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Abstract

Metal-catalyzed enantioconvergent cross-coupling reactions of alkyl electrophiles are emerging as 

a powerful tool in asymmetric synthesis. To date, high enantioselectivity has been limited to 

couplings of electrophiles that bear a directing group or a proximal p/π orbital. In this report, we 

demonstrate for the first time that enantioconvergent cross-couplings can be achieved with 

electrophiles that lack such features; specifically, we establish that a chiral nickel catalyst can 

accomplish Negishi reactions of racemic α-halosilanes with alkylzinc reagents with good 

enantioselectivity under simple and mild conditions, thereby providing access to enantioenriched 

organosilanes, an important class of target molecules.

Graphical Abstract
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Negishi reactions of racemic α-halosilanes with alkylzinc reagents with good enantioselectivity 

under simple and mild conditions, thereby providing access to enantioenriched organosilanes, an 

important class of target molecules.

Keywords

alkylation; asymmetric catalysis; cross-coupling; nickel; silicon

Significant progress has been described in the development of methods for the synthesis of 

carbon–carbon bonds through enantioconvergent substitution reactions of racemic alkyl 

electrophiles with carbon nucleophiles.[1–3] To date, high enantioselectivity has only been 
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observed in cross-couplings wherein the electrophile bears either a directing group (A) or a 

p/π orbital proximal to the leaving group (B) (Figure 1).[4]

We have been interested in expanding the scope of enantioconvergent cross-couplings to 

include electrophiles that lack either of the features illustrated in A and B (Figure 1). An 

example of such an electrophile is α-halosilane C,[5,6] enantioconvergent cross-coupling of 

which would provide chiral organosilanes. Chiral organosilanes (e.g., 1[7] and 2[8]) are of 

interest in fields such as medicinal chemistry, since replacement of carbon with silicon can 

lead to improved pharmacological properties (e.g., enhanced lipophilicity and potency) 

without element-specific toxicity due to the presence of silicon;[9] to date, there are limited 

methods for the direct catalytic asymmetric synthesis of such organosilanes.[10,11] In this 

report, we establish that a chiral nickel catalyst can achieve the asymmetric synthesis of 

organosilanes via the cross-coupling of racemic α-halosilanes with alkylzinc reagents under 

simple and mild conditions [Eq. (1)], thereby demonstrating that enantioconvergent cross-

couplings are possible with electrophiles that lack both a directing group and a proximal p/π 
orbital (Figure 1).

Upon examining a range of reaction parameters, we determined that NiBr2·diglyme and a 

chiral pybox ligand (L*) can accomplish the enantioconvergent Negishi cross-coupling 

illustrated in Table 1 in good yield and high ee (78% yield, 92% ee; entry 1). In the absence 

of NiBr2·diglyme, virtually no carbon–carbon bond formation is observed (entry 2), whereas 

in the absence of ligand L*, the coupling proceeds in low yield (entry 3). When the reaction 

is run under an atmosphere of air or in the presence of water, formation of product is 

inefficient, although the ee is good (entries 4 and 5). Other ligands, including representative 

examples of classes of ligands that have been useful in other nickel-catalyzed 
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enantioconvergent cross-couplings,1 are less effective than ligand L* (entries 6–9). Although 

the corresponding alkyl iodide cross-couples with fairly good yield and ee under these 

conditions (entry 10), use of the alkyl chloride leads to essentially no carbon–carbon bond 

formation (entry 11). A lower catalyst loading can be employed with only a small loss in 

yield and no loss in enantioselectivity (entry 12).

α-Bromosilanes that bear a variety of functional groups serve as suitable electrophiles in 

these nickel-catalyzed enantioconvergent cross-couplings (Table 2). Thus, an alkene, ether, 

or an aryl chloride, as well as a saturated or an unsaturated oxygen or nitrogen heterocycle, 

can be present, with little impact on ee. Although branching in the α position of the alkyl 

group of the electrophile inhibits cross-coupling, branching in the β position is tolerated 

(entries 7–9). The enantioconvergent coupling proceeds with an array of substituents on 

silicon, with lower yields observed as the steric demand of the electrophile increases (entries 

11–14).[12]

Organozinc reagents that include various functional groups, such as an alkyl fluoride, an 

ether, a nitrile, and an ester, can be employed as nucleophiles in these nickel-catalyzed 

enantioconvergent cross-couplings (entries 1–5 of Table 3). The cross-coupling is sensitive 

to steric effects–while branching at the γ position is tolerated (entry 6), little carbon–carbon 

bond formation occurs if there is branching at the α or the β position. On a gram scale, the 

coupling illustrated in entry 2 proceeds in 88% ee and 89% yield (1.66 g of product).[13]

Our working hypothesis is that this process may be following a pathway analogous to that 

elucidated for nickel/pybox-catalyzed enantioconvergent Negishi arylations of propargylic 

halides, wherein nickel complex C is the predominant resting state of nickel during 

catalysis, and complexes A, B, and D do not accumulate (Figure 2).[14] Consistent with this 

suggestion, ESI–MS analysis of a cross-coupling (the model reaction in Table 1) at partial 

conversion reveals a strong signal at m/z = 488.2, consistent with the presence of [L*Ni–

R1]+ (C in Figure 2; R1 = 2-(1,3-dioxolan-2-yl)ethyl; exact mass: 488.2). Similarly, the EPR 

spectrum of a reaction at partial conversion indicates that odd-electron nickel intermediates 

such as A or D do not accumulate to a significant (>2%) extent.

An enantioenriched α-bromosilane does not racemize under the standard conditions [Eq. 

(2)],[15,16] indicating that C–Br bond cleavage is irreversible and that the chiral catalyst is 

processing both enantiomers of the electrophile in the stereoconvergent coupling of a 

racemic electrophile (no dynamic kinetic resolution). When an enantioconvergent cross-

coupling of a racemic electrophile is stopped at partial conversion, the unreacted electrophile 

is still racemic, indicating that the chiral catalyst is not discriminating between the 

enantiomeric electrophiles (no kinetic resolution).[17]
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Thus, we have expanded the scope of enantioconvergent cross-couplings beyond 

electrophiles that bear a directing group or a p/π orbital proximal to the leaving group. 

Specifically, we have determined that a chiral nickel/pybox catalyst can achieve 

stereoconvergent cross-couplings of racemic α-bromosilanes with alkylzinc reagents under 

simple and mild conditions to afford enantioenriched organosilanes, a useful family of target 

compounds. Our mechanistic observations indicate that the chiral catalyst reacts with both 

enantiomers of the electrophile, without kinetic resolution, to provide the enantioenriched 

product via irreversible C–Br bond cleavage. This work sets the stage for substantial 

enlargement of the range of racemic electrophiles that can be employed in enantioconvergent 

cross-couplings, free of the need for a directing group or p/π conjugation.
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Figure 1. 
Background: Racemic electrophiles used in enantioconvergent cross-couplings. A and B: 

Prior work. C: This study.
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Figure 2. 
Outline of a possible mechanism.
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Table 1.

Effect of Reaction Parameters.
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Table 2.

Scope with Respect to the Electrophile.
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Table 3.

Scope with Respect to the Nucleophile.
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