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Abstract

Far-field optical imaging techniques allow the determination of the position of point-like emitters 

and scatterers [1–3]. Although the optical wavelength sets a fundamental limit to the image 

resolution of unknown objects, the position of an individual emitter can in principle be estimated 

from the image with arbitrary precision. This is used for example in the determination of stars 

position [4] or in optical super-resolution microscopy [5]. Furthermore, precise position 

determination is an experimental prerequisite for the manipulation and measurement of individual 

quantum systems, such as atoms, ions, and solid-state-based quantum emitters [6–8]. Here we 

demonstrate that spin-orbit coupling of light in the emission of elliptically polarized emitters can 

lead to systematic, wavelength-scale errors in the estimation of the emitters position. Imaging a 

single trapped atom as well as a single sub-wavelength-diameter gold nanoparticle, we 
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demonstrate a shift between the emitters measured and actual positions which is comparable to the 

optical wavelength. For certain settings, the expected shift can become arbitrarily large. Beyond 

optical imaging techniques, our findings could be relevant for the localization of objects using any 

type of wave that carries orbital angular momentum relative to the emitters position with a 

component orthogonal to the direction of observation.

A diffraction-limited imaging system with aperture diameter D has an angular resolution 

λ/D where λ is the wavelength of the imaging light. Objects with smaller angular diameter 

cannot be resolved and produce an image given by the point-spread function (PSF) of the 

optical system. In spite of this limit, fitting the PSF to the image allows one to estimate its 

position with a precision limited only by the image’s signal to noise ratio [9]. The central 

assumption of this method is that the emitters’ positions in the object plane correspond to the 

centroid of the PSF measured in the image plane, provided that the optical system is 

focussed.

It is known that the centroid of the image can be affected by imperfect focussing when the 

emission pattern of the object is anisotropic, as for a linear dipole. Depending on the 

orientation of the latter, this may lead to lateral shifts of a few tens of nanometres, i.e., much 

smaller than the diffraction limit [10, 11]. The resulting localization error can be reduced 

using polarization analysis [12–14] or dedicated PSF fitting [10, 15–17], and vanishes for a 

focused image. Localization errors of comparable magnitude can occur when the emission 

pattern is distorted by near-field coupling to a nanoantenna [18, 19].

Here we show that methods for position estimation of emitters can be subject to large 

fundamental systematic errors when imaging elliptically polarized emitters as a consequence 

of spin-orbit coupling in the emitted light field. These errors are present even for ideal, i.e., 
diffraction-limited aberration-free far-field imaging systems. Imaging a single trapped 

atomic ion as well as a single gold nanoparticle that emits light with different elliptical 

polarizations, we demonstrate a wavelength-scale shift between the measured and actual 

positions of the emitter. For a wide range of polarizations, this shift is nearly independent of 

the numerical aperture. However, it can become arbitrarily large for certain polarizations and 

vanishing numerical aperture. These findings reveal that, even for small numerical apertures, 

the paraxial approximation is fundamentally inadequate in the context of the centroid 

estimation method.

In order to understand the physical origin of the image shift, let us consider a circularly 

polarized dipole emitter rotating in the x–y plane, at the centre 𝒪 of the coordinate system. 

In this case, the total angular momentum carried by an emitted photon with respect to 𝒪 is 

±ħez, where ± corresponds to right-handed (σ+-) or left-handed (σ−-) polarization of the 

dipole relative to the z axis, respectively. This total angular momentum can be decomposed 

into spin and orbital angular momentum, represented by the operators Sz and Lz,

respectively. The spin and angular momentum components of the dipole field are coupled 

and their expectation values for a σ±-polarized dipole are
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Sz = ± ħ 2 cos2θ
1 + cos 2θ

, Lz = ± ħ sin 2θ
1 + cos 2θ

, (1)

where θ is the angle between the z axis and the direction of observation [20, 21]. In the x–y 
plane (θ = 90°), the photons carry exclusively orbital angular momentum with expectation 

value ±ħ while the spin angular momentum vanishes, corresponding to linear polarization. 

This is an example of spin-orbit coupling of light [22] which gives rise to intriguing 

phenomena such as spin-Hall effect of light [23, 24] and chiral interactions between light 

and matter [25]. For the circularly polarized dipole field, orbital angular momentum 

manifests as spiral wavefronts in the x–y plane, see Methods. Hence, the local wavevectors 

are tilted with respect to the radial direction (see Fig. 1) and the linear momentum per 

photon has an azimuthal component with expectation value pϕ r = Lz /r = ± ħ/r . Due to 

this tilt, the photons seem to originate from a position that is offset from the emitter [21, 26], 

a fact already predicted by Charles G. Darwin more than 80 years ago [27].

To quantify this shift for a typical far-field imaging system, we consider a circularly 

polarized dipole emitter located at the front focal point of a lens with focal length f, centred 

on the x axis. The lens collimates the light and changes its wavevector distribution. 

However, the mean wavevector 〈k〉 averaged over the aperture is conserved and the 

collimated light propagates at an angle

αtilt =
pϕ A
ħk ≃ ± λ

2π f (2)

with respect to the optical axis. Here, 〈·〉A denotes the expectation value per photon within 

the aperture A of the lens. The centroid of the intensity distribution at a screen placed at a 

distance d behind the lens is shifted in the y direction by 〈y〉 = αtiltd (Fig. 1) and the 

apparent y position of the dipole in the object plane is shifted by

Δy = − f
d y = ∓ λ

2π . (3)

This expression holds for any imaging system, replacing f/d by the magnification factor of 

the system. To summarize, the light emitted by a circularly polarized σ± dipole carries 

orbital angular momentum due to the optical spin-orbit interaction. When imaging in the 

plane of polarization of the dipole, this gives rise to a ∓λ/(2π) shift of the apparent position 

of the emitter.

We now generalize the above for an elliptically polarized emitter oscillating in the x–y 
plane. Its polarization state can be written as a superposition of σ+- and σ−- polarizations 

ψ = α σ+ + β σ− , with |α|2 + |β|2 = 1. For a small numerical aperture NA = D/(2f) ≪ 1, the 

shift of the apparent position of the emitter is (see Methods)
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Δy = − λ
2π . ℜ( ϵ )

1 + NA2 ϵ 2 /2
(4)

where the dipole polarization ratio, ϵ = (α + β)/(α − β), is in general complex and ℜ(·) 
denotes the real value. For σ+-polarization (σ−-polarization) ϵ = +1 (ϵ = −1) and for linear 

polarization along the y axis (x axis) ϵ = 0 (ϵ = ∞). For circular polarization and NA ≪ 1 

we recover the ∓λ/(2π) shift derived above. When the axes of the polarization ellipse 

coincide with the x and y axes, ϵ is real and the shift is given by

Δy ≃ − ϵ λ
2π , (5)

as long as |ϵ| ≪ 1/NA. Outside of this linear regime, the shift reaches a maximum 

Δymax = ∓ λ/ 8πNA  for ϵ = ± 2/NA . Remarkably, this implies that the shift of the 

apparent position of the emitter can take arbitrarily large positive and negative values for 

small numerical apertures. For example, with NA = 0.23, the distance between the two 

extremal shifts is as large as the optical wavelength λ. These large shifts are reached for ϵ = 

±6.3, i.e., when the polarization of the dipole is almost linear along the optical axis of the 

imaging system. In this case, the corresponding expectation values of the local orbital 

angular momentum per photon at the aperture significantly exceed ħ, the total angular 

momentum per emitted photon. Such ‘supermomentum’ [28] is an example of weak value 

amplification common to structured optical fields, in which the local expectation value of an 

operator can take values outside its eigenspectrum where the field is weak [29, 30]. We note 

that there is a close connection between the observed weak value amplification and the 

appearance of momentum vortices in the emitted light field. This connection is shown in 

Supplementary Fig. 3 which plots the field distribution of the emitted light for different 

polarization states of the emitter. The plots also provide a graphical illustration for the 

polarization ratio ϵ which yields the maximum shift of the apparent position: This maximum 

shift is reached once the momentum vortices enter the field collected by the imaging lens. 

The centroid determination can be interpreted as a measurement of the weak value of the 

photons’ orbital angular momentum (see Methods). Finally, we note that the predicted shifts 

also occur for large numerical apertures and that Eq. (5) remains approximately valid 

provided that |ϵ| ≲ 1 (see Methods).

We study the predicted shifts by imaging a single atom —a fundamental quantum emitter— 

and a single sub-wavelength scale nanoparticle. In the first experiment, we confine a 138Ba+ 

atomic ion in a Paul trap and image fluorescence from the dipole transition at λ1 = 493.41 

nm (Fig. 2a) using an imaging system with magnification Ma = 5.40(7) and NA = 0.40 (see 

Methods). A bandpass filter and a polarizer are used to collect light selectively from one of 

the spontaneous decay channels of the excited state, corresponding to the emission from 

either a σ+ or a σ− dipole (see Methods).
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We estimate the emitter’s position from each image by fitting a 2D Gaussian function, which 

is a suitable approximation to the PSF in the measured regime [31] (see Methods). Fig. 3a-c 

show the results for a total measurement time of 3 hours. We observe a displacement 

between the σ+ and σ− emissions of 158(4) nm in the object plane, in agreement with the 

expected value λ1/π = 157.1 nm.

As it is demanding to generate an arbitrarily polarized emission from a single atom, we 

extend the study to the case of a general elliptical polarization in a separate experiment 

where we image the light scattered by a single sub-wavelength-sized spherical gold 

nanoparticle. Such particles are used as labelling agents for super-resolution microscopy in 

biological research [32, 33]. Being a spherically symmetric emitter, the polarization of a 

nanoparticle’s dipole always coincides with the polarization of the illuminating field, which 

can be controlled precisely. We place a 100 nm-diameter gold nanoparticle in the centre of a 

glass sphere with refractive index n = 1.46 by depositing it on an optical nanofibre [34] and 

surrounding it by two fused silica 2.5 mm-radius hemispherical solid immersion lenses. The 

~ 200 µm gap between the lenses is filled with index matching oil to prevent any reflection 

near the particle from either the nanofibre or the lenses. The nanoparticle is illuminated by a 

laser beam (vacuum wavelength λ2 = 685 nm) with adjustable polarization and the scattered 

light is imaged onto a CCD camera through the sphere and a microscope (Fig. 2b). To test 

the dependence of the position shift on the NA, two different microscope objectives are used 

with the same nominal magnification but different numerical apertures, resulting in NA = 

0.41 and NA = 0.61 when including the silica sphere, and magnifications 21.9(2) and 

20.1(1), respectively. The apparent displacement of the nanoparticle is measured by fitting a 

2D Gaussian function to its image (see Methods), using alternatively the beam with 

adjustable polarization and a linearly polarized reference beam. The measurements, 

averaged over 125 individual realisations for each polarization setting, are shown in Fig. 3. 

For |ϵ| < 2, within our experimental errors, we observe a very good agreement of our 

measurements with the expected linear increase of the displacement with ϵ, independent of 

the numerical aperture. For larger |ϵ|, the linear approximation is not valid and the 

experimental data follow approximately the theoretical prediction from Eq. (4) (dashed 

lines). The apparent positions of the nanoparticle imaged with right and left circular 

polarizations (ϵ = ±1) are displaced relative to each other by 145(6) nm for NA = 0.41 and 

146(4) nm for NA = 0.61, in agreement with the expected value 2 Δ y = λ2/π ≈ 150 nm,

where λ2 = λ2/n is the laser wavelength in the index matching oil. The displacement 

increases for larger values of |ϵ|, and the total displacement between counter-rotating 

elliptical polarizations reaches 430(7) nm ≃ λ2  for ϵ = ±5.67, a shift four times larger than 

the diameter of the gold nanoparticle. In order to verify that focusing errors are not at the 

origin of the effect, we slightly defocus our imaging optics and observe that, in the measured 

range, the shifts do not depend on the distance of the particle to the focal plane (see 

Methods).

Our findings may affect super-resolution microscopy techniques. The maximum systematic 

shift due to dipole ellipticity is proportional to the PSF size, which is up to two orders of 

magnitude larger than the resolution achieved by super-resolution microscopy [35, 36]. For 

instance, the determination of the position of an emitter with NA = 1, at a wavelength of λ ≈ 
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628 nm with an accuracy of 1 nm, requires the scattered light to be more than 99.99 % 

linearly polarized (|ℜ(ϵ)| < 0.01, see supplementary information). For larger ϵ, an accuracy 

of, e.g., 1 nm could still be reached by employing an algorithm that not only uses position 

but also polarization of the dipole as fit parameters for the recorded point-spread function. 

However, in order to reach the necessary signal-to-noise ratio, this higher dimensional fit 

requires one to increase the light-collection time by more than 4 orders of magnitude 

compared to the case of an optimally coupled linear dipole (see supplementary Fig. 4d).

On the positive side, the polarization-dependent shift could be used, e.g., in arrays of 

optically trapped particles [37], where the apparent location of each particle would give 

access to the local polarization of an inhomogeneous exciting field; conversely, in the case of 

an homogeneous exciting field, the shift would allow to sense local physical parameters 

affecting the polarizability of the particles, such as the direction of the magnetic field. The 

demonstrated effect is relevant beyond optical imaging, as it will occur for any kind of wave 

carrying transverse orbital angular momentum. Thus, it may affect the localization of remote 

objects imaged with radar or sonar techniques [38, 39], or even alter the apparent position of 

astronomical objects detected through their emission of gravitational waves [40, 41].

Methods

Momentum and wavefronts of the radiated field

The electric field emitted by an optical dipole located at the origin (r = 0) that oscillates with 

angular frequency ω is given by

E(r, t) = − ω2

4πϵ0c2
ei(kr − ωt)

r3 (r × μ ) × r (6)

in the far field (|r| ≫ λ), where μ = μeμ is the complex vector amplitude of the electrical 

dipole and k = 2π/λ where λ is the wavelength of the emitted light. The optical momentum 

density in the field can be defined as the Poynting vector [29]

P = 1
2Re(E∗ × H) . (7)

The momentum density can be divided into two components that arise from the orbital and 

and spin angular momentum of the field

porb =
c2ϵ0
2ω Im E∗ ⋅ ∇ E , (8)
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pspin =
c2ϵ0
4ω ∇ × Im E∗E . (9)

From Eqs. (6) and (8), it is possible to derive an expression for the wavefronts, i.e. the 

surfaces normal to the porb. In general, the wavefronts of elliptical dipoles in the x−y plane 

are kinky spirals given by

r(ϕ) = 1
k arctan ϵ ⋅ tan ϕ + ωt + const . , (10)

For a linearly polarized dipole (ϵ = 0), i.e. a dipole with zero expectation value for its 

angular momentum, the wavefronts reduce to circles given by rwf = ωt
k + const, whereas for a 

σ± ϵ = ± 1  polarized dipole that radiates waves with total angular momentum of ±ħ per 

photon with respect to the z axis, the wavefronts in the x−y plane are given by

r±(ϕ) = ∓ϕ + ωt
k + const . (11)

This corresponds to an Archimedean spiral rotating around the z axis, with the same rotation 

sense as the dipole. Supplementary Fig. 1 shows an example of the wavefronts of an 

elliptical dipole in comparison with the circular case.

Angular momentum and imaging

According to Eq. (8) the local orbital angular momentum can be calculated by applying the 

operator

L = r × p, (12)

on the single-photon wavefunction, where p = − iħ ∇  is the orbital momentum density 

operator. The local orbital angular momentum per photon can be measured by sending the 

light through an aperture at position r0. We align the z-axis with the axis defined by the 

transverse angular momentum and define the optical axis as the x-axis. The expectation 

value of the transverse linear momentum component py
w  per photon at the position of the 

aperture is given by the displacement 〈y〉 of the centre of mass of the far-field image from 

the optical axis ex at distance d from the aperture. The relation between angular momentum 

and displacement is given by

y = d
ħk py

w = d
ħk

1
r0

Lz
w . (13)
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This measurement can be interpreted in the framework of weak measurements, where the 

centre of mass in the image plane is proportional to the weak value of the photons’ orbital 

angular momentum (or the transverse linear momentum) at the aperture, which are given at 

the position of the first lens by [29]

Lz
w = r0 ⋅ py

w = r0 ⋅
Ψpost py Ψ

Ψpost Ψ
, (14)

where |Ψ〉 and | Ψpost 〉 are the initial wavefunction and the part of the wavefunction that 

passes the aperture (the post-selected state), respectively.

In other words, the orbital angular momentum components transverse to the optical axis 

result in a transverse linear momentum at the aperture that leads in turn to a displacement of 

the centre of mass of the diffracted beam in the far field. The local angular momentum per 

photon can exceed ħ where the field is weak (so-called ‘supermomentum’) [28].

Calculation of the image centroid

To obtain the displacement of the centroid of the image, we start with the above relation 

between angular momentum and transverse linear momentum. The considered imaging 

system consists of an objective with focal length f and aperture diameter D located at a 

distance f from the emitter. The electric fields of the three elementary dipoles π, σ+ and σ− 

at the objective are, for small aperture (D ≪ f) and up to a common normalization constant, 

given by

Ψπ (ρ, ϕ) = 1
f eze

iφ, (15)

Ψ
σ± (ρ, ϕ) = 1

2 ± i
f ey + ρ

f 2eρ eiφ, (16)

where ρ and ϕ (y and z) are polar (Cartesian) coordinates in the aperture plane, ex, ey, ez and 

eρ are the unit vectors in the respective direction, φ = k ρ2 + f 2 . Since the emitter is in the 

focal plane of the objective, the latter applies the transformation e−iφ on the light and 

removes the phase factor in Eqs. (15) and (16) which we drop in the following. As a 

consequence, the phase fronts are transformed into plane waves while the average 

wavevector and the average transverse momentum are conserved. Measuring the 

displacement of the waveform’s centre of mass from the optical axis 〈q〉 at distance d from 

the objective (d ≫ D) then corresponds to a measurement of the expectation value of the 

transverse angular momentum component per photon Lz
w  or the linear transverse 
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momentum component pq
w  of the photons at the position of the aperture where q ∈ {y, z}. 

The actions of the momentum operators on the wave are

pq Ψ
σ± = ± iħ

f 2 2
eq, (17)

as well as pq Ψπ = 0, Considering the general case of a photon that originates from a 

superposition of σ+ and σ− emission,we can calculate the weak value in Eq. (14) and obtain

py
w

r
= ħ

f
ℜ( ϵ )

1 + ϵ 2NA2/2
, (18)

pz
w

r
= 0, (19)

where we defined the numerical aperture as NA = D/(2f). We note, that in general the 

expectation values pq
w  are complex as ϵ can be a complex number. Since only the real part 

of the expectation values corresponds to a displacement of the image centroid, eqs. (18) and 

(19) only give the real part of the expectation pq
w  which we denote by 〈·〉r.

In a microscopy set-up, the image is not formed at infinity, but a second lens with focal 

length f′, which we assume to be at a distance f′ from the aperture, is used to form an image 

at distance 2f′ from the aperture. In this case, the expected displacement is obtained by 

replacing d by f′. This finally yields for the expected displacement on the screen

y = 1
ħk

f ′
f Ly

w = λ
2π

f ′
f

ℜ( ϵ )
1 + ϵ 2NA2/2

. (20)

For small numerical aperture NA ≪ ϵ  and ϵ real, the displacement of the centroid 

increases linearly in ϵ. For circular polarization ϵ = ± 1, the centroid of the image is 

displaced from the expected position by 〈ŷ〉 ≈ ±λ/(2π) times the magnification of the 

optical system f′/f, i.e., the particle appears to be displaced by ∓λ/(2π), taking into account 

that the assumed imaging system produces a flipped image. The maximum displacement of 

the centroid for ϵ real is given by

y max = ± λ
2π

f ′
f

1
2NA, (21)
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i.e., for vanishing numerical aperture, the displacement of the apparent and real positions of 

the particle can be arbitrarily large.

Fourier-optic derivation of the centroid position

The position of the centroid can also be calculated in the framework of Fourier-optics. We 

calculate the electric fields of the three fundamental electrical dipoles oscillating in x, y and 

z directions in the image plane and obtain for the approximation of small NA

Ex = − iE0 ⋅ NA2

ρ J2(ρ)(cos φey + sin φez), (22)

Ey = E0 ⋅ NA
ρ J1(ρ)ey, (23)

Ez = E0 ⋅ NA
ρ J1(ρ)ez, (24)

where we have defined the amplitude

E0 = μω2

4π ϵ0
2 c2 , (25)

and ρ = ρ · k · NA · f / f ′, with the opening angle of the objective NA ≈ D/(2f). The final 

image is then a superposition of the three dipole fields from which we obtain for the centroid 

again Eq. (20).

Immersion microscopy

In high-NA imaging, the so-called immersion method is used, where the first lens of the 

system is a solid immersion lens and the imaged particles are located on the planar side of 

the lens and embedded in immersion fluid that has the same refractive index as the lens. 

Consequently, wavefronts emitted by the particle are parallel to the surface of the lens. Thus, 

this method does not affect the wavefronts in the far field outside the lens and our discussion 

also applies for this case. It is only necessary to replace the numerical aperture NA with the 

geometrical numerical aperture NAg (NAg = NA/n) and to replace λ with the wavelength in 

the immersion fluid λ/n.

Atomic transition selective detection of photons

In the atom experiment, the photons are emitted with angular momentum Δmħ from a dipole 

transition of a single 138Ba+ atomic ion in a Paul trap, where Δm is given by the difference 

in the magnetic quantum number of the electronic level before and after the photon 
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emission. Δm = 0 corresponds to emission from a linear π dipole and Δm = ±1 to emission 

from a circular σ∓ dipole. Photons are emitted from the cooling transition, with λ = 493.41 

nm (Supplementary Fig. 5a). A magnetic field B = 0.45 mT parallel to the axis of the trap (z 
axis) defines the quantization axis perpendicular to the optical axis (x axis). The ion is 

Doppler-cooled, reducing the extension of the motional atomic wavepacket down to ∼ 36 

nm, then optically pumped into one of the Zeeman levels of the 6S1/2 ground state. For 

example, when preparing a photon emission Δm = +1, we pump to the 6S1/2, mj = −1/2 with 

a σ−-polarized 493 nm laser and a repumper beam. Subsequently, we apply a short σ+-

polarized 493 nm laser pulse which excites the atom to the state 6P1/2, mj = +1/2 

(Supplementary Fig. 5b, d). From that excited state, the atom can spontaneously decay back 

to 6S1/2, mj = −1/2 through a Δm = +1 transition, to 6S1/2, mj = +1/2 through a Δm = 0 

transition, or to the 6D3/2 manifold. During this transition the atom emits a photon that can 

be collected by the objective (NA = 0.40) and directed to the camera through the imaging 

system. To detect photons from the opposite transition (Δm = −1), the polarization of the 

optical pumping and excitation beams are exchanged (Supplementary Fig. 5c).

In this configuration, photons from Δm = 0 (Δm = ±1) transition are horizontally (vertically) 

polarized along the optical axis. This allows us to select only photons from the σ (Δm = ±1) 

transitions by introducing a polarization beam splitter (PBS) after the objective. An ideal 

PBS removes 99.998% of photons from the π transitions and 2.7% of photons from the σ 
transitions. Therefore we expect that the σ± dipole image is not significantly changed by the 

polarization filtering, and indeed this is borne out by complete numerical simulations 

(Supplementary Fig. 6).

The results shown in the main text were obtained using an intensified CCD camera (ICCD, 

Andor iStar A-DH334T-18H-63). Supplementary Fig. 5d shows the sequence and timing 

used in the experiment.

Atom image characteristics, stability and drifts correction

The image of the atomic ion corresponds to the PSF of the imaging system which is well 

approximated in our case by a 2D Gaussian. The detected images are fitted to a Gaussian 

profile with seven free parameters (z0, y0, σz, σy, A, O, θ), being (z0, y0) the coordinates of 

the centroids, σz and σy the standard deviation in the major and minor axis, A the amplitude, 

O an offset and θ rotation angle with respect to the CCD sensor axis. The magnification of 

the imaging system is measured by imaging a string of two ions separated by well-known 

distance [42], and is given by M = 5.40(7).

The long accumulation time introduces a new source of error in the position estimation from 

mechanical drifts in the imaging system. The stability of the imaging system is characterized 

by the Allan variance of the fitted centroids of the detected images [7], which gives us a 

measure of the position uncertainty depending on the accumulation time τ. This is done by 

taking N pictures with exposure time t, adding them in bins of duration τ = nt, where n is a 

integer number smaller than N/2. Each binned image is fitted to the seven parameter 

Gaussian function, from where the centroids are extracted. For comparison we also use, 

besides the ICCD camera, an EMCCD camera (Andor iXon DU-897) with bigger pixel size 

(16 × 16 μm2). In the case of the EMCCD camera we take 2000 images of 2 s exposure time 
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with the atom emitting resonance florescence at maximum rate. In the case of the ICCD 

camera, we take 3000 images of 0.5 s exposure. In both cases, the time between two 

consecutive images is negligible. Supplementary Fig. 7a, b shows the vertical position 

uncertainty extracted with this method. The minimum uncertainty in the vertical position 

obtained using the EMCCD camera is 2.13(41) nm for 148 s accumulation time, while for 

the ICCD set-up the minimum is 3.29(71) nm for 74 s accumulation time. In both cases the 

decreasing part of the curve is dominated by shot noise. The drift of the centre of the fitted 

reference images used in the experiment is shown in Supplementary Fig. 7c where we 

observe that in a period of 3 h the image drifts a maximum of ∼ 200 nm in both vertical and 

horizontal directions. To compensate for these drifts, we use the acquisition of long-

exposure images during the cooling stage (Supplementary Fig. 5e) to obtain a real-time 

‘reference’ of the particle position. Supplementary Figs. 5d, e show the full experimental 

sequence. This sequence is repeated for 3 h, and the analysed pictures correspond to 

accumulation of photons in a 11 × 11 pixel sub-area of the CCD sensor.

After the data collection is finished, each reference image is fitted, and the mean centroid 

position of two consecutive reference images is used to correct for the drifts in the signal 

image acquired between them. Then, we add up all the corrected signal images and fit these 

data. Finally, we compare the centroid positions of the added-up reference and signal images 

to determine their relative displacement. The uncertainty of the displacement is extracted 

from the 1σ confidence intervals using χ2 analysis, given its relation with the real noise 

sources [43].

Nanoparticle sample preparation and set-up

We deposit a single gold nanoparticle (BBI solutions, diameter 100 nm) on a silica nanofibre 

(diameter 410 nm) by touching the nanofibre with a droplet, that contains a diluted 

suspension of nanoparticles. The presence of a single nanoparticle on the nanofibre can be 

detected via absorption spectroscopy [34]. The solid immersion lenses are positioned around 

the nanoparticle, such that the nanoparticle lies in the centre of the two lenses. The gap 

between the lenses of about 200 μm is filled up with immersion oil.

The imaging system is a combination of a long working distance microscope and the solid 

immersion lenses (half ball lenses with a radius of 2.5 mm). The microscope consists of an 

infinity corrected objective by Mitutoyo, with a magnification of 20 and an infinity tube lens 

to image onto a CCD camera (Matrix Vision mvBlueFOX3-1013G-2212). In two different 

measurements we used two different objectives with the numerical apertures of NA = 0.28 

and NA = 0.42. Via a surface topography standard, we measure the magnification of the long 

working distance microscope. This combination results in an overall imaging system with 

numerical apertures NA = 0.41 and NA = 0.61 and the magnifications M0.41 = 21.9(2) and 

M0.61 = 20.1(1).

In the experiment we use two laser beams: a reference and a measurement beam, with fixed 

and adjustable polarization respectively, see Fig. 2b. The polarization of the reference beam 

is aligned along the z axis. The measurement beam is set to be linear polarized along the y 
axis before passing through a half- and then a quarter-wave plate. By rotating the half-wave 

plate we can adjust the beam’s polarization to every elliptical polarization with the major 
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axes along x or y. In order to avoid aberration caused by light propagating along the ridge of 

the two immersion lenses, the measurement beam is tilted by 7° degrees from the z axis, see 

Fig. 2b. This tilt is included in the theory plots shown in Fig. 3f.

Data acquisition and analysis

The illumination times of the images are 2 ms (NA = 0.41 objective) and 6.5 ms (NA = 0.61 

objective). The pictures are taken alternately using the reference and measurement beams 

(Fig. 2b). In the experimental sequence, the particle displacements are measured as a 

function of polarization and the focal position of the imaging optics. For every polarization 

ratio ϵ, the relative focus position is scanned by moving the long working distance 

microscope with a step size of 1.25 μm and a total range ∼ 20 μm. Then, the polarization 

ratio is changed by rotating the half-wave plate by 2.5°. 25 tuples of data are acquired for 

every ϵ and focus position. Fig. 3f shows the mean displacements obtained from averaging 

over all displacements for the five focal positions closest to the focus of the imaging system. 

The statistical error of each data point displayed in Fig. 3f is estimated as σΔy/ 125, where 

σΔy is the standard deviation of the measured displacements.

To correct for inhomogeneous pixel efficiencies of the CCD camera, we apply standard flat-

field correction on the measured image data. Then, in order to determine the (apparent) 

position of the nanoparticle, we fit a 2D Gaussian with six free fit parameters to the particle 

images. The free parameters are the centroid position (z0, y0), the amplitude A, the waists σz 

and σy of the elliptical Gaussian and an intensity offset O.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Polarization-dependent displacement.
A σ+ rotating dipole located at 𝒪 emits spiral wavefronts in the equatorial x–y plane, which 

are collimated by a lens with focal length f centred on the x axis and focused on the dipole. 

The wavefronts passing through the aperture of the lens have a mean wavevector 〈k〉 tilted 

by an angle αtilt with respect to the x axis, which shifts the intensity distribution by 〈y〉 after 

a propagation length d. This shift originates from an orbital angular momentum of ħ per 

photon and results in an apparent displacement ∆y = −λ/2π of the emitter (see text). For a σ
− emission the shift occurs in the opposite direction, since the wavefronts spiral in the 

opposite way. For elliptically polarized dipoles, even lager shifts and larger tilts of the 

wavefronts can arise, see Supplementary Fig. 1.
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Figure 2. Experimental set-ups.
a, A 138Ba+ ion is confined in a linear Paul trap. A magnetic field B along z  defines the 

quantization axis and the rotation axis of the dipoles. Fluorescence light is collected in the x
direction by an in-vacuum objective (L1, focal length: 25 mm, NA=0.40), and a lens (L2, 

focal length 150 mm) forms a focus on an intensified CCD camera (ICCD). A polarization 

beam splitter (PBS) filters out photons with polarization parallel to the quantization axis (π- 

polarized photons), while a bandpass filter (BP) selects photons with wavelength 493 ± 1 

nm. b, A gold nanosphere is located in the gap between two solid immersion lenses, filled 

with index matching oil to prevent reflections. The particle scatters light alternatively from a 

reference beam with fixed linear polarization and a measurement beam whose polarization is 
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adjusted using half- (HWP) and quarter-wave (QWP) plates. The scattered light is collected 

by a microscope objective and imaged onto a CCD camera.
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Figure 3. Apparent displacement of the emitters.
a, c, Measured images (normalized to maximum pixel count rate) of a single atom for the σ− 

and σ+ transitions. The blue lines and blue points indicate the centroid of the image obtained 

by a 2D Gaussian fit to the data. The orange circle represents the 1σ-width. b, Zoom of the 

centre of images a and c. The two blue points show the centroid position of the fitted σ− 

(upper point) and σ+ (lower point) images. d, Vertical cross section of the Gaussian fits for σ
+ (green dashed curve, left scale) and σ− (red dashed curve, left scale) polarizations. The 

orange curve shows the difference of both fits (right scale). e, Measured images of the 

nanoparticle for ϵ = ±2.1 and ϵ = 0 for NA = 0.41. The white cross indicates the position of 

the nanoparticle obtained from the reference image. The dashed circle with a diameter of 

500 nm indicates the 1σ width of the image obtained from a Gaussian fit and is centred 

around the apparent position of the nanoparticle. f, Relative displacement of the image of the 

particle as a function of ϵ, measured for two different NAs. The error bars indicate the 

standard deviation of the 125 individual position measurements for each data point. The 

dashed curves are the theoretical predictions of Eq. (4) and the solid curves are the 

displacements obtained by simulations of the image process taking into account that the 

centroid of the images are obtained from a Gaussian fit (see Methods). The dashed grey lines 

show the case of circularly polarized emitters.
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