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Abstract
Purpose  A prospective cohort study for pregnant women, 
the Maternity Log study, was designed to construct 
a time-course high-resolution reference catalogue 
of bioinformatic data in pregnancy and explore the 
associations between genomic and environmental factors 
and the onset of pregnancy complications, such as 
hypertensive disorders of pregnancy, gestational diabetes 
mellitus and preterm labour, using continuous lifestyle 
monitoring combined with multiomics data on the genome, 
transcriptome, proteome, metabolome and microbiome.
Participants  Pregnant women were recruited at the 
timing of first routine antenatal visits at Tohoku University 
Hospital, Sendai, Japan, between September 2015 and 
November 2016. Of the eligible women who were invited, 
65.4% agreed to participate, and a total of 302 women 
were enrolled. The inclusion criteria were age ≥20 years 
and the ability to access the internet using a smartphone 
in the Japanese language.
Findings to date  Study participants uploaded daily 
general health information including quality of sleep, 
condition of bowel movements and the presence of 
nausea, pain and uterine contractions. Participants also 
collected physiological data, such as body weight, blood 
pressure, heart rate and body temperature, using multiple 
home healthcare devices. The mean upload rate for each 
lifelog item was ranging from 67.4% (fetal movement) 
to 85.3% (physical activity), and the total number of 
data points was over 6 million. Biospecimens, including 
maternal plasma, serum, urine, saliva, dental plaque and 
cord blood, were collected for multiomics analysis.
Future plans  Lifelog and multiomics data will be used 
to construct a time-course high-resolution reference 
catalogue of pregnancy. The reference catalogue will 
allow us to discover relationships among multidimensional 
phenotypes and novel risk markers in pregnancy for 
the future personalised early prediction of pregnancy 
complications.

Introduction 
The incidence of pregnancy-related disor-
ders, including hypertensive disorders of 
pregnancy (HDP), gestational diabetes 
mellitus (GDM) and preterm delivery has 
been increasing worldwide.1–4 These multi-
factorial conditions are caused by an inter-
action of genetic factors and environmental 
factors.5 6 Recent reports suggest that contin-
uous lifestyle monitoring using wearable 
biosensors provides important information 
on latent physiological changes that are 
exhibited prior to the onset of disease.7 Using 
these monitors, environmental factors may 
be estimated more accurately than by using 
conventional questionnaires.

Strengths and limitations of this study

►► This is the first study designed to collect longi-
tudinal lifelog information through healthcare 
devices, self-administered questionnaires us-
ing smartphones and varieties of biospecimens 
throughout pregnancy.

►► Longitudinal, continuous, individual lifelog data with 
a high acquisition rate will enable us to assess dy-
namic physiological changes throughout pregnancy.

►► Multiomics data will make it possible to understand 
the complex mechanisms of multifactorial pregnan-
cy-related diseases.

►► Potential limitations are the limited sample size and 
participant recruitment only at a tertiary hospital for 
high-risk populations.

►► Inclusion criteria of the present study limited the el-
igibility to pregnant women with age >20 years and 
the ability to access the internet using a smartphone.
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For these reasons, we have designed a prospective 
cohort study for pregnant women, the Maternity Log 
study (MLOG). In this study, pregnant women upload 
daily information and physiological data using multiple 
home healthcare devices. In addition, a variety of biospe-
cimens are collected for multiomics analysis.

To the best of our knowledge, this study will be the 
first to integrate multiomics analyses and objective data 
on environmental factors, including daily lifelog data, in 
pregnant women. This study may demonstrate correla-
tions between specific lifelog patterns and pregnancy-re-
lated physiological changes, such as blood pressure, 
gestational weight gain and onset of obstetric diseases. 
Furthermore, studies on associations among lifelog 
patterns, plasma and urine metabolomes, transcriptomes 
and genomic variations may reveal relationships among 
multidimensional phenotypes and lead to identification 
of novel risk markers in pregnancy for the future person-
alised early prediction of pregnancy complications, for 
example, HDP, gestational diabetes and preterm labour.

Cohort description
Study setting
The aim of the MLOG study is to construct a time-course 
high-resolution reference catalogue of bioinformatic 
data in pregnancy and thereby develop methods for 
early prediction of obstetric complications, through inte-
grated analysis of daily lifelogs and multiomics data, that 
is, maternal genomes, transcriptomes, metabolomes and 
oral microbiomes.

The MLOG study is a prospective, add-on cohort study, 
built on a birth-generation and three-generation cohort 
study established by the Tohoku Medical Megabank Orga-
nization  (ToMMo) (TMM BirThree Cohort Study)8 in 
order to elucidate the mechanisms of complicated multi-
factorial diseases in mothers and children in the wake of 
the Great East Japan Earthquake in 2011. Epidemiolog-
ical data from extensive questionnaire surveys and accu-
rate clinical records, including birth outcomes, can be 
abstracted from the integrated biobank of the ToMMo.8 
TMM BirThree Cohort Study was started in July 2013 in 
one obstetric clinic and expanded throughout Miyagi 
Prefecture, and approximately 50 obstetric clinics and 
hospitals (including Tohoku University Hospital) partic-
ipated in the recruiting process. We planned to recruit 
20 000 pregnant women as probands, and her family 
members from three generations, which is a total of 
over 70 000 participants.8 Written informed consent was 
obtained from all participants by the genome medical 
research coordinators (GMRCs).

Patient and public involvement
Patients or the public were not directly involved in the 
development of the research question or the design of 
the study. The main results will be made available in the 
public domain.

Participants
Participants were recruited at a first routine antenatal visit 
at Tohoku University Hospital, Sendai, Japan, between 
September 2015 and November 2016. A flow  chart of 
the recruitment process is shown in figure 1. GMRCs at 
Tohoku University Hospital approached eligible preg-
nant women for TMM BirThree Cohort Study (n=631), 
and patients who already agreed to participate in TMM 
BirThree Cohort Study (n=513) were assessed for eligi-
bility for the MLOG study. Finally, 462 pregnant women 
were asked to provide informed consent for the MLOG 
study. A total of 302 women were enrolled. The inclusion 
criteria were the age ≥20 years and the ability to access the 
internet using a smartphone in the Japanese language. 
Participants were excluded after enrolment if termina-
tion of pregnancy, abortion or transfer to another insti-
tution for emergency care occurred before delivery, or if 
they withdrew consent for any reason.

Outline of study protocol
The study protocol consisted of blood and urine 
sampling, saliva and dental plaque sampling, self-ad-
ministered daily lifelog data collection and data upload 
from multiple healthcare devices through a smart-
phone. An overview of the protocol is provided in 
figure  2. In Japan, routine antenatal visits, including 
ultrasounds, are scheduled every 4 weeks from early 
pregnancy (<12 weeks) to 23 weeks of gestation, every 2 
weeks from 24 weeks to 35 weeks and every week from 36 
weeks to delivery.9 Lifelog data collection was continued 
throughout pregnancy and until 1 month after delivery. 
Optional data collection could be continued up to 180 
days after delivery.

Blood and urine sampling
Blood samples were collected three times from each 
participant; the first sample was collected between 12 
weeks  and 24 weeks of gestation, the second between 
24 weeks and 36 weeks, and the third at 1 month after 
delivery. A maximum of 13 mL of blood was collected 
each time, from which serum and plasma were sepa-
rated to be stored at −80°C until the time of analysis. 
An aliquot of blood (2.5 mL) was stored in a PAXgene 
tube (Becton, Dickinson and Company, Franklin Lakes, 
New  Jersey, USA) at −80°C until the time of RNA 
extraction for transcriptome analysis. Genomic DNA was 
extracted from mononuclear cells using an Autopure 
extractor (Qiagen, Venlo, The Netherlands). Approxi-
mately 10 mL of cord blood was collected from the umbil-
ical vein in a PAXgene tube for storage at −80°C and in 
an EDTA 2K tube (Becton, Dickinson and Company) 
for separation of plasma to be stored at −80°C. Urine 
samples (10 mL) were collected at each antenatal visit; 
when participants were admitted to the hospital ward, 
urine was collected once weekly. Urine samples were 
immediately transferred and stored at −80°C until the 
time of analysis.
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Saliva and dental plaque sampling
Samples of saliva and dental plaque were collected three 
times from each participant, at the same time points 
as blood collection. Approximately 3 mL of saliva was 
collected using a 50 mL conical centrifuge tube (Corning, 
Inc, Corning, New  York, USA) and stored at −80°C 
until analysis. Dental plaque was sampled by brushing, 
suspended in 0.5 mL of Tris-EDTA (10 mM Tris, 1 mM 
EDTA; pH, 8.0) and immediately stored at −80°C until 
the time of sample processing.

Lifelog data collection
Based on previous publications on the utility for risk assess-
ment of pregnancy-related diseases, we selected several 
lifelog parameters to employ in this study, that  is, body 
temperature,10 home blood pressure,11 body weight12 and 
physical activity (calorie expenditure),13 as well as self-ad-
ministered information such as sleep quality,14 condition 
of stool,15 severity of nausea,16 fetal movement,17 severity 
of pain,18 uterine contractions19 and palpitations.20 Body 
temperature, home blood pressure, body weight and 
physical activity were uploaded from multiple healthcare 
devices through a smartphone. The self-administered 

information described above was input manually on 
mobile applications created for this study.

Data collection was started after obtaining informed 
consent and after giving detailed instructions for the use of 
the healthcare devices. These applications tracked quality 
of sleep; condition of stool using the Bristol Scale21–23; 
severity of nausea using the Pregnancy-Unique Quantifi-
cation of Emesis and nausea (PUQE) score24 25; headache, 
toothache, lumbago and upper and lower abdominal pain 
using a numerical rating scale (NRS) score; the number 
of perceived uterine contractions; palpitations; and fetal 
movement using a modified count-to-10 fetal movement 
chart.26 27

Sleep quality was evaluated by the wakeup time, 
bedtime, sleep satisfaction (ranked from satisfied to 
poor using a numeric scale of 0–4) and the number of 
nocturnal awakenings (0–6).

The Bristol stool form scale was originally developed 
to assess constipation and diarrhoea,21 22 and its use has 
been spread widely to evaluate functional bowel disor-
ders.22 Using the Bristol scale, stool is classified into seven 
types according to cohesion and surface cracking.21 22

Figure 1  Flow chart of Maternity Log (MLOG) study (MLOG) participants.
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The PUQE score24 25 was developed to estimate the 
severity of nausea and vomiting in pregnancy and quanti-
fies the number of daily vomiting and retching episodes 
and the length of nausea in hours (over the preceding 
12 hours). The total score ranges from 3 (no symptoms) 
to 15, and higher scores are correlated with increasing 
severity of nausea and vomiting.24 25

In the NRS score for headache, toothache, lumbago and 
upper and lower abdominal pain, the total score ranges 
from 0 (no pain) to 10 (maximum ever experienced).

Uterine contractions and palpitations were evalu-
ated using definitions determined for the current study. 
Uterine contractions were assessed using the number of 
perceived contractions per day, ranging from 0 to more 
than 5. The count-to-10 method was originally developed 
to assess fetal well-being by recording the time, in minutes, 
required to count 10 fetal movements.26 More recently, 
a modified count-to-10 method has been proposed: 

pregnant women are advised to start counting when they 
feel the first movement, then record the time required 
to perceive an additional nine movements.27 Pregnant 
women are encouraged to select a 2-hour period when 
they feel active fetal movements and are instructed to 
count kicking and rolling movements in a favourable 
maternal position after 24 weeks of gestation.

The applications also collected dietary logs and the 
medications taken on the day before and the day of the 
antenatal visit on which blood or urine samples were 
collected.

Daily home blood pressure, body weight, body tempera-
ture and physical activity were measured as described 
below with home healthcare devices and uploaded 
through wireless communications using mobile appli-
cations on a smartphone. Daily home blood pressure 
was measured twice daily using an HEM-7510 monitor 
(OMRON Healthcare, Kyoto, Japan): within 1 hour of 

Figure 2  Overview of the MLOG study protocol. (A) Participant timeline for the MLOG study. (B) Physiological information 
collected using healthcare devices. Specific measures were uploaded each day from the time of enrolment (solid horizontal 
lines). Participants had the option to continue uploading data until 180 days after delivery (dashed horizontal lines). (C) Daily 
lifelogs of self-reported information using a smartphone application. Basic lifelog information was input manually from the 
time of enrolment (solid horizontal lines). Participants had the option to continue uploading data until 180 days after delivery 
(dashed horizontal lines). Fetal movement and uterine contractions were recorded from 24 weeks and 20 weeks of gestation, 
respectively.
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awakening in the morning and just before going to bed 
at night. Body weight was measured using an HBF-254C 
metre (OMRON Healthcare) once daily within 1 hour 
of awakening in the morning. Daily body temperature 
was evaluated using an MC-652LC digital thermometer 
(MC-652LC; OMRON Healthcare) just after awakening. 
Physical activity was assessed using an HJA-403C pedom-
eter (HJA-403C; OMRON Healthcare) to count steps and 
calculate calorie expenditure.

Clinical and epidemiological information
Baseline clinical information and maternal and neonatal 
outcomes (eg, maternal age, clinical data and findings 
from each antenatal visit, gestational age at delivery, type 
of delivery, birth weight and maternal and fetal complica-
tions) were obtained from the medical records of Tohoku 
University Hospital. Epidemiological data, including 
extensive questionnaire surveys by TMM BirThree 
Cohort Study, can be obtained from the ToMMo inte-
grated biobank.8

Database
A customised laboratory information management system 
(LIMS) was established to track all biospecimens. All data 
were transferred to the TMM integrated database after 
two-step anonymisation in a linkable fashion.

Data handling was strictly regulated under Health 
Insurance Portability and Accountability Act of 1996 US 
Security and Privacy Rules28 29 and the Act on the Protec-
tion of Personal Information.30 Security control at our 
facility has been described previously.31

Omics analysis
Whole-genome sequencing
To minimise amplification bias, we adopted a PCR-free 
library preparation method. After performing library 
quality control  (QC) using the quantitative MiSeq 
method,32 libraries were sequenced on HiSeq 2500 
Sequencing System (Illumina, San Diego, California, 
USA) to generate 259 bp, paired-end reads. We gener-
ated the sequencing data at over 12.5× coverage on 
average, and we identified variants using the alignment 
tool BWA-MEM (V.0.7.5a-r405) with the default option. 
Single nucleotide variants (SNVs) and indels were jointly 
called across all samples using Genome Analysis Tool 
Kit’s HaplotypeCaller (V.8). Default filters were applied 
to SNV and indel calls using the GATK’s Variant Quality 
Score Recalibration approach. The human reference 
genome was GRCh37/hg19 with the decoy sequence 
(hs37d5) and NC_007605 (Human Gamma Herpes-
virus 4). The complete fasta file named ​hg19_​tommo_​
v2.​fa is available from iJGVD website (http://​ijgvd.​mega-
bank.​tohoku.​ac.​jp).33 For the quality assurance, we have 
checked the ratio of the bases with the phred quality 
score over 30, the total variant numbers in each chromo-
some and the ratio of transitions to transversions for a 
pair of sequences.

Transcriptome
Whole blood was collected using the PAXgene RNA tube, 
which is widely used for transcriptome analysis. After 
storage at −80°C, total RNA was purified with PAXgene 
Blood RNA Kit (Qiagen) using QiaSymphony (Qiagen). 
Total RNA was reverse-transcribed using an oligo-dT 
primer. We used TruSeq DNA PCR-Free Library Prepara-
tion Kit (Illumina) for library preparation for sequencing 
with HiSeq 2500 Sequencing System. For the quality 
assurance, we randomly selected 11 samples in one batch 
(usually 48 samples) and checked an RNA integrity 
number (RIN) (or an RIN equivalent) using BioAnalyzer 
or Tape Station (both from Agilent Technologies, Santa 
Clara, California, USA). The batch with RIN (or an RIN 
equivalent) higher than 7.0 for all tested samples was used 
for the downstream analysis. The minimum threshold 
for the total sequence reads for each sample was set to 
30 million. For computing a series of  QC metrics for 
RNA-seq data, RNA-SeQC was used to check the quality 
of sequence reads.34

Plasma and urine metabolome
Nuclear magnetic resonance (NMR) spectroscopy
All NMR measurements for metabolome analysis were 
conducted at 298 K on a Bruker Avance 600 MHz spec-
trometer equipped with a SampleJet sample changer 
(Bruker, Billerica, Massachusetts, USA).35 Standard 
1-dimensional nuclear Overhauser enhancement spec-
troscopy and Carr-Purcell-Meiboom-Gill spectra were 
obtained for each plasma or urine sample. All spectra for 
plasma or urine samples were acquired using 16 scans and 
32 k of complex data points. All data were analysed using 
the TopSpin 3.5 (Bruker) and Chenomx NMR Suite 8.2 
(Chenomx, Edmonton, Alberta, Canada) programmes. 
All spectra were referenced to an internal standard (DSS-
d6). As necessary, those spectra were aligned using hier-
archical cluster-based peak alignment method, which is 
implemented as an R package called ‘speaq’.36

Gas chromatography-tandem mass spectrometry (GC-MS/MS)
Sample preparation for plasma and urine (50 µL each) 
was performed using a Microlab STARlet robot system 
(Hamilton, Reno, Nevada, USA) followed by the methods 
previously reported by Nishiumi  et  al.37 38 The resulting 
deproteinised and derivatised supernatant (1 µL) was 
subjected to GC-MS/MS, performed on a GC-MS TQ-8040 
system (Shimadzu, Kyoto, Japan). The compound separa-
tion was performed using a fused silica capillary column 
(BPX-5; 30 m×0.25 mm inner diameter; film thickness: 
0.25 µm; Shimadzu). Metabolite detection was performed 
using Smart Metabolites Database (Shimadzu) that 
contained the relevant multiple reaction monitoring 
(MRM) method file and data regarding the GC analyt-
ical conditions, MRM parameters and retention index 
employed for the metabolite measurement. The data-
base used in this study included data on 475 peaks from 
334 metabolites. All peaks of metabolites detected from 
each sample was annotated and analysed using Traverse 

http://ijgvd.megabank.tohoku.ac.jp
http://ijgvd.megabank.tohoku.ac.jp
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MS (Reifycs, Tokyo, Japan). Then, two types of normal-
isation were performed to these annotated metabolites. 
The first normalisation was performed using the peak of 
2-isopropylmalic acid as an internal standard, which was 
added to each sample before analysis with GC-MS/MS. 
Then the second normalisation was performed using QC 
samples, which were injected after every 12 study samples 
according to the reference quality control (RQC) normal-
isation methods.39 Normalised values of each metabolite 
in the QC samples were assessed by calculating coeffi-
cients of variation (CVs), and metabolites with CVs over 
20% were eliminated.

Oral microbiome
Analysis of oral microbiome was conducted by previously 
reported protocols.40 In brief, saliva was collected in a 
50 mL tube. Dental plaque was sampled by participants 
by brushing teeth with a sterilised toothbrush, and then 
suspending it in 0.5 mL Tris-EDTA for collection. Both 
samples were stored at −80°C until the time of processing. 
DNA was extracted from saliva and dental plaque by stan-
dard glass bead-based homogenisation and subsequent 
purification with a silica-membrane spin  column using 
PowerSoil DNA Isolation Kit (Mo Bio Laboratories, 
Carlsbad, California, USA). DNA was eluted from the 
spin column with 30 µL RNase-free water (Takara Bio, 
Inc., Shiga, Japan), and stored at −20°C after determining 
the amount and purity of DNA with a Nanodrop spec-
trophotometer (Thermo Fisher Scientific, Wilmington, 
Delaware, USA). Using DNA extracted from saliva or 
dental plaque as a template, a part of the V4 variable 
region of the bacterial 16S rRNA gene was amplified by 
two-step PCR. Tag-indexed PCR products thus obtained 
were subjected to multiplex amplicon sequencing using 
MiSeq System with MiSeq Sequencing Reagent Kit V.3 
(Illumina) according to the manufacturer’s instructions. 
For the quality assurance, the minimum threshold of the 
total sequence reads for each sample was set to ten thou-
sands, and the principal component analysis was used to 
eliminate outliers.

Outcomes
The following obstetric complications represented the 
primary outcomes. Gestational age was confirmed by 
measuring fetal crown rump length from 9 weeks to 13 
weeks of gestation using transvaginal ultrasound. HDP 
was defined as gestational hypertension, pre-eclampsia, 
superimposed preeclampsia or chronic hypertension.41 42 
Preterm birth was defined as spontaneous preterm labour, 
medically induced preterm labour or preterm premature 
rupture of membranes resulting in preterm birth at less 
than 37 weeks of gestation. GDM was diagnosed according 
to the International Association of the Diabetes and Preg-
nancy Study Groups criteria.43 The secondary outcomes 
were maternal body weight, blood pressure, physical 
activity, lifestyle changes, perinatal mental disorders, fetal 
growth, fetal movement and birth weight.

Sample size calculation
At this time, there is little reliable evidence to demon-
strate how time-dependent trends of longitudinal dense 
data would differ by pregnancy outcomes. Therefore, 
a priori sample size calculation is not provided in the 
present study. However, considering that one of the 
main purposes of the MLOG study is to explore the rela-
tionship between patterns of longitudinal home blood 
pressure and the onset of HDP, we estimated a required 
sample size as follows. Based on the HDP incidence of 
approximately 10% at Tohoku University Hospital, with 
a statistical power of 90% and a significance level of 
5%, a sample of 250 participants is required to detect 
a 5 mm  Hg difference in average home blood pressure 
(with a 7 mm Hg SD) in the HDP group. To allow for 15% 
attrition and withdrawals during pregnancy, a minimum 
of 300 participants at baseline was required.

Statistical analysis of longitudinal lifelog data
One of the major advantages of the MLOG study is the 
dense information for each participant. Especially, time 
points for lifelog data collection are highly dense for each 
participant. For these datasets, per-person analysis of 
dynamic relationships between variables can be applied.44 
Vector autoregressive modelling is a promising solution 
to find the predicates for each outcome. In addition, the 
Granger causality test can elucidate the temporal ordering 
of dynamic relationship between two or more variables 
and indicate putative causal associations.45 Some types 
of lifelog data were generated automatically; the others 
were manually input. We will first detect outlier data 
points, depending on the type of each lifelog, and elim-
inate them. The missing time-series lifelog data, ranging 
in 15%–33% of the total data points, would be imputed 
using the EM-imputation algorithm, for example, Amelia 
library,46 after normalising the data by data transforma-
tion if required. For downstream analysis, the data might 
be collapsed with time scale, for example, taking trimmed 
mean or median for each week, month or trimester.

Statistical analysis of multiomics data
The present study allows combination of longitudinal lifelog 
data with multiomics data. In contrast to single omics analysis, 
the multiomics analysis would reveal the complicated inter-
actions between one and another. However, the sample size 
for multiomics analysis is usually relatively small. Dimension 
reduction via unsupervised or supervised learning for each 
omics data would be key ingredients to derive meaningful 
patterns from high dimensional data sets. Also, obtaining 
low dimensional representations provides a mean to deal 
with the multiple testing problem by decreasing number of 
statistical tests. For gene expression data, surrogate variable 
analysis47 and sparse factor analysis48 are frequently used 
to capture unknown batch effects in advance to expres-
sion quantitative trait locus (eQTL) analysis. The extracted 
factors can be removed from raw expression data to increase 
power for detecting associated genes.49 Several unsupervised 
clustering methods50–52 would be also applicable to obtain 
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hidden patterns from dense time-course lifelog measure-
ments, which might be related to pregnancy complications. 
Recently developed multiview factor analysis approaches53 54 
have been used to integrate heterogeneous omics data to 
identify essential components to distinguish disease subtypes 
from few hundreds of samples. This line of approach would 
be a promising way to characterise biological status such 
as gestational age and to predict clinical outcomes such as 
spontaneous preterm birth.

Standard analyses would be also applicable for the selected 
variables and extracted factors (features). The association of 
outcomes with each feature will be analysed using statistical 
hypothesis tests such as Welch’s t-test, Fisher’s exact test, the 
χ2 test and others as appropriate. Multiple logistic regres-
sion modelling will be used to adjust for confounders and to 
assess whether each feature or combination of features can 
be used to predict outcomes. Stepwise selection algorithms 
or regularised algorithms (eg, Least absolute shrinkage and 
selection operator (LASSO), ridge regression or elastic net) 
will be used to select the optimal number of contributing 
features that maximise the predictive power using the leave-
1-out cross-validation or K-fold cross-validation methods.

Individual genetic features may have an effect on 
outcomes; therefore, some aggregated genetic risk score 
should be included in the prediction model. For example, 
SNVs, including rare variants in or around a chromosome 
region of a known or estimated risk gene, could be aggre-
gated by considering their impacts on biological function 
of the gene or their minor allele frequencies in the popu-
lation. However, this study is limited in the number of 
study participants, and the aggregated risk score might 
therefore contribute only slightly to the predictive power. 
To create a more reliable risk score, the estimates from 
other large-scale cohort data using polygenic score tools, 
for example, PRSice,55 could be used for this study.

Findings to date
Clinical background
A total of 302 women were enrolled, and the mean 
gestational weeks of recruitment was 16.4±4.9 weeks 
(mean±SD). A total of 285 participants have been 
followed up to delivery; their baseline clinical character-
istics are described in table  1. The mean maternal age 
at delivery was 33.3±4.9 years. As for educational levels, 
62% of the participants were high school graduates with 
or without vocational college education, and 21% had a 
college degree. The majority were employed (65%) in 
early pregnancy, and about 40% had a high household 
income (over 6 million yen per year). Approximately 
42% of the participants were over 35 years of age, 51% 
were parous and 22% were overweight or obese by their 
prepregnancy BMIs (≥25 kg/m2). Overall, 8.4% of the 
participants had HDP, and 5.6% underwent spontaneous 
preterm birth. On average, infants were delivered at 
38.0±2.3 weeks of gestation with a mean birth weight of 
2907±572 g. The rate of low birth weight was 18%. Mean 
gestational weeks of the first and second blood sampling 

Table 1  Participant characteristics

Characteristics Value

Maternal (n=285)

 � Age at delivery, years, mean (SD) 33.3 (±4.9)

 � Age at delivery, years, n (%)

 � �  20–24 12 (4.2)

 � �  25–29 45 (15.8)

 � �  30–34 107 (37.5)

 � �  35–39 90 (31.6)

 � �  40–44 30 (10.5)

 � �  45–49 1 (0.4)

 � Education (n=81), n (%)

 � �  Elementary school/junior high school 5 (6.2)

 � �  High school 35 (43.2)

 � �  Vocational college 23 (28.4)

 � �  College degree and above 17 (21.0)

 � �  Others 1 (1.2)

 � �  Data not available 204

 � Occupation (n=270), n (%)

 � �  Housewife or unemployed 93 (34.4)

 � �  Employed 175 (64.8)

 � �  Student 2 (0.7)

 � Annual household income, yen (n=248), 
n (%)

 � �  <2 million 17 (6.9)

 � �  2–4 million 59 (23.8)

 � �  4–6 million 73 (29.4)

 � �  6–8 million 51 (20.6)

 � �  8–10 million 22 (8.9)

 � �  >10 million 26 (10.5)

 � Parity, n (%)

 � �  0 140 (49.1)

 � �  1 93 (32.6)

 � �  ≥2 52 (18.2)

 � Prepregnancy BMI*, kg/m2, mean (SD) 22.7 (±5.1)

 � Prepregnancy BMI, kg/m2, n (%)

 � �  <18.5 36 (12.6)

 � �  18.5–24.9 186 (65.3)

 � �  25.0–29.9 34 (11.9)

 � �  ≥30.0 29 (10.2)

 � Gestational weeks at delivery, mean (SD) 38.0 (±2.3)

 � Mode of delivery, n (%)

 � �  Non-caesarean 179 (62.8)

 � �  Caesarean 106 (37.2)

 � Pregnancy complication, n (%)

 � �  Hypertensive disorder of pregnancy 24 (8.4)

 � �  Spontaneous preterm birth 16 (5.6)

Continued
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were 17.0±5.0 and 27.5±2.5, respectively. The third blood 
sampling was performed at 31.1±3.0 days after delivery on 
average. The length of enrolment ranged from 90 days to 
396 days with a mean of 216±61 days.

Data acquisition
The percentage of data uploads as of June 2017 was calcu-
lated for the 285 final study participants. For each lifelog 
item, the upload rate for each participant was calculated 
from the total number of days of actual uploads divided 
by the number of days from enrolment to delivery. The 
mean upload rate for each lifelog item was 85.3% (phys-
ical activity), 82.1% (body weight), 80.4% (body tempera-
ture), 78.0% (morning home blood pressure), 71.6% 
(evening home blood pressure), 83.5% (sleep quality), 
82.1% (condition of stool, severity of pain, severity of 
nausea, uterine contractions and palpitations) and 67.4% 
(fetal movement) (figure 3).

Number of data points
The total number of collected data points as of June 2017 was 
calculated for the 285 final study participants. The approxi-
mate number of registered data points was 86 000 for body 
weight, 324 000 points for home diastolic and systolic blood 
pressure, 86 000 for physical activity and 74 000 for body 
temperature. When physical conditions such as stool condi-
tion, severity of pain and fetal movement were combined, 
the total number of data points was over 6 million.

Strengths and limitations
Herein, we have described the rationale, design, objective, 
data collection methods and interim results of the MLOG 
study. The study was launched in September 2016, and 
baseline data collection ended in June 2017. A total of 285 
participants uploaded lifelog data throughout pregnancy 
with a high data acquisition rate and over 6 million total data 
points. Biospecimens for multiomics analysis were satisfacto-
rily collected and all tracked by LIMS.

There are three noteworthy features in the MLOG study. 
First, it is a prospective add-on cohort study based on TMM 
BirThree Cohort Study, with a full series of epidemiological 
data and a highly structured follow-up system for mothers, 
newborns and families.8 Second, we have successfully 
collected longitudinal, continuous, individual lifelog data 
with a high acquisition rate, which will enable us to assess 
dynamic changes in physiological conditions throughout 
pregnancy. Third, multiomics data will make it possible to 
fully understand the complex mechanisms of multifactorial 
pregnancy-related diseases and to overcome the unpredict-
ability of these complications.

Characteristics Value

Neonatal (n=300)

 � �  Birth weight, g, mean (SD) 2907 (±572)

 � Sex, n (%)

 � �  Male 168 (56)

 � �  Female 132 (44)

 � Low birth weight (<2500 g), n (%) 54 (18)

*BMI, body mass index.

Table 1  Continued 

Figure 3  Data acquisition rate. The mean data upload rate of specific measures was calculated from the total number of days 
of actual uploads divided by the number of days from enrolment to delivery for each participant.
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Prediction models using clinical and epidemiological 
information and circulating factors for pregnancy-related 
diseases have been developed extensively,56 and risk-assess-
ment approaches using clinical information have also been 
developed.57 58 However, there is a lack of evidence for the 
benefits of these predictive models for routine clinical use.59 
Once the likelihood of a pregnancy-related disorder is esti-
mated with high sensitivity and specificity, evidence-based 
clinical interventions could reduce the rate of maternal and 
neonatal morbidity and mortality.60 Therefore, an early-pre-
diction algorithm that can be used with a high level of confi-
dence is needed to obtain better outcomes for patients with 
pregnancy complications.

Recently, several studies of sample sizes comparable with 
ours exploiting lifelog or multiomics data were reported. 
One of the studies analysed lifelog and multiomics data, 
collected from 108 individuals at three time points during 
a 9-month period.61 In their study, several remarkable rela-
tionships were identified among physiological and multio-
mics data through integrated analyses. Another study 
investigated genome-wide associations between genetic 
variants and gene expression levels across 44 human tissues 
from a few hundreds of postmortem donors.49 They studied 
both cis-eQTL (within 1 Mb of target-gene transcription 
start sites) and trans-eQTLs (more distant from target genes 
or on other chromosomes) with 350 whole blood samples 
and thereby identified 5862 cis-eQTL and one trans-eQTL 
associations. These previous studies indicate that our time-
course high-resolution reference catalogue with 285 preg-
nant women would be well applicable to high-dimensional 
data analyses such as searches for quantitative trait loci and 
molecular risk markers.

Potential limitation of the present study is participant 
recruitment only at Tohoku University Hospital that is one 
of the tertiary hospitals in Miyagi Prefecture for high-risk 
populations. Therefore, the sample size is limited, and the 
results might not be applicable to the general populations. 
Inclusion criteria of the present study limited the eligibility 
to pregnant women with age >20 years and the ability to 
access the internet using a smartphone. Therefore, results 
of the present study might not be applicable to pregnancies 
with lower coverage of smartphone use.

Hopefully, our study will result in the development of a 
novel stratification model for pregnancy-related diseases 
employing multiomics and lifelog data.

The MLOG study will enable us to construct a time-
course high-resolution reference catalogue of wellness 
and multiomics data from pregnant women and thereby 
develop a personalised predictive model for pregnancy 
complications. Progressive data sharing and collaborative 
studies would make it possible to establish a standardised 
early-prediction method through large clinical trials.

Collaboration
We are very much interested in collaborating with other 
research groups and are open for specific and detailed 
proposals approved by the institutional ethical review 

committee. We are planning to share the full data of the 
MLOG study in the TMM biobank8 by the end of 2022, and 
a portion of the data have been distributed to researchers 
approved by the Sample and Data Access Committee of the 
biobank.
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