gene-centric analysis (Fig 3B).
In addition, hierarchical clustering of gene-centric enrichment
scores into three cluster did not consistently group samples
of the same treatments together (Fig 3B, supplemental Fig.
S4B), whereas the site-centric analysis clearly separated dif-
ferent treatments and clustered together samples of EGF,
nocodazole and control treatment (supplemental Fig. S4A).
Although enrichment scores of the nocodazole signature were
specifically enriched in the nocodazole-treated samples for
both approaches, the extent of enrichment was more signifi-
cant in the site-centric approach (FDR � 0.001) compared
with the gene-centric approach (FDR � 0.08) (Fig 3C). Similar
results were observed for the EGF signature (supplemental
Fig. S4C, S4D) demonstrating better representation of the
signature using individual phospho sites rather than collapsed
gene-centric measures.

Site-specific Approach Outperforms Gene-specific Scor-
ing—We next wanted to assess whether scoring each site-

localized modified amino acid residue in a protein provides
any benefit over simply scoring multiple phosphorylation
events on single proteins (non-site-specific). The latter ap-
proach would enable a pseudo site-centric analysis of PTM-
data sets using gene-centric databases and ssGSEA for
which a substantial number of well-curated, gene-centric
pathways provided by MSigDB, KEGG, Biocarta or Reactome
are available. Instead of matching exact residue positions
between data and database, gene symbols of multiply phos-
phorylated proteins were represented multiple times in calcu-
lation of enrichment scores corresponding to the number of
observed phosphorylation events. The resulting bias toward
higher weights of longer proteins that carry more phosphoryl-
ation sites was intrinsically addressed by calculation of nor-
malized enrichment scores (NES). Each phosphosite was rep-
resented by the gene symbol mapping to the corresponding
protein, which enabled the use of gene-centric pathway da-
tabases. Because of the resulting redundancy in repeated
gene symbols we refer to this approach as gene-centric-
redundant. To enable the scoring of redundant lists of gene
symbols, we extended the ssGSEA algorithm accordingly and
applied gene-centric-redundant ssGSEA to the EGF/nocoda-
zole treated HeLa data set described above. To enable a
direct comparison to the site-centric and gene-centric ap-
proaches, we used the gene-centric version of PTMsigDB and
performed the same silhouette analysis based on hierarchical
clustering as described above (supplemental Fig. S5). Like the
gene-centric analysis, hierarchical clustering of gene-centric-
redundant enrichment scores did not clearly separate the
different treatments and resulted in a mixed cluster containing
DMSO- and nocodazole-treated samples (supplemental Fig.
S5A). As a result, silhouette scores were consistently lower
compared with site-centric analysis (supplemental Fig. S5B)
even for the correctly assigned EGF cluster pointing to a less
stable clustering.

Focusing on nocodazole and EGF signatures alone, which
were used as positive controls (see previous section), the
gene-centric-redundant approach showed better enrichment
of the EGF signature (FDR: 0.001) (supplemental Fig. S5C)
and nocodazole signature (FDR: 0.001) (supplemental Fig.
S5D) compared with the gene-centric EGF (FDR: 0.013) (Fig
3C) and nocodazole signature (FDR: 0.083) (supplemental Fig.
S4D). Like in the site-centric analysis, the gene-centric-redun-
dant approach detected an enrichment of the EGF and no-
codazole signatures at an FDR of 0.001 in the corresponding
treatments, therefore achieving comparable performance.

In summary, results obtained by the gene-centric-redun-
dant approach outperformed the gene-centric approach but
did not result in a stable clustering of samples according to
treatments compared with site-centric enrichment analysis.
We therefore conclude that scoring the exact residue number
to derive signature enrichment scores best represented the
underlying signaling events introduced by EGF and nocoda-
zole stimulation. Because availability of site-specific signature
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sets in PTMsigDB is still limited compared with gene centric
database such as MSigDB we note that the gene-centric-
redundant approach might be employed to score gene-
centric signatures, in particular for modifications other than
phosphorylation. A systematic assessment of this approach
however is beyond the scope of this manuscript.

A table of all scored signatures derived from the site-cen-
tric, gene-centric and gene-centric-redundant approach can
be found in supplemental Table S4.

PTM-SEA Facilitates Detection of Differential Kinase Activity
Signatures of Cell Cycle Inhibitors—We applied PTM-SEA to
perturbed phosphoproteomes of three human cancer cell
lines representing breast cancer (MCF7), prostate cancer
(PC3) and leukemia (HL60). Cell lines were treated with 23
different chemically active compounds as part of the Library
of Integrated Network-Based Cellular Signatures (LINCS).
These data were collected to derive a reduced representation

of phosphorylation signatures (19) and were therefore ac-
quired in single-shot LC-MS/MS mode without sample frac-
tionation, resulting in relatively shallow phosphoproteome
coverage (1.3K p-sites per LC-MS/MS run). Despite the re-
sulting bias toward detection of highly abundant phosphory-
lated peptides, several signatures present in PTMsigDB were
readily observed, demonstrating the feasibility of our ap-
proach in data sets comprising �1K phosphosites (Fig. 4,
supplemental Table S5). To avoid potential contamination of
the test data set (single shot data used to design the P100
assay) with training data (PRM/DIA data from application of
the P100 assay), signatures derived from the P100 assay were
removed from PTMsigDB prior to this analysis. The strongest
signatures consistently observed across all three cell lines
were detected in perturbation experiments involving cell cycle
inhibitors and were predominantly comprised of cyclin ki-
nases (CDK1, CDK2). The large number of substrate sites

FIG. 4. MoA-specific kinase signatures of cell cycle inhibitors. Heatmaps depicting perturbation and kinase signature enrichment scores
of three human cancer cell lines (MCF7, HL60, PC3) treated with four different cell cycle inhibitors measured in duplicates. Asterisks indicate
signature scores at FDR � 0.05. Cartoons above the heatmap graphically illustrate the increasing levels (blue to red) of CDK1/2 substrate
phosphorylations. The density plot illustrates cyclin A/B/E concentrations across cell cycle stages that correlate with CDK1/2 activity levels.
Black T-arrows indicate stage of cell cycle the corresponding inhibitor is active. Signatures of CDK1 and CDK2 activity strongly correlate with
the mode of action of each compound.
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known to be phosphorylated by CDK1 (n � 487) and CDK2
(n � 341) facilitated the scoring of these signatures in rela-
tively shallow phosphoproteome data sets. Kinase activity of
CDKs is largely driven by binding to small regulatory proteins
called cyclins to form a CDK-cyclin complex representing the
active kinase. Different CDKs bind to different cyclins whose
concentration varies across the cell cycle. Depending on the
cell cycle phase in which the inhibitor is active, PTM-SEA
detected distinct signatures of CDK activity that clearly cor-
related with concentration of Cyclin A and B (Fig. 4). For
instance, treatment with Irinotecan, which inhibits DNA repli-
cation specifically during S phase when the concentration of
Cyclin A is low, led to negative enrichment of the CDK1 and
CDK2 signatures, indicating inhibition. Positive enrichment of
the CDK1 signature was detected after treatment with Pacli-
taxel, which disrupts microtubules resulting in a cell cycle
arrest in prometaphase during mitosis. During this phase the
concentration of cyclin B has already increased, thereby,
leading to high activity of CDK1. We also observed increased
activity of CDK2, which regulates events in prophase right
before prometaphase. Other inhibitors resulted in decreased
CDK activity either by inhibiting CDK2 directly (GW8510) or by
inhibiting DNA synthesis (anisomycin). These results demon-
strated the ability of our approach to detect and quantify
signatures of kinase activities in perturbed cell systems that
clearly correlated with the mode of action (MoA) of the re-
spective compounds.

Signatures of PI3Ka Inhibition in Human Breast Cancer Cells
Readily Detected by PTM-SEA—As part of the cancer cell line
encyclopedia (CCLE) project (37), which aims to provide ge-
netic and pharmacological characterization of 	1K human
cancer cell lines, our laboratory has started to generate deep
phosphoproteomes of selected cell lines treated with clinically
relevant kinase inhibitors targeting dysregulated pathways in
the respective cancers. Here we applied PTM-SEA to the
PI3K-inhibited (PI3Ki) phosphoproteome of T47D human
breast cancer cells to characterize signaling events effected
upon kinase inhibition. To that end, T47D cells were treated
with the PI3Ka inhibitor BYL719 for 6 h and 24 h, using DMSO
as control treatment in both time points. Experiments were
performed in triplicate employing chemical peptide labeling
(TMT-10) for sample multiplexing. Off-line basic pH reversed
phase fractionation of phospho-enriched peptides prior to
analysis by liquid chromatography coupled to high perform-
ance tandem mass spectrometry (1, 38) resulted in the iden-
tification of 38,587 phosphorylation events in a single TMT-10
plex. 23,937 phosphorylation sites could be unambiguously
assigned to a specific amino acid residue and were used in
subsequent analyses (supplemental Table S6). Notably, phos-
phosite ratios normalized for measured protein expression
levels showed high correlation to unnormalized phosphosite
ratios demonstrating negligible effects of protein expression
changes on phosphosite abundances (supplemental Fig. S6).

We applied PTM-SEA to phosphosite ratios (BYL719/
DMSO treatment) to calculate enrichment scores for signature
sets in PTMsigDB. Hierarchical clustering of signature scores
calculated in individual experiments closely grouped triplicate
measurements of both time point treatments together dem-
onstrating high reproducibility of signature scores within rep-
licate measurements of each time point (supplemental Fig.
S7). To obtain a single enrichment score for each time point
while appropriately accounting for biological variance across
replicate measurements, we applied a one sample moderated
t test to replicates of each time point, and used the signed,
log-transformed p values as input to PTM-SEA (see Methods
for details). In total we detected 52 significant signatures
(FDR � 0.05) after 6 h and 56 signatures after 24 h of PI3K
inhibition (Fig. 5). Although a BYL719 signature was not rep-
resented in PTMsigDB we detected signatures of several PI3K
inhibitors that were positively enriched upon drug treatment.
In the 6 h time point wortmannin, a nonspecific covalent
inhibitor of PI3K, and IPI145 (duvelisib), a PI3K delta and
gamma inhibitor, were significantly enriched (Fig 5A). In the
24 h time point two additional signatures of PI3K inhibitors,
dactolisib and LY294002, were significantly enriched (Fig 5B)
because of longer inhibition of PI3K. These signatures were
semi-automatically (wortmannin, LY294002) and fully-auto-
matically (IPI145, dactolisib) curated, validating the parame-
ters used in the automatic curation pipelines to extract per-
turbation signatures from the LINCS and PSP databases (see
Methods). We further observed signatures of MEK and mTOR
inhibitors downstream of PI3K signaling positively enriched in
both time points. Besides positively enriched KI signatures we
observed an enrichment of the protein kinase CK2 signature
(CK2A1), after 24 h treatment, pointing to an elevated activity
of the kinase which was found to be dysregulated in many
cancers (39, 40) (supplemental Fig. S8A).

Among signatures that showed negative enrichment upon
PI3K inhibition were AKT1, MEK1, mTOR, two isoforms of Raf
kinase (ARAF, BRAF) and MAPK/ERK pathways downstream
of PI3K, and associated kinases such as ERK1, ERK2, JNK1,
p90RSK and p70S6K. Further downstream of PI3K we ob-
served decreased activity of CDK (CDK1, CDK2, CDK4,
CDK5, CDK6) and aurora (AurA, AurB) kinases which are
essential regulators of the cell cycle, thereby highlighting the
effect of PI3K inhibition on the inactivation of the cell prolif-
eration machinery. These cell cycle-related signatures were
more pronounced in the 24h time point (Fig 5B). We also
observed decreased activity of the Leptin-induced pathway
(supplemental Fig. S8B) which has been reported as a poten-
tial prognostic marker for breast cancer (41). PTMsigDB con-
tains a PI3K-AKT pathway signature obtained from WikiPath-
ways that we expected to observe with negative enrichment
levels upon BYL7109 treatment. We detected the lowest en-
richment of this pathway in the 24 h time point and the
signature score did not pass statistical significance (FDR �

0.13, supplemental Table S7). However, further inspection of
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FIG. 5. Signatures of PI3K inhibition in breast cancer cells. T47D cells were treated with the PI3Ka inhibitor BYL719 and DMSO as control
for 6h and 24h and deep phosphoproteomes were acquired resulting in �24K phosphosites localized to a specific Ser/Thr/Tyr residue. A,
Volcano plot depicting enrichment of phosphoproteome signatures in the 6h time point. The x axis represents the normalized enrichment score
(NES) between DMSO (left side) and drug treatment (right side). The size of the dots scale with the relative number of scored phosphorylation
sites in a signature. The gray area contains signatures that did not significantly change upon drug treatment (permutation-based FDR � 5%).
PTM signature sets of inhibitors are annotated with an “i” after the drug target. B, Volcano plot depicting phospho signatures after treatment
for 24 h. C, Schematic representation of the PI3K-AKT-mTOR and Ras-Raf-MEK-ERK pathways. Circles indicate kinases, boxes indicate
specific kinase inhibitors. Highlighted in colors are significant phospho signatures shown in the volcano plots in A and B. The pathway
representation is based on Fig. 1 in (44).
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the phosphorylation sites in the PI3K-AKT pathway signature
demonstrated a clear trend toward the inactivation of the
pathway (supplemental Fig. S8C). A complete list of detected
signature sets, together with signature enrichment scores and
FDR-corrected p values can be found in (supplemental Table
S7).

In summary, these findings were concordant with known
cancer biology and covered a substantial part of the canonical
PI3K-AKT-mTOR and Ras-Raf-MEK-ERK pathways that are
affected by PI3K inhibition (Fig 5C). Our results demonstrated
the potential of site-specific PTM signature enrichment anal-
ysis in interpreting perturbation studies that attempt to deci-
pher the molecular mechanism of clinically relevant kinase
inhibitors.

DISCUSSION

We describe an approach to perform phosphosite-specific
signature analysis (PTM-SEA) based on a curated database
of phosphosite-specific signatures (PTMsigDB). Curation and
maintenance of such a database requires knowledge from
domain experts, which in this study are represented by cura-
tors from PhosphoSitePlus, NetPath and WikiPathways. We
consider PTMsigDB to be the foundation of a more compre-
hensive resource for PTM site-specific signatures of path-
ways and perturbations, rather than a mature and completely
developed database. We aim to further extend PTMsigDB
when more curated, site-specific molecular pathways are
made available by repositories such as PSP. Moreover, we
envision that this curation process will become a community
effort in which researchers studying PTMs in particular path-
ways will contribute to curating these pathways at the level of
PTM sites. Resources like WikiPathways that are maintained
by the scientific community recently started to include PTM
site-specific pathway annotations and provide a promising
source for future expansion of PTMsigDB.

We have demonstrated the potential of PTMsigDB in ana-
lyzing MS-based phosphoproteomic data sets derived from
perturbation studies involving EGF, cell cycle inhibitors and a
specific PI3K inhibitor. The relatively small total number of
signature sets (�490) and unequal representation of pertur-
bations, kinases and signaling pathways still limits the true
potential of a PTM site-centric database. Our approach per-
forms best when applied to perturbation data sets in which we
expect a clear molecular phenotype. Subtle abundance dif-
ferences in unperturbed baseline phosphoproteomes are
much more challenging to detect with the current selection of
available signature sets in PTMsigDB, especially because of
the underrepresentation of molecular signaling pathways. Cu-
ration of the latter requires domain experts as well as the
availability of detailed metadata accurately describing the
biochemical experiments that were conducted to study sig-
naling events in a pathway. However, these metadata (such as
dosage of stimulant, cell system and time points of treatment)
are often buried in respective subsections of manuscripts

rather than stored together with the data itself, making cura-
tion of pathways prohibitively and unnecessarily difficult.

About 40% of signatures in PTMsigDB were derived from
perturbation studies in which pathways were specifically ac-
tivated (e.g. via growth factors) or inhibited (e.g. via kinase
inhibitors). The cellular responses upon perturbation treat-
ment are represented in perturbation signatures in PTMsigDB.
Many of the respective phosphosites are of low stoichiometry
and even after enrichment for modified peptides are of too low
abundance to be sequenced by single-shot LC-MS/MS anal-
ysis. Although kinase-substrate signatures in PTMsigDB con-
sist of 46 sites on average, this number is substantially lower
for perturbation signatures (16 sites on average). Therefore,
deeper phosphoproteome coverage is required to detect sig-
natures beyond kinase activity, which typically involves ex-
tensive sample fractionation.

PTMsigDB contains signature sets for 45 kinase inhibitors
(KI) and, to our knowledge, presents the first set of KI signa-
tures curated at the level of phosphorylation sites. Although it
is well known that KIs often target more than one protein, a
systematic characterization of clinically relevant KIs and their
targets was released only recently (42). The availability of
molecular signatures of KIs curated at the PTM-site level
enables further systematic screening for potential off-target
effects of certain KIs. Though the number of KI signatures is
still relatively small in the current version of PTMsigDB, this
category of signatures is expected to be especially valuable
for the scientific community.

Phosphosite-specific analysis of kinase substrate relation-
ships is not an entirely new concept and it has been success-
fully employed by several groups (6, 7, 10–12). Instead of
using the kinase expression as proxy for its activity, the abun-
dance profiles of phosphorylation sites that are known sub-
strates of the respective kinase are monitored. In this study
we detected differential signatures of cyclin-dependent ki-
nase (CDK) 1 and 2 in three human cancer cell lines upon
treatment with different cell cycle inhibitors. Most importantly,
treatment with paclitaxel resulted in increased activity of
CDK1/2 whereas other inhibitors showed decreased kinase
activity. Paclitaxel is an antineoplastic chemotherapy medica-
tion that targets tubulin by stabilizing the microtubule polymer
preventing it from disassembly. The resulting inhibition of the
mitotic spindle function blocks the progression of mitosis in
which the concentration of cyclin A is high. Cyclin A specifi-
cally binds to CDK1, and the resulting complex is in an active
state phosphorylating a multitude of different substrates that
were identified by PTM-SEA.

Application of PTM-SEA to the deeply fractionated phos-
phoproteome of PI3K inhibited human breast cancer cells
detected signatures that covered a substantial part of the
canonical PI3K-AKT-mTOR and Ras-Raf-MEK-ERK pathways
inhibitory signatures of kinases downstream (MEK, AKT, ERK)
of PI3K. We also detected increased activity of the catalytic
subunit � of casein kinase 2 (CK2a), a ubiquitous protein
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kinase known to be dysregulated in multiple cancers (39).
Attenuation of PI3K/Akt signaling upon selective inhibition of
CK has been reported previously (43). Our detection of higher
activity levels of this kinase after inhibition of the PI3K path-
way is an interesting observation for which the rationale
remain unclear. Importantly, signatures of several PI3K inhib-
itors were enriched upon treatment and demonstrated de-
creased phosphorylation levels of sites that are part of these
signatures, thereby supporting the selection of phosphosites
for these inhibitors in PTMsigDB. Not surprisingly, the strong-
est effects of PI3K inhibition were observed in the cell prolif-
eration machinery, exemplified by significantly reduced activ-
ity of mitotic kinases (CDKs and Aurora kinases).

With ongoing curation efforts to create PTM site-specific
signatures spanning more molecular signaling pathways in
PTMsigDB, we expect to achieve a more fine-grained view on
signaling events disrupted by targeted inhibition of cancer-
relevant pathways. We present here a uniform method and
guidelines to the community to create these PTM signatures.
In cases where no site-specific information is available yet,
our gene-centric-redundant ssGSEA approach provides an
alternative to standard gene centric approaches.
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A., Mélius, J., Waagmeester, A., Sinha, S. R., Miller, R., Coort, S. L.,
Cirillo, E., Smeets, B., Evelo, C. T., and Pico, A. R. (2016) WikiPathways:
capturing the full diversity of pathway knowledge. Nucleic Acids Res. 44,
D488–D494

16. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L.,
Gillette, M. a., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S.,
and Mesirov, J. P. (2005) Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles. Proc.
Natl. Acad. Sci. U.S.A. 102, 15545–15550

17. Barbie, D. A., Tamayo, P., Boehm, J. S., Kim, S. Y., Susan, E., Dunn, I. F.,
Schinzel, A. C., Sandy, P., Meylan, E., Fröhling, S., Chan, E. M., Sos,
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Korejwa, A., Jané-Valbuena, J., Mapa, F. A., Thibault, J., Bric-Furlong, E.,
Raman, P., Shipway, A., Engels, I. H., Cheng, J., Yu, G. K., Yu, J., Aspesi,
P., de Silva, M., Jagtap, K., Jones, M. D., Wang, L., Hatton, C., Pales-
candolo, E., Gupta, S., Mahan, S., Sougnez, C., Onofrio, R. C., Liefeld, T.,
MacConaill, L., Winckler, W., Reich, M., Li, N., Mesirov, J. P., Gabriel,
S. B., Getz, G., Ardlie, K., Chan, V., Myer, V. E., Weber, B. L., Porter, J.,
Warmuth, M., Finan, P., Harris, J. L., Meyerson, M., Golub, T. R., Mor-
rissey, M. P., Sellers, W. R., Schlegel, R., and Garraway, L. A. (2012) The

Cancer Cell Line Encyclopedia enables predictive modelling of antican-
cer drug sensitivity. Nature 483, 603–607

38. Mundt, F., Rajput, S., Li, S., Ruggles, K. V., Mooradian, A. D., Mertins, P.,
Gillette, M. A., Krug, K., Guo, Z., Hoog, J., Erdmann-Gilmore, P.,
Primeau, T., Huang, S., Edwards, D. P., Wang, X., Wang, X., Kawaler, E.,
Mani, D. R., Clauser, K. R., Gao, F., Luo, J., Davies, S. R., Johnson, G. L.,
Huang, K.-L., Yoon, C. J., Ding, L., Fenyö, D., Ellis, M. J., Townsend,
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