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Tracking the fate of individual cells and their progeny through 

lineage tracing has been widely used to investigate various 

biological processes including embryonic development, ho-

meostatic tissue turnover, and stem cell function in regenera-

tion and disease. Conventional lineage tracing involves the 

marking of cells either with dyes or nucleoside analogues or 

genetic marking with fluorescent and/or colorimetric protein 

reporters. Both are imaging-based approaches that have 

played a crucial role in the field of developmental biology as 

well as adult stem cell biology. However, imaging-based line-

age tracing approaches are limited by their scalability and the 

lack of molecular information underlying fate transitions. 

Recently, computational biology approaches have been com-

bined with diverse tracing methods to overcome these limita-

tions and so provide high-order scalability and a wealth of 

molecular information. In this review, we will introduce such 

novel computational methods, starting from single-cell RNA 

sequencing-based lineage analysis to DNA barcoding or ge-

netic scar analysis. These novel approaches are complemen-

tary to conventional imaging-based approaches and enable 

us to study the lineage relationships of numerous cell types 

during vertebrate, and in particular human, development and 

disease. 
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INTRODUCTION 
 

Cells can occupy one of two states, steady or transitioning, 

during postnatal development, homeostatic turnover and 

regeneration upon injury. During homeostatic turnover in 

mature organs, multipotent adult stem cells give rise to addi-

tional stem cells (self-renewal) or to committed progenitors 

which will become terminally differentiated cells (differentia-

tion), with the cells tending towards occupancy of the steady 

state (stem cells and terminally differentiated cells) rather 

than the transitioning state (differentiating cells) (Clevers, 

2013; Gehart and Clevers, 2019). In contrast, during devel-

opment or regeneration, occupancy of the transitioning 

state may be more common (Olsson et al., 2016). For ex-

ample, the fertilized egg begins development as a totipotent 

zygote, competent to form both embryonic and extraem-

bryonic tissue, which undergoes multiple rounds of cleavage 

and gives rise to pluripotent cells, which can give rise to all 

three germ layers of the embryo. Subsequently, pluripotent 

cells differentiate and give rise to patterned tissues and or-

gans with distinct functions (Arnold and Robertson, 2009). 

Changes in morphology, gene expression, epigenetic marks 

and metabolic state can be observed in nearly all cases of cell 

fate transition and differentiation. Understanding how a cell 

changes fate and what factors determine lineage hierarchy 

during development, homeostasis and regeneration would 

allow researchers to understand the overall kinetics of these 

fundamental dynamic processes. 

Molecules and Cells 

Received 15 January, 2018; revised 18 January, 2018; accepted 20 January, 2019; published online 13 February, 2019 
 
eISSN: 0219-1032 

The Korean Society for Molecular and Cellular Biology. All rights reserved. 
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported

License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/. 



Modern Lineage Tracing 
Szu-Hsien (Sam) Wu et al. 

 
 

Mol. Cells 2019; 42(2): 104-112  105 

 
 

Lineage tracing is the term for a set of methods that allow 

us to follow the fate of individual cells and their progeny 

with minimal disturbance of their physiological function. It 

has been widely used to delineate complex biological pro-

cesses involving multiple cell types with different lineage 

hierarchies. Historically, lineage tracing has been carried out 

by careful microscopic observation of the developing embryo 

in order to determine the lineage tree (Sulston et al., 1983) 

and microinjection of dyes into single cells or groups of cells 

to observe cell migration (Thomas et al., 1998) and prolifera-

tion (Kit et al., 1958). Although many other methods (re-

viewed in our previous article (Fink et al., 2015)) have been 

developed, in the last decade genetic reporters based on the 

Cre-LoxP recombinase system have emerged as a gold 

standard in lineage tracing. 

Such systems allow exquisite specificity of labeling: as an ex-

ample, expression of the tamoxifen-inducible CreER recom-

binase can be under the control of a tissue-specific promoter 

(Murray et al., 2012) to provide temporal control of activation. 

Following administration of tamoxifen, the CreER recom-

binase can remove a LoxP-STOP-LoxP cassette from a reporter 

to allow expression of a fluorescent or colorimetric protein to 

genetically label the cell and all its subsequent progeny, as the 

genetic change will be passed down the lineage tree (Fink et 

al., 2015). Fluorescent reporters can be used individually or in 

combinations (multicolor labeling) to achieve cell labeling in 

living organisms, such methods becoming more readily availa-

ble with the advent of tissue clearing methods and confo-

cal/lightsheet microscopy (Fink et al., 2015). Alternatively, the 

live-tracing of individual cells in living animals has been report-

ed through the use of intravital imaging, where an optical 

window is surgically implanted into living animals (Alieva et al., 

2014). It is also possible to live-image developing zebrafish 

and mouse embryos at single-cell resolution as they undergo 

gastrulation and morphogenesis (Briggs et al., 2018; Farrell et 

al., 2018; Keller et al., 2008; McDole et al., 2018). Although 

imaging approaches provide valuable spatio-temporal and 

histological information in combination with the hierarchy of 

individual cells or clones, in order to uncover the full details of 

lineage relationships and cell fate regulation, we require addi-

tional strategies to reveal the molecular information underly-

ing fate transitions. 

Recently, next-generation sequencing, deep sequencing, 

whole genome/exome sequencing (WGS/WES) and single-

cell messenger RNA sequencing (scRNA-seq) have become 

available as new methods to trace or reconstruct cellular 

lineages at an unprecedented scale, and also simultaneously 

profile gene expression patterns in the case of scRNA-seq. 

Therefore, currently available lineage tracing strategies can 

be broadly classified into imaging- and computational-based 

methods, which can be further divided into prospective and 

retrospective approaches (Kester and van Oudenaarden, 

2018; Winters et al., 2018). Our previous review dealt with 

imaging-based lineage tracing (Fink et al., 2015); in the cur-

rent review, we will focus on computational-based ap-

proaches, starting with scRNA-seq and describing prospec-

tive scarring methods via genetic engineering and genetic 

barcoding, and finishing with retrospective lineage tracing 

through analysis of somatic mutations. 

INFERRING CELL FATE TRANSITIONS BY 
QUANTITATIVE RNA PROFILING 
 

In both developing and mature tissues, there exist distinct 

populations of cells with different functions, potency, and 

lineage hierarchy. Differences between cell types can be 

assessed by comparing their gross morphologies, epige-

nomes, transcriptomes and proteomes. While morphology is 

mostly descriptive, and epigenetic descriptions can only indi-

rectly imply function, transcriptomic and proteomic analyses 

serve as more reliable readouts of cellular function (Ye and 

Sarkar, 2018). While quantitative proteomic methods re-

main greatly challenging, especially with limited starting 

materials, despite recent advances (Swaminathan et al., 

2018), RNA quantification can be used reliably in most cases 

to infer cell identities and functions (Edfors et al., 2016). 

With advances in scRNA-seq, it is possible to distinguish 

populations and subpopulations of cells at single cell resolu-

tion, thereby giving more comprehensive information about 

cellular heterogeneity and dynamic gene expression patterns 

(Kolodziejczyk et al., 2015; Svensson et al., 2018). In particu-

lar, scRNA-seq also allows the detection of infrequently-

represented transcripts of rare cell types, which would oth-

erwise be missed in bulk-level transcriptome analyses (Grün 

et al., 2015; Haber et al., 2017). Being able to profile gene 

expression in a given population and for cells in transition 

has greatly increased our understanding of the molecular 

mechanisms underlying cell fate transition and differentia-

tion. 

Whilst traditional lineage tracing with genetic reporters 

has been informative for revealing the potential of particular 

cell type(s), with clear directional information between line-

ages, scRNA-seq is useful in studying how particular transi-

tions from given cell type(s) occur, but with only a relatively 

rough idea of the directionality of those cellular transitions. 

The basic workflow involves first isolating single cells and 

lysing them separately, followed by reverse transcription to 

generate cDNA and amplification of that cDNA. The result-

ing pool of cDNA is subsequently prepared for sequencing 

(Baran-Gale et al., 2018). Since the first report of scRNA-seq 

(Tang et al., 2009), several labs have improved the technol-

ogy by various means (see comparison: Ziegenhain et al., 

2017), such as by incorporating fluidic devices to capture 

single cells and the incorporation of unique molecular identi-

fiers (UMI) to resolve technical noise signals. With commer-

cialized library preparation and sequencing pipelines and the 

ready availability of analysis algorithms, scRNA-seq has be-

come popular in many research labs across a variety of re-

search fields. 

scRNA-seq can reveal the gene expression profiles of both 

the steady and transitioning states of captured cells (Figs. 1A 

and 1B). Assuming that the captured cells include cells not 

only at the start or end of the transition but also those in 

intermediate phases, one could create a lineage trajectory 

map along a pseudotime scale and subsequently elucidate 

candidate factors associated with the transition (Kester and 

van Oudenaarden, 2018) (Fig. 1C). Numerous trajectory 

inference algorithms have been developed in recent years 

(Kester and van Oudenaarden, 2018; Ye and Sarkar, 2018) 
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Fig. 1. Analysis of cell populations using single-cell RNA-sequencing. Individual cells isolated from cell culture, embryos or tissues are sub-

jected to scRNA-seq to profile gene expression. Analysis of scRNA-seq results using principal component analysis (PCA) or t-distributed 

stochastic neighbor embedding (t-SNE) allows the clustering of (sub)populations of cells and identification of cell types (A). The same 

plot can be used to visualize gene expression levels on a color scale to assess cell type-specific transcripts (B). To investigate the transition 

between different cell types in a biological context, pseudotime trajectory inference algorithms allow the mapping of transitions on an 

arbitrary time scale (C). Another lineage inference method, called RNA velocity, calculates the proportion of unspliced and spliced tran-

scripts, thereby allowing prediction of the prospective fate of individual cells (D). 

 

 

 

and applied to analyze various biological transitions in differ-

ent contexts. A comprehensive study recently aimed to 

benchmark 29 reported lineage inference methods (Saelens 

et al., 2018): depending on the type of data generated, the 

practical guideline can be used to choose the most suitable 

algorithm for trajectory inference analysis. In general, 

pseudotime trajectory inference methods are useful in iden-

tifying genes underlying state transitions, however, it should 

be noted that the true directionality of gene expression 

changes over time is not completely present in the ‘snapshot’ 

of scRNA-seq data, necessitating the use of additional, com-

plementary strategies to overcome this limitation (Weinreb 

et al., 2018). 

Recently, a different lineage inference approach called 

RNA velocity was reported which infers the state (transition-

ing vs steady) and directionality (trajectory) of cell fate by 

comparing the ratio between immature, unspliced tran-

scripts and mature, spliced transcripts (La Manno et al., 

2018). In available scRNA-seq datasets (The Tabula Muris 

Consortium, 2018), a notable portion of total reads (~20%) 

contain intronic sequences which correspond to unspliced 

transcripts. In the RNA velocity approach, the balance be-

tween unspliced and spliced mRNA is taken to be informa-

tive of the future state of cells. Therefore, one can determine 

probabilistic directional information from the ‘snapshot’ of 

gene expression profiles of single cells, which can help in 

identifying the correct lineage specification and hierarchy 

(Fig. 1D). For example, for differentiating progenitor cells 

that are located at the branch point of two lineages, RNA 

velocity gives a probabilistic value as to which lineage the cell 

will commit to, thereby also identifying candidate genetic 

factors for cell fate determination (La Manno et al., 2018). It 

is likely that RNA velocity will be particularly useful in the 

analysis of human samples, where the ability to implement 

complementary experimental strategies is limited. 

 

LINEAGE TRACING WITH GENETIC BARCODING 
AND GENETIC SCARS 
 

Fluorescent reporter-based lineage tracing methods, which 
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Fig. 2. Overview of modern lineage tracing methods. Various strategies to reconstruct cell lineage trees have been developed in line with 

advances in next-generation sequencing. Modern lineage tracing can be divided into prospective and retrospective methods. Prospec-

tive tracing methods mark cells using fluorescence for imaging-based, and genetic barcoding or genetic scars for computational-based 

methods, whereas retrospective methods use somatic mutations which occur naturally throughout the lifetime of the organism. Every 

method using genetic information to reconstruct cell hierarchies is computational-based lineage tracing which needs advanced NGS 

technologies. The figure is adapted from Fig. 3 of Kester and van Oudenaarden (2018). 

 

 

 

mark each cell with various color combinations, have been 

fundamental to our understanding of developmental biolo-

gy and stem cell research. However, practically speaking the 

number of available combinations is limited to a size of doz-

ens of color codes (Livet et al., 2007; Weissman and Pan, 

2015). This limits the possibility of tracing a large number of 

cells in parallel and potentially complicates lineage analysis 

due to the high probability of having two independent 

clones bearing the same color code in close proximity. To 

overcome this limitation, several methods have been intro-

duced which rely on generating DNA fingerprints in each cell 

at the cost of the loss of imaging information. Several types 

of DNA fingerprints have been used, including DNA barcod-

ing, Polylox and CRISPR/Cas9-based scar generation strate-

gies (Fig. 2). 

DNA barcoding with unique nucleotide sequences can la-

bel a large number of cells which can then be deconvoluted 

by DNA sequencing. In the case of 10-bp barcoding, 4
10 

(~10
6
) combinations can be generated, meaning that, theo-

retically, one million cells can be labelled with different DNA 

barcodes. Once introduced into the genome of an individual 

cell, the DNA barcode is passed down to its progeny, allow-

ing the identification of lineage relationships in a large num-

ber of cells. With the advent of next-generation sequencing 

technology, it is now possible to elucidate which cells have 

which barcodes though standard library preparation and 

deep sequencing protocols (Kebschull and Zador, 2018). 

Retro/lentiviruses have been used to integrate a pool of 

unique DNA barcode sequences into the genome. Virus-

encoded genetic barcodes were introduced into hematopoi-

etic cells in vitro and the barcode-labelled cells were subse-

quently transplanted into a host mouse in order to investi-

gate the diverse clonal differentiation pattern of hematopoi-

etic stem cells or multipotent progenitors in vivo (Gerrits et 
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al., 2010; Lu et al., 2011; Naik et al., 2013; Schepers et al., 

2008; Verovskaya et al., 2013). A similar barcoding strategy 

has also been applied to cancer cells to investigate the het-

erogeneity and clonal evolution of cancer stem cells and 

progenitors. Sequencing analysis of barcoded cancer cells 

after xenotransplantation or after serial xenografts showed 

growth diversity dependent upon the different cancer sub-

type used (Nguyen et al., 2014; Nolan-Stevaux et al., 2013). 

More recently, a ‘Polylox’ labeling strategy has been pub-

lished (Pei et al., 2017) which, utilizing a unique design of 

the Cre-LoxP system, allows the generation of numerous 

combinations of LoxP barcodes upon Cre activation. The 

cassette has 10 loxP sites which alternate with 9 stretches of 

DNA with unique sequences, which in theory allows the 

generation of 1.8 million different barcodes through the 10 

repetitive rounds of Cre excision and inversion. The authors 

identified 849 barcoded cells generated from up to 6 re-

combination events in mouse, that number being around 

one-third of the figure as predicted by computational meth-

ods (Pei et al., 2017). The Polylox system has an advantage 

over the viral barcoding method as the DNA labeling can be 

controlled spatiotemporally in vivo by using tissue-specific 

Cre or inducible CreER lines. Nevertheless, the recombina-

tion efficiency may still need further improvement in order to 

draw a lineage tree with the required confidence at larger 

scale. 

The CRISPR/Cas9-based genome editing system has been 

used in another interesting strategy, where cells are marked 

by unique scar sequences generated through DNA repair of 

Cas9-induced double strand breaks (DSBs). This novel strat-

egy has become a powerful tool for high-throughput lineage 

tracing in many different organisms (Junker et al., 2017; 

Kalhor et al., 2017; 2018; McKenna et al., 2016; Perli et al., 

2016; Spanjaard et al., 2018). CRISPR/Cas9 is a bacterial 

endonuclease which can generate a DNA DSB at a specific 

target sequence (Jinek et al., 2012). Unless the cell uses a 

template for homology-directed repair or microhomology-

mediated repair, DSBs will be repaired by an error-prone 

process which often results in various errors at the target site 

(Lee et al., 2018). These errors can be short insertions or 

deletions (indel mutations) of varying length and sequence; 

genetic scars that can serve as a genetic barcode in lineage 

tracing. 

The CRISPR/Cas9-induced genetic scar method has been 

used to delineate a lineage tree of cells during zebrafish de-

velopment (Alemany et al., 2018; McKenna et al., 2016; 

Spanjaard et al., 2018). Several methods have been used 

which generate genetic scars in multiple arrays of synthetic 

target sequences (GESTALT) or transgenes such as GFP 

(ScarTrace) or RFP (LINNAEUS). Upon co-injection of Cas9 

and target-specific gRNA to 1-cell stage zebrafish embryos, 

multiple indel mutations form in the cells of the embryo 

during several rounds of division. As a result, newly generat-

ed cells can have an accumulation of various indels at the 

target site in addition to previous indels passed down from 

ancestor cells. With this information, it was possible to re-

construct the lineage tree for cells from each organ in the 

adult fish and so visualize how each organ of the adult body 

is formed from a few progenitor cells. This method has also 

been applied to murine development with a few modifica-

tions. Kalhor and colleagues generated a mouse line harbor-

ing specific gRNAs (homing gRNA or hgRNA library) where 

the target sequence was present in 60 genomic regions 

(Kalhor et al., 2017; 2018). Mating this line with a Cas9 

knock-in line enabled the hgRNAs to start causing mutations 

in their target loci soon after the introduction of Cas9 and 

41 out of the 60 regions were mutated to generate unique 

genetic scar barcodes. Theoretically, more than 10
74

 differ-

ent combinations are possible, which is more than enough 

to cover the entire lineage tree of mouse development. 

 

TRACING BY NATURALLY OCCURRING SOMATIC 
MUTATIONS 
 

Mutations occur in the genome during every cell division due 

to the limited precision of DNA polymerase activity and re-

pair machineries. These naturally-formed mutations in so-

matic cells are termed somatic mutations. Somatic muta-

tions serve as a natural mark during our development and 

postnatal growth, and can be utilized as a marker for retro-

spective lineage tracing (Dou et al., 2018), whereas all previ-

ously mentioned barcoding or scar-forming methods are 

prospective tracers that are introduced intentionally (Fig. 2). 

Somatic mutations occur stochastically, accumulate through-

out the lifetime of the organism and are inherited by all 

daughter cells. Albeit possible theoretically for a long time, 

this hidden information about the lineage of each cell has 

only been decoded relatively recently as a result of the ad-

vent of high quality next-generation sequencing technology 

(Shapiro et al., 2013). 

One technical limitation has been the high error rate of 

sequencing technology, while the presence of somatic mu-

tations in the genome is rare. The first reported strategy to 

overcome this limitation focused on copy-number variants 

(CNVs), since CNVs, microsatellites (MSs) and retrotransposi-

tion are relatively easy to detect with low genome coverage 

in comparison to single nucleotide variants (SNVs). CNVs 

have been used for the reconstruction of cancer cell lineage 

trees because CNVs frequently occur in cancer cells. A bulk 

WGS dataset from 21 breast cancer samples revealed the 

evolutionary tree of each cancer sample based on CNV anal-

ysis in combination with analysis of oncogene mutations 

occurring among subclones (Nik-Zainal et al., 2012). Recent-

ly, single cell WGS performed on laser-dissected single cells 

has enabled the reconstruction of the lineage tree of cancer 

evolution by CNV profiles to be combined with spatial in-

formation (Casasent et al., 2018). MSs, for which mutation 

sites are relatively well-defined, have been used to delineate 

lineage trees for many years (Frumkin et al., 2005; Reizel et 

al., 2011, 2012; Salipante and Horwitz, 2006). Retrotrans-

position of the LINE1 element was also used as a lineage 

tracer in order to delineate the lineage tree of the brain 

(Evrony et al., 2012). However, the use of these markers is 

specifically suited to the study of cancer (CNVs and MSs) and 

brain development (retrotransposition) as they occur more 

frequently in tumorigenesis and the development of specific 

organs. 

To analyze SNVs with a meaningful sequencing depth, 
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some studies utilized targeted deep sequencing on specific 

gene sets. For example, ultradeep targeted sequencing of 74 

oncogenes (870X of median on-target coverage) in normal 

human esophagus epithelium from patients of various ages 

showed that mutation number correlates with sample age. 

By combining the spatial information from the samples with 

their SNV profiles, it was shown that cells accumulating mu-

tations in specific genes (NOTCH and TP53) form rapidly 

expanding clones within the esophageal epithelium (Mar-

tincorena et al., 2018). A similar strategy was used in cancer-

prone human skin, where targeted deep sequencing of fre-

quently mutated genes in cutaneous squamous cells re-

vealed that NOTCH1 was the most frequently mutated gene, 

and that neutral drift and stochastic nucleation of mutations 

together affected the clonal expansion of mutant clones 

(Lynch et al., 2017). In addition, two studies have also used 

targeted deep sequencing to reveal small subpopulations 

within tumors (Leung et al., 2017; Roerink et al., 2018). 

Finally, several studies have used bulk WGS following 

clonal derivation from a single, sorted cell. In order to gener-

ate clones of cells derived from liver, small intestine and co-

lon, single cells sorted from each tissue were seeded into 3D 

culture conditions to generate organoids. WGS of these 

clonal organoids provides high quality genome coverage 

with precise sequence information. In this study, the accu-

mulation and type of mutations present in adult stem cells 

were found to differ according to tissue type (Blokzijl et al., 

2016). Subclones from a single tumor mass have also been 

cultured as clonal organoids and sequenced to investigate 

intra-tumor heterogeneity in colorectal cancer (Roerink et al., 

2018). Similarly, blood cells have been cultured as single cell-

derived colonies and analyzed to delineate the lineage tree 

of human blood cells (Lee-Six et al., 2018). Whole genome 

sequences of human fetal forebrains were analyzed after the 

derivation of clones from single cells and compared with the 

genome of spleen cells to reveal the origin of each somatic 

mutation (Bae et al., 2018). Besides clonal derivation, one 

study used variant allele fractions of somatic mutations, 

which reveals the proportional frequency of mutation reads, 

from deep, bulk WGS of adult tissues to deduce early em-

bryonic cell lineage diversification (Ju et al., 2017). 

 

DISCUSSION AND FUTURE DIRECTIONS 
 

In this review, we have introduced conventional imaging-

based strategies (reviewed in Fink et al., 2015) as well as 

recently developed computational approaches (Fig. 2). Each 

method has its own pros and cons (Table 1). Thus, utilizing 

an appropriate method or combined strategy for a given 

biological question is key. 

The imaging-based approach powered by multicolor fluo-

rescent reporter systems often provides multifaceted visual 

 

 

 

Table 1. Comparison of each lineage tracing method 

 Pros Cons Requirement 

Imaging-based 

lineage tracing 

Completely retains spatial infor-

mation; does not need complicat-

ed algorithm for analysis; potential 

for multiple timepoint tracing/re-

tracing; applicable to various tis-

sues 

Limits scalability of traced progeny; 

variation in marking is limited; 

generation of new (mouse) lines 

may be time-consuming; not easily 

coupled with scRNA-seq 

Inducible CreER lines in desired tis-

sue; tissue processing (sectioning 

or clearing); 3D microscopy (con-

focal, lightsheet, intravital) 

Genetic barcoding Relatively easy to assign barcodes to 

each cell; high scalability; can be 

easily coupled with scRNA-seq 

Limited targetable tissues; lack of 

spatial information; single 

timepoint tracing 

Barcode library, delivery methods, 

implantation techniques; library 

preparation for NGS; computa-

tional reconstruction analysis 

Polylox system Relatively easy to assign barcodes to 

each cell; high scalability; applica-

ble to various tissues; can be easily 

coupled with scRNA-seq 

Only available in mouse, currently; 

single timepoint tracing 

Various Cre lines; library preparation 

for NGS; computational recon-

struction analysis 

CRISPR/Cas9-induced 

scar-based lineage 

tracing 

Relatively easy to assign genetic scars 

to each cell; available in various 

model organisms; high scalability; 

potential for multiple timepoint 

tracing; can be easily coupled with 

scRNA-seq 

Off-target effects and multiple DSBs 

could result in genotoxicity 

Integrating target sequences and 

gRNAs for target sites; induction of 

Cas9 endonuclease; library prepa-

ration for NGS; computational re-

construction analysis 

Natural DNA scar- 

based lineage tracing 

Can be applied to human patient 

samples; least artificial set-up be-

cause it does not need any mo-

lecular or genetic intervention 

High costs; needs high computation-

al power to distinguish between 

clones; unknown origin of proge-

ny; may require clonal derivation to 

improve coverage 

In vitro cultures to amplify single 

clones or laser dissection of tissues; 

library preparation for NGS; com-

putational reconstruction analysis
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information, including clone size, structure, distribution and 

cell types within the clone. Measuring these at different 

timepoints enables us to reconstruct in detail how a clone 

grows and is maintained in a tissue or developing organ. 

Multicolor-based mosaic genetic analysis has also become 

possible, combining imaging-based lineage tracing analysis 

with analysis of the genetic perturbations present in each 

colored clone (Pontes-Quero et al., 2017). However, a clear 

downside of imaging-based approaches is the limited num-

ber of clones that can be labelled by these systems. 

Genetic barcoding strategies can overcome this limitation, 

but at the cost of the spatial information provided by imag-

ing. Retro/lentiviral barcoding has been widely used in order 

to simultaneously analyze the clonal behavior of hundreds to 

millions of cells. This method is very simple to apply from a 

design perspective but it is limited by the accessibility of tar-

get cells for viral infection. Although complicated, Cre-LoxP-

based Polylox barcoding is a powerful alternative as it com-

bines genetic labeling in vivo with spatiotemporal control of 

cell labeling. As there are many Cre and tamoxifen-inducible 

CreER mouse lines readily available, the Polylox method is a 

flexible system for addressing different biological problems 

in mice. While the Cre-LoxP system is popular in mouse ge-

netics, it is not widely used in other model organisms. A 

novel lineage tracing method utilizing CRISPR/Cas-induced 

genetic scars is widely considered to be more versatile and 

easy to apply in different model organisms. Nevertheless, the 

CRISPR system may cause off-target effects and inducing 

multiple DSBs simultaneously in a cell can cause adverse 

effects driven by genotoxic response. 

Retrospective lineage analysis based on naturally occurring 

somatic variants is another promising method, which can 

even be applied to the analysis of human development and 

disease progression. This method does not employ any kind 

of molecular or genetic intervention, meaning that it has the 

least artificial experimental set up. Although there are multi-

ple ways to circumvent associated problems (Dou et al., 

2018), it is still challenging to utilize this method in delineat-

ing the entire lineage tree of an organism due to limitations 

such as sequencing costs, sequencing errors, required com-

putational power, etc. As outlined above, there is no single 

catchall method applicable to all study types and therefore it 

is key to consider the requirements of individual experiments 

or combination strategies. 

In addition to the methods described above, state-of-the-

art scRNA-seq technology allows gene expression profiling 

at high resolution to generate a close approximation of line-

age information. With scRNA-seq, it is now possible to dis-

sect differences between (sub)populations of cells and to 

predict a theoretical lineage trajectory along a pseudotime 

scale. The recently developed RNA velocity protocol predicts 

each cell’s future state by quantifying unspliced and spliced 

transcripts, so improving the level of confidence in lineage 

analysis. In addition, several protocols for measuring the 

transcriptome, methylome and/or chromatin accessibility in 

single cells have also been introduced, whereby methylome 

and chromatin accessibility provide additional clues as to 

directionality (Cao et al., 2018; Clark et al., 2018; Lake et al., 

2018). A multiomics single cell profiling method with genet-

ic barcoding for lineage tracing will soon become available. 

Finally, in order to avoid the loss of spatial information from 

computational-based approaches, alternative imaging-based 

approaches such as single-molecule fluorescent in situ hy-

bridization (smFISH) (Frieda et al., 2017) or optical sequenc-

ing (Feldman et al., 2018) can be applied (Moor and Itz-

kovitz, 2017). 

Lineage tracing now comprises both imaging- and compu-

tational-based approaches. High throughput approaches are 

now in place for the tracing and profiling of large quantities 

of clones. It is expected that combinatorial approaches will 

allow more robust and accurate investigation of lineage 

transitions under various biological contexts. 
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