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Abstract

Interlocus gene conversion (IGC) homogenizes repeats. While genomes can be repeat-rich, the evolutionary importance
of IGC is poorly understood. Additional statistical tools for characterizing it are needed. We propose a composite
likelihood strategy for incorporating IGC into widely-used probabilistic models for sequence changes that originate
with point mutation. We estimated the percentage of nucleotide substitutions that originate with an IGC event rather
than a point mutation in 14 groups of yeast ribosomal protein-coding genes, and found values ranging from 20% to 38%.
We designed and applied a procedure to determine whether these percentages are inflated due to artifacts arising from
model misspecification. The results of this procedure are consistent with IGC having had an important role in the
evolution of each of these 14 gene families. We further investigate the properties of our IGC approach via simulation. In
contrast to usual practice, our findings suggest that the IGC should and can be considered when multigene family
evolution is investigated.
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Introduction
A variety of mutational mechanisms generate repeated se-
quences. Following their formation, the evolutionary fates of
individual repeated elements are intertwined. One source of
this mutual dependence is interlocus gene conversion (IGC).
IGC homogenizes repeats by copying sequence stretches
from one repeat into the equivalent region of another. This
means that the evidence for nucleotide substitution in one
paralog can be erased when IGC copies over the sequence
that experienced it. In addition, IGC can make it appear as if
separate nucleotide substitutions arose in two different paral-
ogs. Failure to consider IGC can therefore obscure the process
of nucleotide substitution and thereby potentially impact
inferences of phylogenies, divergence times, and diversifying
positive selection.

However, the consequences of ignoring IGC depend on its
frequency. Although repeats often constitute a large fraction
of an organism’s DNA, the evolutionary importance of IGC on
a genomic scale is unclear. There have been substantial ad-
vances toward disentangling the duplications, deletions, and
speciation events that shape multigene families (reviewed by
Szöll}osi et al. 2015), but less progress has been made toward
separating IGC events from the nucleotide or codon substi-
tutions that arise from point mutations. There are available
tools for detecting IGC and illuminating evolutionary inves-
tigations of IGC have been performed (e.g., Sawyer, 1989;
Jackson et al. 2005; Dumont and Eichler, 2013; Dumont,
2015), but the overall paucity of information about IGC is

largely attributable to a shortage of appropriate statistical
techniques. Simulations suggest that previously proposed
tests for detecting IGC can have low power (Mansai and
Innan, 2010).

Here, we employ a composite likelihood-based approach
with models that consider the possibility that corresponding
sequence positions in two paralogs can be homogenized due
to IGC. We do this with a phylogenetic framework that can be
added to any existing probabilistic model of sequence evolu-
tion where sequence variation arises via point mutation. We
will refer to these existing conventional models as point-
mutation models. The basis of our IGC-extension is to: (1)
jointly consider corresponding nucleotide or codon sites in
paralogs within a genome; (2) have point-mutation models
independently affect different paralogs; and (3) have rates at
which nucleotide or codon states are homogenized in two
different paralogs be the sums of rates from the point-
mutation models plus the IGC rates. For changes that do
not homogenize paralogs, rates are determined exclusively
by the point-mutation models.

We illustrate our approach by applying it to quantify the
amount of IGC that occurred in 14 groups of protein-
coding genes subsequent to a genome-wide duplication
in yeast. Simulations are conducted to characterize the
properties of our approach and to examine how robust
it is to violations of its assumptions. We conclude by dis-
cussing the weaknesses of the approach and future poten-
tial improvements.
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New Approaches
We have been pursuing extensions of simple codon substitu-
tion models (Goldman and Yang, 1994; Muse and Gaut, 1994)
because their ability to differentiate between synonymous
and nonsynonymous change is appealing. Consider a simple
61-state codon model that has the Muse-Gaut treatment of
codon frequencies together with a distinction between tran-
sition and transversion substitutions. Using the notation of
the codeml software (Yang, 2007), we specifically consider a
model that would be denoted F1� 4MGþ jþ x.
However, we will refer to this as the independently-evolving
paralog model (IND) in order to contrast it with our approach
that adds dependence among paralogs due to IGC. The IND
model has the instantaneous rate Qi;j from codon triplet i to j
be 0 if i and j differ in more than one of their three positions or
if j encodes a stop codon. If i and j differ in exactly one nu-
cleotide that has type h (h 2 fA;G; C; Tg) in codon j, the
IND model has rates:

Qi;j ¼

uph for a synonymous transversion

uphj for a synonymous transition

uphx for a nonsynonymous transversion

uphjx for a nonsynonymous transition:

8>>>>><
>>>>>:

(1)

To incorporate IGC when there are two paralogs, the corre-
sponding codon triplets in the two paralogs are jointly con-
sidered. This transforms a 61-state codon substitution model
into a 612 ¼ 3721-state joint codon substitution model. We
define Qði;i0Þ;ðj;j0Þ to be the instantaneous rate at which i
changes to j in one paralog and the corresponding codon i0

in the other paralog changes to j0. Codon substitutions orig-
inating by point mutation are assumed to occur indepen-
dently for the two paralogs with rates that are determined by
the above IND model for each paralog and, when j ¼ j0, ho-
mogenization due to IGC is reflected by adding s to synon-
ymous rates and xs to nonsynonymous rates. While other
parameterizations can be explored in the future, we reason
that x reflects natural selection that operates on nonsynon-
ymous changes and so the IGC contribution to a nonsynon-
ymous rate can be modified by a factor x just as the point
mutation contribution to codon substitution is modified by
x. The joint codon substitution model has rates

Qði;i0Þ;ðj;j0Þ ¼

0 i 6¼ j; i0 6¼ j0

Qi;j i 6¼ j; i0 ¼ j0; j 6¼ j0

Qi0;j0 i ¼ j; i0 6¼ j0; j 6¼ j0

Qi;j þ � i 6¼ j; i0 ¼ j0; j ¼ j0

Qi0;j0 þ � i ¼ j; i0 6¼ j0; j ¼ j0;

8>>>>>>>>>><
>>>>>>>>>>:

(2)

where � ¼ s if the change is synonymous and where � ¼ xs
if the change is nonsynonymous. While point mutation leads
to codon substitutions that can change only one of the three
codon substitutions, IGC events can simultaneously affect
multiple positions in a codon and this is reflected in the above
set of joint codon substitution rates.

For the rates in equation 2, the joint stationary distribution
of the two paralogs when s > 0 is different from the joint
stationary distribution when the paralogs are evolving inde-
pendently according to the IND model (i.e., when s¼ 0).
Most obviously, when s > 0, the joint stationary distribution
has higher probabilities of identical codon states at the two
paralogs than does the joint stationary distribution for s¼ 0.
Although the IND model happens to be time reversible, the
joint process of the rates in equation 2 is not. For instance,
corresponding codons in two paralogs can change in an in-
stant from having two or more nucleotide differences to be-
ing identical, but cannot instantly change from being identical
to having two or more differences. Interestingly, the marginal
stationary distribution of one paralog in the joint process is
unaffected by the value of s. Also, if two paralogs initially have
identical codon states at some position, the marginal transi-
tion probability of the codon state in one paralog at some
later time is unaffected by the value of s.

As described in more detail in Materials and Methods,
the rates of equation 2 can be used in conjunction with nu-
merical optimization and Felsenstein’s pruning algorithm
(Felsenstein, 1981) to obtain maximum likelihood estimates
of branch lengths, s, and other rate parameters. The 3721-
state joint codon model has a larger state space than is usually
considered for models of sequence change. Our implemen-
tation of Felsenstein’s pruning algorithm (Felsenstein, 1981)
makes likelihood-based inference on a phylogeny computa-
tionally tractable by using the procedure of Al-Mohy and
Higham (2011) to compute products of exponentiated rate
matrices and vectors of conditional likelihoods.

While this treatment uses the phylogeny, reflects depen-
dence between paralogs due to IGC, and allows IGC events to
simultaneously affect multiple positions within a codon, it
does not account for the fact that single IGC events can
simultaneously affect contiguous codons. Because it has
IGC independently affecting codon positions, our strategy
can be classified as a composite likelihood approach.
Although we have not yet explored the possibility, uncer-
tainty in parameter estimates could therefore be approxi-
mated via the inverse of the Godambe information matrix
(e.g., see Kent, 1982; Varin et al. 2011).

The impact of ignoring dependence between consecutive
codons is partially influenced by the length distribution of
IGC tracts and how often single IGC events simultaneously
homogenize multiple codons that would otherwise differ be-
tween paralogs. Mansai et al. (2011) summarize and analyze
evidence regarding the tract length distribution of IGC mu-
tations. They report estimates for average IGC tract length
that range from substantially less than 100 nucleotides to
several hundred nucleotides. These estimates depend on
which paralogs are examined and also on the species in which
the paralogs are found.

However, the impact of ignoring dependence between
consecutive codons when analyzing fixed IGC-induced
changes in interspecific data will be less than the amount
of dependence between codons when new IGC mutations
are considered. The impact is also shaped by how homolo-
gous recombination rates affect the covariance in fixation
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probabilities among sequence positions that are homoge-
nized by a single IGC event. If a chromosome with an IGC
tract that is different from the wild type enters the popula-
tion, then the amount of that tract, if any, that eventually
becomes fixed in the population will be influenced by subse-
quent homologous recombinations that interrupt the tract.
In summary, our IGC treatment can be viewed as a composite
likelihood approach that should be most realistic when there
are high homologous recombination rates, or short IGC mu-
tation tracts, or point mutation rates that are low relative to
IGC mutation rates.

Results

Analysis of Yeast Data
The 14 data sets that we analyzed all consist of protein-coding
genes from yeast. As described in the Materials and
Methods, these data represent all genes that remained after
applying filters designed to reduce concerns about sequence
alignment and paralogy status. All 14 data sets happen to
represent yeast ribosomal proteins. In every data set, six yeast
species are each represented by two paralogs that stem from
an ancient genome-wide duplication (Wolfe et al. 1997;
Philippsen et al. 1997; Kellis et al. 2004; Dietrich et al. 2004;
Dujon et al. 2004). Each data set also includes a sequence
from a species (L. kluyveri) that diverged from the other six
prior to the genome-wide duplication. Our analyses relied on
the well-established phylogenetic tree topology of Figure 1.

IGC is detected for all 14 data sets. To estimate the pro-
portion of sequence changes due to IGC rather than point
mutation for each data set, we conditioned upon the maxi-
mum likelihood parameter estimates from our IGC-extension
and adapted the “integral of matrix exponentials” approach of
Tataru and Hobolth (2011) to determine the expected num-
ber of postduplication changes from IGC on the tree and the
expected number of postduplication substitutions on the tree
that originated with point mutations. For each of the 14 data
sets, these proportions are substantial (see Table 1).

The IGC-extension jointly considers evolution of the paral-
ogs and thereby constrains each postduplication branch of
the species tree to have the same length for the two paralogs.
These constraints are absent when the data sets are analyzed
via the conventional IND implementation where each branch
of the species tree is free to have its own length for each

paralog. While the IGC-extension adds the parameter s, the
branch length constraints mean that the IGC-extension ac-
tually has 10 fewer free parameters than the conventional
IND analyses. Despite having fewer free parameters, the
IGC-extension produces a higher maximum log-likelihood
for 12 out of 14 data sets (see Table 1) and, subject to the
caveat that independent evolution among codons within a
paralog is assumed, the IGC-extension is preferred for all data
sets according to model selection criteria such as AIC (Akaike,
1974). If maximum log-likelihoods of the IGC-extension are
compared to the ones obtained for the special case where s is
constrained to be 0, AIC prefers the unconstrained IGC-
extension for all 14 data sets (see Table 1).

Sometimes statistical fits of models improve by adding
parameters, but not due to the phenomena that the param-
eters are meant to represent. Here, we intend s to capture the
tendency for paralogs within the same genome to be homog-
enized. However, numerous other biological phenomena are
not included in our evolutionary model. For example, varia-
tion of preferred amino acid residues among protein sites is
incorporated into the CAT model of amino acid replacement
(Lartillot and Philippe, 2004) but is not yet included in our
IGC-extension.

To investigate whether the improvements in model fit
with our IGC-extension are actually attributable to a statisti-
cal artifact possibly arising from some non-IGC phenomenon,
we designed a two-scenario experiment using gene copies
from L. kluyveri, S. castellii, and S. cerevisiae (see Figure 2).
Figure 2A depicts the biologically correct scenario where
IGC events homogenize paralogs within the same genome.
Figure 2B depicts a biologically incorrect scenario where IGC
events homogenize paralogs from different species. If the
IGC-extension is improving the model fit because of some
phenomenon that does not homogenize paralogs within the
same genome, we expect s estimates and maximum log-
likelihood values to be similar for the two scenarios.

We analyzed both the Figure 2A and B scenarios for all 14
genes using our IGC-extension. We report s estimates and log-
likelihood differences for the paralog-swapping experiment of
Figure 2 where a strict molecular clock is assumed, but qual-
itatively similar results were obtained without the clock con-
straints. For all 14 data sets, the s estimate is larger for the
biologically correct scenario (Figure 2A) than for the incorrect
one (Figure 2B). For the correct scenario, s estimates ranged
from 1.22 to 10.52 with a median of 3.58. For the incorrect
scenario, s estimates ranged from 0 to 0.76 with a median of
0.10. The maximum log-likelihood values were higher for the
correct scenario for all 14 data sets with differences ranging
from 2.82 to 118.89 log-likelihood units and with a median
difference of 34.63. When we examined the null hypothesis of
no gene conversion with the GENECONV software (Sawyer,
1989), 9 of the 14 data sets yielded P-Values< 0.05 (see Table
1). These findings are all consistent with the conclusion that
our approach is finding and quantifying IGC.

Simulations
As detailed in Materials and Methods, we performed simu-
lations to characterize our IGC procedure. For the

S. cerevisiae

S. paradoxus

S. mikatae

S. kudriavzevii

S. bayanus

S. castellii

L. kluyveri

FIG. 1. The tree topology used for evolutionary analyses. The arrow
indicates the branch on which the genome-wide duplication
occurred.
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simulations, rates are normalized so that the expected rate
per paralog per codon is 1 for substitutions that originated
with a point mutation. The parameter s can be viewed as the
expected rate at which homogenization due to IGC occurs for
corresponding codon sites in the two paralogs that happen to
differ prior to the IGC event. In the simulations, a codon site
might experience IGC because an IGC tract began at that site
or because a tract initiated elsewhere and continued through
the site.

When the inference model is violated because expected
tract lengths exceed 1 codon in the simulations, the average
estimated values of s are relatively close to the true value
(Figure 3A). The variability of estimated s values increases as
tract length increases, presumably because the actual num-
bers of IGC events experienced per codon will vary more

among simulated data sets when tracts are long but the ex-
pected number of tracts per simulation are few. Similarly, the
expected tract lengths have little influence on the averages of
the estimated proportions of sequence changes attributable
to IGC but the standard deviations of these proportions grow
as average tract lengths increase (Figure 3B).

With the IGC model, average branch length estimates are
close to the true values. Figure 4 shows the branch length
estimates for an expected tract length of 100 nucleotides
from both the IGC model and the IND model as imple-
mented in the PAML software (Yang, 2007). We depict the
expected tract length of 100 because it is relatively represen-
tative of previously obtained estimates of tract lengths for
IGC mutations (Mansai et al. 2011). Similar plots to Figure 4
are observed for other tract lengths with the exception that

Table 1. Results of Analyzing 14 Paralogous Gene Pairs.

Paralog Len % LnL Diff Diff s IGC
Pair ID (s 5 0) (IND) Prop

YLR406C,YDL075W* 112 91 �1178.10 16.98 �4.18 1.65 (0.51) 0.20 (0.05)
YER131W,YGL189C 118 92 �1205.19 15.69 �5.21 1.36 (0.45) 0.20 (0.05)
YML026C,YDR450W 140 95 �1377.25 67.07 62.80 3.64 (0.94) 0.34 (0.04)
YNL301C,YOL120C* 185 95 �2139.31 75.76 30.76 2.48 (0.53) 0.26 (0.03)
YNL069C,YIL133C 197 87 �2322.83 58.61 48.48 1.46 (0.31) 0.22 (0.03)
YMR143W,YDL083C* 134 94 �1209.75 37.23 34.16 3.16 (0.70) 0.29 (0.03)
YJL177W,YKL180W* 183 92 �1837.06 36.62 28.68 1.76 (0.43) 0.21 (0.03)
YBR191W,YPL079W*** 159 94 �1467.29 66.10 62.44 3.83 (1.04) 0.32 (0.03)
YER074W,YIL069C 133 97 �1251.96 109.59 103.63 7.47 (1.66) 0.37 (0.03)
YDR418W,YEL054C** 163 92 �1739.18 32.04 24.69 1.41 (0.42) 0.21 (0.04)
YBL087C,YER117W 136 94 �1367.68 47.61 43.71 2.81 (0.58) 0.29 (0.03)
YLR333C,YGR027C* 107 92 �1262.00 83.65 69.24 3.28 (0.96) 0.29 (0.04)
YMR142C,YDL082W*** 197 93 �2054.05 142.98 136.02 5.71 (1.00) 0.38 (0.03)
YER102W,YBL072C** 198 98 �2058.96 137.70 130.18 4.87 (0.87) 0.36 (0.02)

Each row begins with the systematic names of two S. cerevisiae paralogous open reading frames. The GENECONV software (Sawyer, 1989) was used to examine the null
hypothesis of no gene conversion (see Materials and Methods) and the symbols ***, **,* are respectively used to indicate gene pairs yielding P-Values< 0.001, between 0.001
and 0.01, and between 0.01 and 0.05. The “Len” column shows the length in codons of each aligned data set. The “% ID” column has the percentage identity at the nucleotide
level of the two S. cerevisiae paralogs in each data set. The “LnL” column contains the maximum log-likelihood of the IGC-extension analysis for paralog pairs. The “Diff (s¼ 0)”
column specifies the number of log-likelihood units by which the IGC-extension value exceeds the maximum log-likelihood value when s is constrained to 0. The “Diff (IND)”
column shows the difference when the IND value is subtracted from the IGC-extension value. Estimated s values are in the column labeled “s”. The s parameter and other rate
parameters are scaled such that branch lengths are expected numbers of substitutions arising from point mutations per codon site per paralog. Estimated proportions of
sequence changes attributable to IGC are in the “IGC Prop” column. Estimated standard deviations are in parentheses. These estimates are based upon 100 pseudoreplicates of
nonparametric bootstrapping where corresponding triplets of columns representing codon sites are sampled with replacement from the two paralogs and where codons
within a paralog are assumed to independently evolve.

speciation

duplication

L. kluyveri S. castellii
paralog 1

S. castellii
paralog 2

S. cerevisiae
paralog 1

S. cerevisiae
paralog 2

IGC IGC

IGC

A

L. kluyveri S. castellii
paralog 1

S. castellii
paralog 2

S. cerevisiae
paralog 1

S. cerevisiae
paralog 2

duplication

speciation

IGC

IGC IGC

B

FIG. 2. A paralog-swapping experiment addressing whether improvement to model fit can be attributed to IGC or to artifacts. Both Scenarios A
and B specify the correct rooted phylogeny between L. kluyveri and the paralogs of S. castellii and S. cerevisiae. Scenario A shows the biologically
correct situation that has IGC between paralogs in the same genome. In Scenario B, IGC homogenization events involve one paralog from S. castellii
and one from S. cerevisiae. Because Scenario A corresponds to how observed data are generated, Scenario A should fit better than Scenario B if IGC
is actually being detected. Note that this paralog-swapping experiment would not be possible if only 1 postduplication species was used and would
not be effective with more than two postduplication species.
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variation of branch length estimates grows as tract length
grows for both IGC and IND estimates (data not shown).

The comparison between the branch length estimates
from our IGC-extension and the IND model is especially in-
teresting for the branch of the yeast tree that separates the
genome duplication from the first postduplication speciation

event. This branch happens to have the shortest true length
among the branches represented in Figure 4. For all tract
lengths, the IND analyses consistently underestimated this
branch length. With the IGC-extension, estimates of this
branch length were quite variable but we did not observe
the consistent underestimation of the IND analyses.
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FIG. 3. Effect on parameter estimates of expected tract length. A. The mean estimate of s among 100 simulated data sets is plotted versus the
expected length in nucleotides of IGC tracts. Vertical line segments depict interquartile ranges of the estimates. The horizontal line shows the true
value s ¼ 1:40948. B. The average among 100 simulated data sets of the estimated proportion of nucleotide changes originating with IGC rather
than point mutation is plotted versus the expected length in nucleotides of IGC tracts. Vertical line segments depict interquartile ranges of the
estimates. The horizontal line at 0.2131 represents the estimate of the proportion of changes due to IGC in the actual data.
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FIG. 4. Branch lengths from IGC and IND models for expected IGC tract lengths of 100 nucleotides. The Y-axis shows average estimated values and
interquartile ranges while the X-axis shows true values. All postduplication branches are depicted. The logarithmic scale on both axes as well as slight
offsets of the IGC and IND model values are used to enhance visibility. The dashed diagonal line shows where estimated values equal true values.
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This variability is observed even though the IGC-extension
uses information from both paralogs to estimate a shared
branch length whereas the IND analyses separately estimate
this branch length for each paralog. The bias of the IND
analyses for this branch presumably stems from the fact
that IGC-events on one branch can mimic the pattern that
would be observed from nucleotide substitutions that origi-
nate with a point mutation on other branches. We believe
that the variability of the branch length estimates from the
IGC model is due to the two paralogs beginning this branch
with identical sequences. For other postduplication branches
on the yeast species tree, the sequence differences between
paralogs at the beginning of a branch facilitate identification
of IGC events that occur in the branch. The lack of sequence
differences at the beginning of the initial postduplication
branch means that disentangling nucleotide substitutions
that arise from a point mutation versus IGC is difficult and
is overly dependent on values of model parameters.

Discussion
Whether the high level of IGC affecting these yeast genes is
characteristic of other multigene families in yeast or other lin-
eages remains unclear and needs further examination. Dumont
(2015) estimates that at least 2.7% of single nucleotide poly-
morphisms in duplicated human regions are attributable to
IGC. When we estimate the percentage of nucleotide substitu-
tions that originate with an IGC event rather than a point
mutation, our 14 yeast data sets yield values ranging from
20% to 38%. Considering that point mutation can affect se-
quences at any time whereas IGC can change codons only
when paralogs differ, the 20% to 38% range is especially striking.
While our simulations suggest that these percentages are diffi-
cult to accurately estimate for individual data sets, they do not
exhibit a strong bias in these percentages and all 14 data sets
yielded relatively high estimates for these percentages.

However, our 14 yeast data sets may be unusually prone to
IGC. As noted in the Results, the 14 data sets all encode
ribosomal proteins even though ribosomal protein-coding
genes were not explicitly sought. Yeast ribosomal proteins
have previously been connected to IGC (Evangelisti and
Conant, 2010). As described in the Materials and
Methods, we only analyzed yeast data sets that satisfied cri-
teria that were instituted to reduce the possibility of artifacts
associated with alignment errors and long phylogenetic
branches. Homogenization between paralogs due to IGC
would reduce alignment uncertainty and therefore our crite-
ria would inadvertently favor genes that are especially prone
to IGC. The ancient date of the yeast whole genome dupli-
cation works against being able to draw general conclusions
about IGC levels following whole genome duplication. To
assess how representative the inferred IGC levels from our
14 data sets are for genes that experience a whole genome
duplication, future studies could apply our IGC models to
cases of more recent whole genome duplications in other
evolutionary lineages. It may also be worthwhile to examine
other yeast data that do not meet the stringent criteria that
we adopted here.

While evidence is consistent with these 14 yeast data sets
having experienced IGC, this study does not shed light on the
physical mechanism by which IGC affects repeats created via
whole genome duplication. This IGC approach can also be
applied to paralogs that are the result of tandem duplications
or retrotranspositions. In light of hypothesized IGC mecha-
nisms (Chen et al. 2007), it seems plausible that repeats that
are scattered throughout the genome due to retrotransposi-
tion might experience less IGC than those that arise via tan-
dem duplication.

Extensive effort has been devoted to studying the fates of
duplicated genes and how duplicated regions influence the
evolution of gene function (Conant and Wolfe, 2008).
However, the role of IGC homogenization in these fates is
understudied. Tools for quantifying IGC levels are needed and
the approach described here can be refined. For example, it
could be employed to quantify how IGC levels change as
paralogs diverge. Previous studies suggest that IGC decreases
as paralogs diverge (Mansai et al. 2011). Also, there is sub-
stantial evidence that some paralogs tend to be the donors
and other paralogs tend to be the recipients when IGC occurs
(Chen et al. 2007). The model that we have explored here
does not include a possibility for such asymmetry, but minor
model modifications could.

Other future directions for this line of research include
extending IGC analysis to multigene families with more mem-
bers. This would facilitate investigation of how IGC levels
change as the number of paralogs in the multigene family
changes. One possibility is that paralogs in big multigene
families tend to be the recipients of more IGC events than
paralogs in small ones. To accommodate more than two
paralogs with codon-based models, the high number of pos-
sible joint states will presumably mean that another inference
strategy is necessary. While 4-state nucleotide substitution
models are less appealing than codon-based models in
many regards, they would be amenable to joint consideration
of multigene families with more than two paralogs. By em-
ploying the Al-Mohy and Higham (2011) algorithm, we an-
ticipate that IGC-extensions of 4-state models with up to six
paralogs will be computationally tractable.

Materials and Methods

Data Set Collection
We started with 475 previously identified paralogous S. cer-
evisiae gene pairs (Byrne and Wolfe, 2005; Casola et al. 2012).
Corresponding genes of S. kudriavzevii, S. bayanus, S. para-
doxus and S. mikatae were determined via the orthology
mapping of Scannell et al. (2011). The Fungal Orthogroups
Repository (Wapinski et al. 2007) was employed to include S.
castellii and L. kluyveri genes. Genes were not included unless
there was exactly one L. kluyveri copy and exactly two paral-
ogous copies in each of the other six species. After this step,
105 data sets remained. Sequence data were obtained from
the Saccharomyces Genome Database (Cherry et al. 2012). As
an additional filter aimed at avoiding alignment uncertainty,
data sets were excluded unless the shortest sequence length
was at least 90% of the longest. After this filter, there were 37
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data sets. One data set was removed because of ambiguity in
the reported sequence data.

Sequences in the 36 remaining data sets were aligned at
the amino acid level with the MAFFT software (Katoh and
Standley, 2013). The results were then converted to align-
ments at the codon level and codons in the same columns
as gaps were removed. Next, we did maximum likelihood
analyses of the aligned data sets using the known gene tree
topology and the IND model. As a final filter designed to
lessen paralogy and/or alignment uncertainty, we summed
the estimated number of changes per codon over all branches
in the gene tree and eliminated the data sets where the sum
from the IND model exceeded 3.0.

Analyses of Yeast Data
To test the null hypothesis of no IGC, analyses with the
GENECONV software (Sawyer, 1989) were performed with
default settings.

Inferences with our IGC-extension were obtained by the
software that we wrote. IGC analyses were done by assuming
that the IND model operated and was at stationarity on the
lineage to the outgroup L. kluyveri and also prior to the du-
plication (see Figure 1).

Simulations
The simulations were designed to resemble the
YDR418W_YEL054C data set. This dataset was selected be-
cause the s estimate obtained from it was neither unusually
high nor unusually low relative to the other 13 yeast data sets.
Also, this data set consists of genes with only one exon in S.
cerevisiae and, with only one exon, the complications of IGC
tracts that partially or completely span introns can be
avoided.

For each simulation condition, 100 data sets were gener-
ated. Each simulated data set had sequences of the same
length as our actual YDR418W_YEL054C data (i.e., 163 co-
dons) and each was generated according to the species tree
and duplication placement of Figure 1. To simulate, we used
values of j and ph (h 2 A; C;G; Tf g) that were estimated
from the YDR418W_YEL054C data set. The branch lengths
that were inferred from the YDR418W_YEL054C data were
used as the true values for the simulations. While the value of
x estimated from the YDR418W_YEL054C data was about
0.076, data sets were simulated using x¼ 1 because we
wanted to examine our model when IGC events affected
more than one consecutive codon in simulated data and
we did not want to complicate the simulations by having
to deal with natural selection when IGC tracts introduce
multiple nonsynonymous changes.

In the situation where all IGC events are forced to affect
exactly 1 codon, multiple nonsynonymous changes per tract
cannot occur and therefore the x¼ 1 constraint can be
avoided. In addition to the simulation results that are pre-
sented, we performed simulations for the case where all tracts
affect exactly 1 codon and where the true value of x is its
maximum likelihood estimate from the actual data. We do
not report these results because they follow similar patterns
to the ones that are reported where x¼ 1.

Our inference model has each IGC event potentially affect
all three nucleotides of a single codon. One way in which the
inference model is unrealistic is that there is no reason to
believe that all IGC events respect codon boundaries. In other
words, IGC events need not initiate at the first position of a
codon and end at the third position of a codon. Another way
in which the inference model is unrealistic is that multiple
consecutive codons can be affected by an IGC tract. In addi-
tion to simulating according to our model (3 nucleotide po-
sitions affected by each IGC event with codon boundaries
respected), we explored simulation scenarios where codon
boundaries were respected but IGC tracts can exceed 1 codon
in length. We also explored simulation scenarios with the
same average tract lengths but where codon boundaries are
not necessarily respected. For the simulations that did not
respect codon boundaries, the number of consecutive nucle-
otides affected was geometrically distributed with means that
were selected to correspond to the means used for the sim-
ulations that respected codon boundaries. The simulations
that did not necessarily respect codon boundaries had IGC
tract lengths with means 3, 10, 50, 100, 200, 300, 400, or 500
nucleotides. We only report results here from the simulations
that did not respect codon boundaries, but results from the
simulations that respected codon boundaries tend to be
quite similar.

The parameter s in our inference model represents the
rate at which IGC events homogenize codons that differ
among paralogs. This rate can be interpreted as the rate at
which IGC events initiate multiplied by the average number
of consecutive codons affected per IGC event. For each sim-
ulation scenario that we explored, we set the product of the
IGC initiation rate and the average number of consecutive
codons affected to 1.40948 because that was the value of s
estimated from the YDR418W_YEL054C data. To be consis-
tent with our inference model when x¼ 1, IGC tract initia-
tion events were independent of the sequences affected by
the IGC event. Furthermore, we wanted each sequence posi-
tion to experience the same expected number of IGC events.
To accomplish this, we accounted for IGC tracts that initiate
5’ of the first sequence position and continue into the simu-
lated sequence. We also accounted for tracts that continue in
the 3’ direction past the last simulated sequence position.
Data sets were simulated on the phylogenies by using the
Gillespie algorithm (Gillespie, 1976) to randomly intersperse
times at which IGC tracts occurred with times at which se-
quence changes arose due to point mutation.

To investigate the impact of ignoring IGC when it actually
occurred, we analyzed all simulated data sets with IGC-
extension and with the IND model as implemented in
Version 4.8a of the PAML software (Yang, 2007). To make
the comparisons sensible, both kinds of branch length esti-
mates are in units of expected numbers of codon substitu-
tions originating by point mutation per paralog per codon
site. We note that our IGC model implementation constrains
both paralogs to have the same branch length for each
postduplication branch of the species tree whereas the
PAML analyses are set up to separately estimate the branch
lengths for each paralog.
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For the simulated data sets, we noticed that PAML some-
times had numerical optimization failure. The failure seemed
to usually involve the two branches that separate the dupli-
cation event from the first postduplication speciation event.
We found that numerical optimization could be facilitated by
having PAML analyze four topologies (the species tree and
duplication placement of Figure 1 and the three multifurcat-
ing trees that result when one or both of the two earliest
postduplication branches in Figure 1 are constrained to have
length 0) and then choosing the analysis that yielded the
highest likelihood among the 4 topologies.
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