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Abstract

Phase I clinical trials are the first step in drug development to test a new drug or drug combination 

on humans. Typical designs of Phase I trials use toxicity as the primary endpoint and aim to find 

the maximum tolerable dosage. However, these designs are poorly applicable for the development 

of cancer therapeutic vaccines because the expected safety concerns for these vaccines are not as 

much as cytotoxic agents. The primary objectives of a cancer therapeutic vaccine phase I trial thus 

often include determining whether the vaccine shows biologic activity and the minimum dose 

necessary to achieve a full immune or even clinical response. In this paper, we propose a new 

Bayesian phase I trial design that allows simultaneous evaluation of safety and immunogenicity 

outcomes. We demonstrate the proposed clinical trial design by both a numeric study and a 

therapeutic human papillomavirus vaccine trial.
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1 INTRODUCTION

Cancer vaccines are vaccines that stimulate or restore the immune system’s ability to prevent 

development of a cancer in healthy people or treat existing cancer. Vaccines that treat 

existing precancer or cancer are known as cancer therapeutic vaccines. Cancer cells produce 

mutant or abnormally expressed proteins, many of which are important for their functions, 

survival, and growth. These tumor associated antigens (TAAs) are potentially suitable targets 

for cancer therapeutic vaccines. These TAA may be combined with nonspecific immuno-

stimulants, termed adjuvants, for immunization. There is consensus that cancer therapeutic 

vaccines are likely to produce clinical benefit.1–3 In fact, the FDA already approved the first 

cancer therapeutic vaccine, ie, sipuleucel-T, for use in patients with metastatic prostate 
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cancer in April 2010.4 Through a pilot project, the National Cancer Institute identified 75 

cancer vaccine target antigens, 20 of which have shown hints of clinical efficacy in human 

clinical trials.5

Phase I clinical trials for a new cancer therapeutic vaccine are normally conducted as the 

first step in humans. At the phase I stage, safety of the vaccine is evaluated and a safe dosage 

range is determined. However, typical phase I clinical trial designs for cytotoxic drugs are 

generally inapplicable for the development of cancer therapeutic vaccines.6,7 This is because 

cytotoxic drug phase I clinical trial designs assume that, as the dose increases, both the 

toxicity and efficacy increase monotonically. Consequently, these designs use toxicity as the 

primary endpoint. By gradually increasing the dose of the study drug or drugs, they aim to 

find the maximum tolerable dosage (MTD) based on the occurrence of dose-limiting 

toxicities (DLTs). DLTs are drug side effects that are serious enough to prevent a dose 

increase of the drug. For example, the standard 3+3 design treats patients in cohorts of three 

based on rules. If none of the three patients experience a DLT, then another cohort of three 

patients will be treated at the next higher dose level. On the other hand, if there is one patient 

with a DLT observed, an additional three patients will be treated at the same dose level. 

When there are two or more patients who experience DLT among a cohort of three or six 

patients, the dose escalation stops and the next lower dose level is determined as MTD. 

Similar algorithms include the accelerated titration design, the rolling six design, and the “A

+B” design.8–10

Alternatively, algorithms may make model assumptions about the dose-toxicity curve and 

rely on the estimated dose-toxicity relationship for determining dose level for the current 

patient cohort. For example, the continual reassessment method (CRM)11 adopts the 

Bayesian method to estimate the probability of having DLT at different dose levels after 

each cohort of patients are treated. The next cohort of patients are subsequently treated at an 

estimated dose level that corresponds to the targeted DLT risk. The trial is stopped when a 

desirable precision of the estimation is achieved or a prespecified stopping condition is met. 

Similar model-based algorithms include CRM with its various modifications, modified 

toxicity probability interval design,12 escalation with overdose control design,13 etc. See the 

work of Le Tourneau et al14 for a thorough review of these dose escalation algorithms.

Cancer vaccines, however, are generally much safer than cytotoxic agents in terms of their 

adverse event occurrence risk and the severity of such adverse events. As a result, the dose-

toxicity curve of cancer vaccines may be so flat that the highest dose that one can administer 

is still not the MTD but a manufacturing limit. Additionally, the efficacy, which is often 

measured by immune response, may not always increase as the dose increases.15,16 Thus, 

the selection of vaccine dose levels for future studies should not depend entirely on the 

evaluation of the vaccine safety profile or the MTD. Instead, the primary objectives of a 

vaccine phase I trial should include determining whether the vaccine shows clinical efficacy 

or immunogenicity.17–23 The FDA guidance for industry on cancer therapeutic vaccines24 

also specifically suggests that alternative designs other than the standard 3+3 design be 

considered and the optimization of outcomes such as immune responses be taken into 

account. This point has been reflected in the recent early phase (cancer) vaccine clinical trial 

design literature. For example, randomized phase I study designs have been proposed for 
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optimizing the dose level or the schedule of therapeutic cancer vaccines.25–27 In a 

nonrandomized setting, Zohar et al proposed a Bayesian “up-and-down” phase I design for a 

cancer vaccine that makes dose level escalation decisions after each patient.28

There are numerous descriptions in the literature of dose escalation algorithms that 

simultaneously take into account safety and efficacy. Common approaches include 

introducing univariate “composite” endpoints (eg, a success defined as achieving immune 

response with no toxicity) to simplify the decision making process,29,30 explicitly 

characterizing the efficacy and toxicity trade-off by a family of contours,31,32 or applying a 

target function33 or utility function34–38 as a one-dimensional numerical summary of the 

bivariate outcome for decision making. Yuan et al39 provided a thorough discussion on this 

approach.

We argue that these algorithms need further modifications to be fully suitable for cancer 

therapeutic vaccines. This is mostly because the objective when designing cancer vaccine 

trials is to find an optimal dose level in respect to the immune (or clinical) response while 

ensuring the safety of the participants.24 On the contrary, most algorithms in the trade-off 

design arena aim to find dose levels that correspond to a target toxicity rate, which may be 

adjusted for efficacy, as fast as possible. As a consequence, it is desirable for these 

algorithms to treat as few as possible patients at lower dose levels. This more is better 
strategy, however, is not necessarily advantageous for cancer therapeutic vaccines since 

higher dose levels do not imply better immune response outcomes.

Human papillomaviruses (HPV) infection is the primary etiologic agent of cervical cancer. 

The importance of cell-mediated immune responses in controlling both HPV infections and 

HPV-associated neoplasms has long been realized.40 The recent development of several 

therapeutic HPV vaccine candidates has considerably promised to improve control of HPV-

associated precursor lesions and invasive cervical cancer. Motivated by the burgeoning 

development of such promising candidate therapeutic HPV vaccines, we propose a new 

Bayesian phase I clinical study design specifically for cancer therapeutic vaccines. The 

proposal uses lower dose levels as the reference for determining if the current dose level is 

optimal in terms of immune response. It also ensures subject safety by capping the toxicity 

rate with a given upper bound. These two criteria are simultaneously evaluated using an 

intuitive decision region that avoids complicated safety and immunogenicity trade-off 

elicitation from physicians. We propose several probability models that can fit in the 

proposed Bayesian design and evaluate their performances under multiple scenarios via a 

simulation study.

The paper is organized as follows. In Section 2, we introduce the overall study design 

scheme, its dose escalation algorithm, and options for the probability models. Numerical 

studies are conducted in Section 3 to evaluate the performance of the proposed study design 

in different scenarios. As an example, a cervical cancer therapeutic vaccine phase I trial 

design is described in Section 4. Finally, Section 5 is devoted to discussions.
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2 METHOD

2.1 Notation

For subject s, let Ds = l (l = 1, …, L) denote the received dose level, Ts = 1 if any DLT event 

is observed from the subject and 0 otherwise, Rs = 1 if immune response is achieved for the 

subject and 0 otherwise.

Let θi j
(l) = P(T = i, R = j |D = l) for i, j = 0, 1, θ(l) = θi j

(l): i, j = 0, 1  and Θ = {θ(l) ∶ l = 1, …, 

L}. Furthermore, for dose level l, let p(l) = P(T = 1|D = l) = θ10
(l) + θ11

(l) be the DLT risk, 

q(l) = P(R = 1|D = l) = θ01
(l) + θ11

(l) be the immune response probability, and r(l) = θ00
(l)θ11

(l) /θ01
(l)θ10

(l)

be the odds ratio. Let ni j
(l) be the observed number of subjects with T = i and R = j at dose 

level l, n(l) = {ni j
(l): i, j = 0, 1} and H denote all the data observed by the time the current 

analysis is conducted.

Let L(Θ|H) denote the likelihood derived from some sampling distribution F(H|Θ). Different 

model specifications of F will be discussed in later sections. Let π(Θ) denote the prior 

distribution of Θ. Then, the posterior distribution of Θ at the current analysis is

π(Θ|H) ∝ L(Θ|H)π(Θ) . (1)

By taking proper integration, the marginal posterior distributions π(θ(l)|H) and π(p(l), q(l)|H) 

can be readily derived for all l from (1).

2.2 Dose escalation algorithm

The dose escalation algorithm is based on both the toxicity and efficacy risks of the current 

dose level. There are several considerations that are clinically necessary for developing the 

algorithm. First, we assume that there is a nondecreasing relationship that exists between 

toxicity and dosage, ie, the toxicity risk does not decrease as dose level increases. Second, 

the immune response rate may reach a plateau or even start to decline as the dose level 

increases.

With these considerations in mind, we propose a dose escalation algorithm that is based on 

the joint toxicity and efficacy risks via a decision region approach. The details are described 

in this section.

2.2.1 Decision regions—Let pA denote the lower boundary of DLT risk below that the 

dose is considered absolutely safe and pT denote the upper boundary of DLT risk above that 

the dose is considered toxic. The choice of (pA, pT) should be prespecified and reflect the 

clinical safety concerns of the vaccine under investigation. Let q(l − 1) = E q(l − 1) |H  denote 

the expected posterior immune response probability of dose level l − 1 with q(l − 1) = 0 for l 
= 1.
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At each interim analysis, given our best understanding about the safety and efficacy risks of 

the current dose level l based on π(p(l), q(l)|H), we propose to first conceptually categorize 

dose level l into the following four categories to take the corresponding dose escalation 

actions to stop the trial or to continue the trial with higher or the same dose level.

• Too Toxic (TT): DLT risk p(l) exceeds boundary pT(ie, p(l) > pT) and the current 

dose level is (and all higher dose levels are) considered too toxic.

• No More Effective (NME) than dose level l − 1 : DLT risk pl is below boundary 

pT(ie, p(l) ≤ pT); thus, not too toxic. On the other hand, immune response 

probability q(l) is below q(l − 1). That is, the current dose level is no more 
effective than dose level l − 1.

• Safe and Effective (SE): DLT risk p(l) is below boundary pA and the immune 

response probability q(l) exceeds q(l − 1) (ie, p(l) ≤ pA, q(l) > q(l − 1)). The current 

dose level has no safety concern and is more effective than its lower dose levels; 

it is therefore considered safe and effective.

• Uncertain (UN): DLT risk p(l) is below boundary pT but exceeds boundary pA 

(ie, pA < p(l) ≤ pT). The immune response probability q(l) exceeds boundary 

q(l − 1). The dose is considered more effective than its lower dose levels and not 

too toxic. However, uncertainty about safety still exists. The status of the current 

dose level is thus uncertain.

As a straightforward illustration of the four categories, we split the joint parameter space of 

(p(l), q(l)), [0, 1]2, into four regions that correspond to the four categories (Figure 1), termed 

as decision regions.

2.2.2 Decision region determination—The actual determination of the category, or 

equivalently the decision region, of the current dose level is based on the probability 

distribution π(p(l), q(l)|H). Specifically, we propose a sequential identification approach 

based on conditional probabilities derived from π(p(l), q(l)|H).

Let 𝒞1, 𝒞2, and 𝒞3 be fixed cut-off values in (0, 1). The steps are as follows.

• Step 1: If Pr p(l) > pT |H > 𝒞1, then the current dose level is considered to be in 

Region TT, ie, too toxic. Go to Step 5.

• Step 2: If Pr q(l) ≤ q(l − 1) | p(l) ≤ pT, H > 𝒞2, then the current dose level is 

considered to be in Region NME, ie, nomore effective than its lower dose levels. 

Go to Step 5.

• Step 3: If Pr p(l) ≤ pA | p(l) ≤ pT, q(l) > q(l − 1), H > 𝒞3, then the current dose 

level is considered to be in Region SE, ie, safe and effective. Go to Step 5.

• Step 4: The current dose level is considered to be in Region UN, ie, uncertain.

• Step 5: Category determination finishes.
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The values of 𝒞1, 𝒞2, and 𝒞3 should be chosen prior to study initiation and reflect the 

considerations of the investigators and patients. These thresholds’ values should also give 

reasonable overall study operating characteristics.

2.2.3 Actions—Now that the current dose level l has been identified as belonging to one 

of the four regions, the following actions can be taken.

• Region TT: The current dose level is considered as too toxic. The trial should be 

stopped and the next lower dose level should be reported as the recommended 

dose.

• Region NME: The current dose level is no more effective than its lower dose 

level. Its next lower dose level is considered to be safe and have already achieved 

the maximum immune response probability. The trial should stop and report the 

next lower dose level as the recommended dose.

• Region SE: The current dose level is considered to be both safe and more 

effective than its lower dose levels. The trial will escalate to dose level l + 1. If 

dose level l is already the highest dose level, the trial will stop and report dose 

level l as the recommended dose.

• Region UN: There exists concern about the safety of the current dose level l. The 

trial should continue to treat more patients at dose level l unless the maximum 

number of patients has been reached for the current dose level. If the maximum 

number of patients have been treated at this dose level, depending on the choice 

of (pA, pT) and the clinical considerations of the investigational vaccine, one may 

choose to continue the trial with dose escalation because there is no evidence that 

the current dose is too toxic.

2.3 Probability models

In this section, we propose several options for the probability models F that can be 

considered for Bayesian inference. We note that the proposed dose escalation algorithm is 

flexible in regard to F. In fact, the dose-toxicity model in Section 2.3.2 is based on the 

typical dose-toxicity single-parameter power model for phase I studies. We do emphasize, 

though, that a desirable F should be nondecreasing with respect to the dose-toxicity 

relationship and avoid monotonic assumptions for the dose-immune response curve.

2.3.1 Nonparametric model—As one of the simplest models, we posit no assumptions 

on the dose-toxicity or dose-immune response relationships. That is, θ(l) ⫫ θ(l′) for all l ≠ l′a 
priori. Furthermore, at each dose level, we assume that the observed data n(l) follow a 

multinomial distribution with parameters θ(l) and assign Jeffreys’ prior (ie, Dirichlet prior 

with parameters 1
2 ) to θ(l).

The likelihood function is given by
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L θ(l); n(l) ∝ ∏
i = 0

1
∏
j = 0

1
θi j
(l) ni j

(l)

and the posterior distribution of θ(l) is still Dirichlet

π θ00
(l), θ01

(l), θ10
(l), θ11

(l) |H = Dirichlet n00
(l) + 1

2, n01
(l) + 1

2, n10
(l) + 1

2, n11
(l) + 1

2 . (2)

We refer to (2) as the nonparametric model.

We may further simplify the model by assuming that the odds ratio r(l) = 1, ie, DLT risk is 

independent of immune response probability a priori. The likelihood can be computed as

L p(l), q(l); n(l) ∝ p(l) n10
(l) + n11

(l)
1 − p(l) n00

(l) + n01
(l)

q(l) n01
(l) + n11

(l)
1 − q(l) n00

(l) + n10
(l)

.

By assigning a Jeffreys’ prior Beta(1
2 , 1

2) to p(l) and q(l), the posterior distribution will be

π p(l), q(l) H = Beta p(l); n10
(l) + n11

(l) + 1
2, n00

(l) + n01
(l) + 1

2 Beta

q(l); n01
(l) + n11

(l) + 1
2, n00

(l) + n10
(l) + 1

2 .

(3)

We refer to (3) as the nonparametric+ model.

Admittedly, both models (2) and (3) are likely misspecified in the sense that they ignore the 

correlations among Θ across dose levels. However, they may still be suitable for phase I 

studies with vaccines since the primary objective is not to understand the dose-toxicity and 

dose-efficacy relationships. Moreover, data from phase I studies are often limited, which 

necessitates parsimonious statistical models. In the simulation studies, we examine the 

robustness of these models in detail.

2.3.2 Partially parametric model—Compared to nonparametric models, a parametric 

specification of F may allow the incorporation of dose-toxicity, dose-efficacy, and toxicity-

efficacy relationships in dose escalation. The parametric specification also allows 

information sharing among different dose levels and, thus, is potentially more efficient. In 

the context of evaluating cancer vaccines, however, it is difficult to posit assumptions on the 

dose-efficacy relationship since the immune response rate may even decrease as the dose 

level increases. On the other hand, it remains reasonable to assume that the dose-toxicity 

curve is nondecreasing. Therefore, we propose a partially parametric model that only makes 

assumptions about dose-toxicities but leaves the dose-immune response relationship 

unspecified.

Wang et al. Page 7

Stat Med. Author manuscript; available in PMC 2019 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Specifically, we construct the dose-toxicity model similar to the one considered by Yin and 

Yuan41

log p(l) = eα logτ(l) . (4)

The τ(l)s are deterministic design parameters reflecting the expectation of the DLT risk at 

dose level l with τ(l) > τ(l′) for l > l′. The dose-toxicity model is thus indexed by the single 

parameter α. For the immune response and the odds ratio, we assume q(l) and r(l) at different 

dose levels are independent a priori.

The priors are specified as follows:

α N 0, σα
2

q(l) Beta 1
2, 1

2
log r(l) N 0, σr

2 .

Let β(l)-= {α, q(l), r(l)} or equivalently β(l) = {p(l), q(l), r(l)}. Given β(l), it is reasonable to 

guess the prior means of θi j
(l) by a function gij(β(l)) that is defined as, for r(l) = 1, gij(β(l)) = 

(p(l))i(1 − p(l))1−i(q(l))j(1 − q(l))1−j, and for r(l) ≠ 1,

g11 β(l) =
b + b2 − 4 r(l) − 1 p(l)q(l)r(l)

2 1 − r(l) ,

where b = (p(l) + q(l))(1 − r(l)) − 1, g10(β(l)) = p(l) −g11(β(l)), g01(β(l)) = q(l) −g11(β(l)), and 

g00(β(l)) = 1−p(l) −q(l) +g11(β(l)). This induces a mixture of Dirichlet distributions prior42 for 

Θ by

π(Θ) ∝ ∫
r(1), …, r(L)

∫
q(1), …, q(L)

∫
α

∏
l = 1

L
∏

i = 1

1
∏
j = 0

1
θi j
(l) gi j βl π q(l) π r(l) π (α) dαdq(1)…dq(L)dr(1)

…dr(L)

and the posterior distribution of Θ give H at dose level l is given by

π(Θ |H) ∝ π(Θ) ∏
l′ = 1

l
∏
i = 0

1
∏
j = 0

1
θi j

l′ ni j
(l′)

. (5)
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We refer to model (5) as the parametric model. Similar to the nonparametric case, we may 

simplify the model by assuming that r(l) = 1. Then, the posterior distribution π(p(l), q(l)|H) 

can be obtained by

π p(l), q(l) |H ∝ ∏
l′ = 1

l
p l′ n10

(l′) + n11
l′

1 − p l′ n00
l′ + n01

l′
π p(l) × Beta

q(l); n01
(l) + n11

(l) + 1
2, n00

(l) + n10
(l) + 1

2 ,

(6)

where log p(l′) = log p(l)(log τ(l′) − log τ(l)), and π p(l) = − π(α)
p(l)log p(l)  is the prior on p(l) 

induced by π(α). We refer to (6) as the parametric+ model.

2.4 Large sample property

Large sample properties in general do not apply in phase I settings when the sample size is 

small or medium at most. However, we still consider a theoretical large sample property 

proof necessary to better understand the proposed sequential decision region determination 

approach. We report these properties in this section.

For compactness, we suppress the superscript (l) in this section unless necessary. Let p* and 

q* denote the true DLT risk and immune-response probability for the current dose level. 

Denote ω* ∈ {TT, NME, SE, UN} the true region in which (p*, q*) is located in reference 

to the decision region definitions given in Section 2.2.1 and ω the region identified following 

the steps in Section 2.2.2 given π(p, q H).

Theorem 1. Under the conditions that region ω* is in the support of the prior distributions 

π(p)π(q) and the likelihood is a continuous function of p and q, if (p*, q*) is in the interior 

of ω*, then Pr(ω = ω*|H) → 1 as ∑i,jnij → ∞ (ie, ω → ω* almost surely) for all 𝒞1, 𝒞2, 

and 𝒞3 in (0, 1).

Corollary 1. If (p*, q*) is in the interior of ω*, the nonparametric and partially-parametric 

models specified in Section 2.3 all guarantee ω → ω* almost surely.

The proofs are provided in the Appendix.

2.5 Summary

Figure 2 summarizes the overall study design. The study will start from the lowest dose level 

and treat patients in a cohort of prespecified size. After treating the cohort, when their 

toxicity and immune response data are available, a statistical analysis will update the toxicity 

and efficacy risks for the current dose level. The analysis is based upon an appropriate 

probability model and all the data observed from the study so far. The study will then 

determine the region in which the current dose level belongs and takes the actions either to 

stop the trial or to treat the next cohort of patients at the current or the next higher dose level.
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3 SIMULATION STUDY

3.1 Settings

We consider 15 scenarios in the simulation study (Figure 3) to thoroughly evaluate the 

proposed method. Scenarios 1 to 6 are from the work of Thall and Cook31 and represent the 

typical toxicity and efficacy risks for cytotoxic drugs. We consider these scenarios to 

evaluate how the proposed design works for typical phase I scenarios. Scenarios 7 to 15 are 

modified from Scenario 1, where the toxicity risks are low. In order to represent the cases for 

cancer therapeutic vaccines, scenarios 7 to 9 consider that the immune response probabilities 

have a plateau; 10 to 12 consider when the immune response probabilities are unimodal; and 

13 to 15 consider when the immune response probabilities are unimodal but are not 

increasing at the beginning dose levels. For all the scenarios, we assume the odds ratio r(l) = 

10 for all l. Plots of θ(l) for all the 15 scenarios are included in the Web Supplement 

document.

We consider a cohort size of 7 and a maximum of 14 patients for each dose level. There are 

several reasons for these cohort size choices. First, since toxicity is not the most serious 

concern and most toxicities are not life-threatening for cancer therapeutic vaccines, it is 

feasible to consider a larger cohort size than the typical number 3. Second, when measuring 

immune responses in practice, samples are placed on assay plates with control calibrators. 

The study investigators thus prefer having fewer interim analyses and more samples for each 

assay plate to batch the assays to reduce interassay variability and cost. We thus propose to 

have one interim analysis at each dose level. Lastly, for decision region determination, we 

choose pA = 0.1, pT = 0.3, 𝒞1 = 𝒞2 = 0.8, and 𝒞3 = 0.5.

Scenarios 7 to 15 represent cases relevant to cancer therapeutic vaccines. We compare the 

performance of the proposed design to two alternative designs, ie, the EffTox design31 that is 

based on safety and efficacy trade-off contours, and the UAROET design35 that is based on 

safety and efficacy utility functions. We chose the two alternative designs for two reasons. 

First, the two designs are representative of major phase I designs in the literature that 

simultaneously take into account safety and efficacy. Second, software implementing the two 

designs is readily available. For the alternative designs, we consider a maximum sample size 

of 42 to be comparable to the proposed design. Furthermore, in addition to a cohort size of 7 

(6 for UAROET because of its software restriction), we also consider cohorts of 3 subjects, 

the default cohort size in the software for the two alternative designs, to allow more frequent 

interim analysis. Other details about the software and the settings (eg, trade-off contours and 

utility function) for the two alternative designs are presented in the Web Supplement 

document.

3.2 Results

For evaluating the performance of the proposed design, based on 1000 replications, we 

report for each dose level the average number of patients treated, the chance for the dose 

level to be recommended and, the average number of DLTs and immune responses observed. 

We also report the average total number of patients treated and the average total number of 

DLTs and responses observed on the study.
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We first compare the four modeling approaches, ie, nonparametric (2), nonparametric+ (3), 

parametric (5), and parametric+ (6). For parametric and parametric+ models, we set the 

skeleton τ(l)(4) to be the true DLT risk. Figure 4 presents the average total number of 

patients treated on the study and the average rate of reporting the correct dose level(s) (ie, 

dose level(s) with p(l) < pT and largest q(l)) for all the scenarios. For most of the scenarios, 

the four models perform similarly in terms of the total number of patients and the rate of 

recommending the correct dose level(s). Thus, we report the detailed performance metrics 

for the nonparametric model approach in this section. Complete simulation results of all the 

models and scenarios are reported in the Web Supplement document.

Features of the simulation results for scenarios 1 to 6 are as follows (Table 1). For Scenario 

1, the DLT risk is well below pA = 0.1 for all dose levels, and the immune response rate 

increases monotonically and significantly. There is 83.7% chance that dose level 5 is 

recommended. Scenario 2 is difficult for the proposed design because the increasing trend of 

the immune response probabilities is very shallow. As a result, there is a similar chance for 

dose levels 1 to 4 to be recommended with dose level 3 being slightly more favorable. 

Scenarios 3 and 4 both have monotonically increasing immune response probabilities. The 

trend is not as strong as Scenario 1 but stronger than Scenario 2. There is 53% and 62% 

chance to recommend dose level 5. Note that, for Scenario 3, dose level 5 has a DLT risk 

0.2, which leads to a larger number of DLTs and a higher recommendation rate for dose 

level 4, as compared to Scenario 4. Scenarios 5 and 6 both have dose level 5 that is overly 

toxic compared to pT = 0.3. We notice that there is less than 10% chance for dose level 5 to 

be recommended. Furthermore, the proposed design did not distinguish dose levels 2 and 3, 

where dose level 3 has a higher immune response probability but also a DLT risk rate close 

to pT. For scenarios 5 and 6, we observe that the nonparametric approach requires fewer 

total subjects, on average, compared to the other modeling approaches (Figure 4). The 

explanation is that scenarios 5 and 6 have high DLT risk that are close to the threshold 

(30%). The different model choices affect the chances that dose level 3 is recognized as too 

toxic. With the nonparametric modeling approach, the study is more likely to stop at dose 

level 3, which reduces the total number of patients treated on the study.

For scenarios 7 to 15, the scenarios are in general more suitable for cancer therapeutic 

vaccines, Table 2 reports the average rate of recommending the optimal dose and the average 

number of patients treated on each dose level. For scenarios 7 to 9, where there is plateau in 

immune response probabilities, the proposed design recognizes the dose levels that have 

immune response probabilities below the plateau. For dose levels corresponding to the 

plateau (ie, optimal), the proposed design does not distinguish them and allows dose 

escalation to continue. For instance, the optimal dose levels 4 and 5 are selected with 84.2% 

chance in Scenario 9 (19.4% for level 4 and 64.8% for level 5). For scenarios 10 to 12 where 

the immune response probabilities are unimodal, there is more than 60% chance that the 

proposed design correctly identifies the optimal dose level that corresponds to the mode of 

the immune response probabilities. For scenarios 13 to 15, where the immune response 

probabilities are also unimodal but the beginning dose levels are equally lacking in efficacy, 

the proposed design allows the study to continue until it finds the optimal dose level. The 

rate to recommend the optimal dose levels are from 55% to 64%.
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Results with the alternative EffTox and UAROET designs are also reported in Table 2. 

Figure 5 compares the proposed design to the alternative designs in their relative frequencies 

of recommending the optimal dose. We observe that the average total number of patients in 

the proposed design is smaller than in the alternative designs in all scenarios except 14 and 

15, in which the average total number of patients in the proposed design is slightly larger 

than the alternative designs. With respect to the average proportion recommending the 

optimal dose, the proposed design performs almost always better than the alternative 

designs, even when the alternative designs use cohort size 3 (ie, conduct more interim 

analysis). The only exception is in Scenario 10, where the Efftox design with batch size 7 

results in 78% chance of selecting the optimal dose level 2 compared to 65.7% by the 

proposed design. The largest benefit is observed in Scenario 9, where the immune response 

probability reaches its plateau at dose level 4. The EffTox design with cohort size 7 

recommends the optimal dose 12% of the time (9% for level 4 and 3% for level 5), 

compared to the proposed design, which recommends the optimal dose 84.2% of the time 

(19.4% for level 5 and 64.8% for level 5).

3.3 Robustness analysis

We consider four additional settings to evaluate the robustness of the proposed design to 

cohort size; the odds ratio r(l); misspecification of the skeleton τ(l); and the cut-off thresholds 

𝒞1, 𝒞2, and 𝒞3. The complete results are reported in the Web Supplement.

In the first additional setting, we evaluate the performance of the design when the cohort size 

is enlarged to 10 and the maximum size for each dose level is increased to 20. We notice that 

there is a rise of about 20 patients in the average total number of patients treated on the 

study. In return, the rates of recommending the optimal dose level increase as much as 14% 

for scenarios 7 to 15. As for scenarios 1 to 6, the increase in sample size does not seem to 

significantly improve the rate of recommending the optimal dose except for Scenario 1, 

where the rate for recommending dose level 5 increases from 83.7% to 87.3%.

In the second additional setting, we evaluate the performance of the design when the odds 

ratio r = 1. We are not able to find any noticeable difference in the results.

In the third additional setting, we evaluate the performance of the design when the skeleton 

τ(l)s (Equation (4)) are misspecified and optimistically expected to be half of the true DLT 

risk. Table 3 reports the simulation results for scenarios 5 and 6 based on the parametric 
model. The impact of having τ(l) misspecified when the true DLT risk is close to the 

threshold pT is clearly observed: there is an increase of about 13% and 9% chance in 

scenarios 5 and 6, respectively, for recommending dose level 5. This suggests that, when 

taking the parametric and parametric+ modeling approaches, the choice of τ’s should be 

carefully discussed with clinicians, especially when previous knowledge of the toxicity 

profile of the vaccine is limited.

In the last additional setting, we evaluate the robustness of the design with respect to the cut-

off thresholds. Specifically, we consider settings with 𝒞1 = 0.75, 𝒞2 = 0.8, 𝒞3 = 0.5 , 

𝒞1 = 0.8, 𝒞2 = 0.75, 𝒞3 = 0.5 , and 𝒞1 = 𝒞2 = 0.8, 𝒞3 = 0.55  for evaluating the sensitivity 
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of 𝒞1, 𝒞2, and 𝒞3, respectively. For 𝒞1, we notice that the average total number of patients is 

reduced to 34.98 from 47.87 in Scenario 5, and to 36.12 from 46.18 in Scenario 6, when 

taking the nonparametric+ modeling approach. This implies that the proposed design may be 

sensitive to the 𝒞1 when the true DLT risk is close to the upper boundary of DLT risk. For 

𝒞2, the rate of recommending the optimal dose is reduced to 44.2% from 55.1% in Scenario 

14 and to 36.6% from 59% in Scenario 15, when taking the nonparametric modeling 

approach. The explanation is that the proposed design may be sensitive to the 𝒞2 when the 

immune response probabilities are not increasing at the initial dose levels. For 𝒞3, no 

obvious difference is observed, which implies the design is robust when changing 𝒞3 from 

0.5 to 0.55.

4 APPLICATION

Human papillomaviruses (HPV) are small, nonenveloped DNA viruses that induce self-

limited epithelial lesions of the skin or mucosa. HPV type 16 (HPV16) is the most prevalent 

HPV type detected in cervical cancers, which appears in approximately 50% to 60% cases of 

cervical cancer. TA-CIN is a single fusion protein comprising HPV16 E6, E7, and L2 

proteins linked in tandem. Vaccination with TA-CIN of HPV16-infected advanced cervical 

cancer patients is believed to be able to trigger therapeutic immunity targeting the E6, E7, 

and L2 of HPV16.43 Thus, the investigators wish to run a phase I dose-finding study of the 

TA-CIN vaccine as an adjuvant therapy for patients with a history of HPV16-associated 

cervical cancer. In this section, we demonstrate the proposed Bayesian design by applying it 

to this clinical study.

The study will investigate three dose levels of TA-CIN: Level I: 0.25 mL (injection volume) 

of 31.25 μg TA-CIN; Level II: 0.5 mL of 62.5 μg TA-CIN, and Level III: 1 mL of 125 μg 

TA-CIN. The vaccines will be administered three times via intramuscular needle injection on 

day one of weeks 1, 5, and 9. The dose limiting toxicities considered by the study include 

death, events that are life threatening or require inpatient hospitalization, and events that 

result in persistent or significant disability. When T cells are exposed to their cognate 

antigen, they respond by proliferating; therefore, one measure of the presence of antigen-

specific T cells is to measure their proliferation in the presence versus absence of their 

antigen and the ratio of this response is termed the proliferation index. Thus, the 

proliferation index based on blood samples taken before and after the administration of TA-

CIN is measured and used to determine the induction of an immune response on this study. 

The cut-off for immune-response based on the proliferation index is prespecified in the 

protocol. Both DLT and immune-response are defined based on follow-up measurements by 

week 11–13 (the fourth follow-up).

With the same rationale considered for the simulation studies, we restrict the design to have 

a single interim analysis for each dose level and choose a cohort size of 10 for better 

evaluation of the immune response probabilities. Furthermore, we limit the maximum size 

for each dose level to be 15. The expected DLT risk rate is 0.02, 0.06, and 0.08 for the three 

levels, respectively. The expected immune response probabilities are 0.05, 0.15, and 0.25 for 
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the three levels, respectively. The thresholds of toxicity are (pA, pT) = (0.10, 0.20). The cut-

off thresholds are chosen to be 𝒞1 = 𝒞2 = 0.7 and 𝒞3 = 0.5. We consider the nonparametric 

model for the design and analysis.

A total of five scenarios, including the expected Scenario 1 and robustness analysis scenarios 

2 to 5, are evaluated for study operating characteristics (Figure 6). For each scenario, we 

considered cases when r = 10 and r = 100 (ie, toxicity and efficacy are positively correlated). 

Based on 1000 replications, the results are reported in Table 4.

We note that the results are not sensitive to the choices of r as expected from the robustness 

analysis (see Section 3.3). Under the expected Scenario 1, there is about 67% chance of 

recommending the ideal dose level 3. The average number of patients required for the study 

is about 33. An average of 1.8 patients will experience DLT and an average of 4.3 patients 

will achieve immune response on the study. In Scenario 2, where the immune response rate 

reaches its plateau at dose level 2, there is about 88.6% chance of recommending dose level 

2 (38.1%) or 3 (50.5%). In Scenario 3, where the immune response rate reaches its mode at 

dose level 2, there is more than 75% chance of recommending dose level 2 as the optimal 

dose. In Scenario 4, where immune response probabilities only increase after dose level 2, 

there is about 68% chance of identifying dose level 3 as the optimal dose. In Scenario 5, 

where dose level 3 is too toxic albeit effective, there is about 16% chance to treat patients on 

this dose level and about 73% chance to recommend dose level 2. The average number of 

patients required for scenarios 2 to 4 is similar to Scenario 1.

Figure 7 presents a cohort-by-cohort illustration of dose escalation with the proposed design 

for two cases. In both cases, Jeffreys’ prior (see Equation 2), the prior probabilities 

corresponding to regions TT, SE, and UN are 80%, 9.5%, and10.5%, respectively. In Case 

A, interim analysis I is conducted after the first cohort of seven patients were treated at dose 

level 1. Of the seven patients, five had no DLT or immune response, and two had no DLT but 

had an immune response. Decision map I presents the results of interim analysis I. The 

posterior probabilities corresponding to regions TT, SE, and UN are 16.35%, 57.43%, and 

26.22%, respectively. The probability of SE, conditioning on not being too toxic, is 68.65%. 

By comparing to the thresholds 𝒞1 = 𝒞2 = 0.7 and 𝒞3 = 0.5, following the proposed 

algorithm, SE is determined to be the region. Consequently, the dose level is escalated for 

the next cohort of seven patients. After three cohorts, the dose escalation is finished and dose 

level 3 is reported as the recommended dose level. In Case B, at the second interim analysis, 

decision map II shows that the probability of NME conditioning on not being too toxic is 

6.84%. The probability of SE conditioning on not being too toxic or no more effective than 

dose level 1 is 38.83%. Following the proposed algorithm, dose level 2 is determined to be 

in region UN, and the next cohort of patients are still treated at dose level 2. At interim 

analysis III, however, the region is determined to be SE. Thus, the next cohort of patients 

will be treated at the escalated dose level 3.

Based on these study operating characteristics, the proposed design is accepted by the 

study’s principle investigators.
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5 DISCUSSION

Cancer therapeutic vaccines have huge potential for producing promising clinical benefits in 

cancer patients. Candidate cancer therapeutic vaccines must be investigated in phase I 

clinical studies to determine the dose level considered safe and immunogenic for later phase 

efficacy studies. Many of the existing dose-finding designs, however, are not suitable or need 

to be modified for such cancer therapeutic vaccine dose-finding studies. The FDA guidance 

for the industry on cancer therapeutic vaccines24 urges use of nonstandard study designs of 

cancer therapeutic vaccine phase I trials.

In this paper, we propose a new phase I Bayesian design for cancer therapeutic vaccines. 

The proposal simultaneously evaluates safety and immunogenicity in the dose escalation 

algorithm. In an adaptive manner, the proposed algorithm sets the benchmark of immune 

response based on the observed immune response data. It then uses this benchmark to 

determine whether a dose-escalation is warranted. Through a sequential decision approach, 

the proposed algorithm evaluates the safety of the vaccine on top of the efficacy evaluation.

The proposed algorithm allows flexibility in specifying the probability models for toxicity 

and efficacy. As examples, four different models are suggested in this paper. It should be 

noted that the probability models need to take into consideration the restriction that the dose-

efficacy curve may not be monotonically increasing for cancer therapeutic vaccines. That is, 

the models should allow the dose-efficacy curve to be unimodal or to reach a plateau. On the 

other hand, it remains reasonable to assume that the dose-toxicity relationship is monotonic; 

that is, the DLT risk increases as dosage of the vaccine increases.

We consider the proposed design to be largely rule based in the sense that subjects do not 

receive the dose level considered optimal at the time they enroll. Unlike typical model-based 

designs such as CRM, which intend to update model parameters as frequently as possible, 

this rule-based design allows evaluation of as many immune samples as possible in a batch 

to reduce interassay variability (a frequent issue with complex cell-based immunology 

assays). This approach potentially reduces the cost of running the study and limits the 

likelihood of exhausting precious clinical specimens during testing. As a result of these 

considerations, only one interim analysis at each dose level is considered in the example TA-

CIN phase I study. In general, the choices of cohort size and number of interim analyses 

should be carefully evaluated at the design stage with simulation studies accounting for 

practical considerations.

Note that it is straightforward to apply the proposed design to a typical phase I study that 

only aims to find the MTD. In the typical setting, we may simplify the decision region by 

setting q(l − 1) = 0 to exclude Region NME, where the current dose level is less effective for 

immunogenicity than the previous lower dose level.

The proposed design assumes that the immune response criteria are well established. This is 

an acceptable assumption because a vaccine is very unlikely to enter a clinical trial without 

an understanding of its potential immunologic mechanism, and the regulatory agencies 

specifically examine and typically require monitoring of a suitable biomarker of response. 

Wang et al. Page 15

Stat Med. Author manuscript; available in PMC 2019 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For example, in the case of candidate therapeutic HPV vaccines, there is a massive body of 

literature supporting the central role of HPV-specific T cell responses in immune clearance 

of virally infected cells. In the example study, the investigators, therefore, assess the immune 

response in the peripheral blood of patients by measuring the fold increase in antigen-

specific T cell number after vaccination. On the other hand, there exist situations when the 

correlates of protection (ie, surrogate markers) are unknown a priori or are based on several 

markers. As a possible solution, one may consider defining a composite endpoint for the 

immunological response and applying the proposed design. Alternatively, it is also plausible 

to extend the proposed design by incorporating a joint model for several immunological 

markers and make dose escalation decisions accordingly. In cases when the investigators do 

not know the appropriate response threshold or cut-off for declaring response based on the 

immunologic assay measurements, the proposed design needs to be extended to allow 

recalibrating the cut-off threshold. For example, if all, or nearly all patients exhibit a positive 

response, the researchers may increase the assay’s cut-off threshold such that only 50% are 

above the new threshold. It is also important to consider simulation scenarios at the design 

stage to evaluate the impact of changing the response threshold (eg, ±20% of the threshold).

One more possible extension to the proposed design is to allow the probability models to 

account for any intercohort batch effect should one exist. We have assumed that the data 

already incorporate a standard batch correction. However, it remains unclear how severe the 

impact of the batch effect is and whether the batch effect can be well assessed in the context 

of phase I studies when the sample size is small.

We are developing web-based software with an interactive and friendly user-interface to aid 

clinicians to implement the proposed design.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

LARGE SAMPLE PROPERTY

Lemma 1. If Pr(Xn ∈ [x0, x1]) → 1 and Pr(Yn ∈ [y0, y1]) → 1 as n → ∞, then Pr((Xn, Yn) 

∈ [x0, x1] × [y0, y1]) → 1.

Proof. Obviously, lim {Pr((Xn, Yn) ∈ [x0, x1] × [y0, y1])} ≤ 1.
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Since

Pr Xn, Yn ∈ x0, x1 × y0, y1 = Pr Xn ∈ x0, x1 + Pr Yn ∈ y0, y1 − Pr
Xn ∈ x0, x1 ∪ Yn ∈ y0, y1
≥ Pr Xn ∈ x0, x1 + Pr Yn ∈ y0, y1 − 1,

we can also show that

lim Pr Xn, Yn ∈ x0, x1 × y0, y1 ≥ limPr Xn ∈ x0, x1 + limPr Yn ∈ y0, y1 − 1 = 1.

Therefore, it is proved that lim {Pr((Xn, Yn) ∈ [x0, x1] × [y0, y1])} = 1. □

The proof of Theorem 1 is as follows.

Proof. Since (p*, q*) is in the interior of w*, there exists ϵ > 0 such that [p* − ϵ, p* + ϵ] × 

[q* − ϵ, q* + ϵ] ∈ w*.

Following the convergence theorem of the posterior distribution,45 Pr(p ∈ [p* − ϵ, p* + ϵ]|H) 

→ 1 and Pr(q ∈ [q* − ϵ, q* + ϵ]|H) → 1.

Following Lemma 1, we then have

Pr (p, q) ∈ p* − ϵ, p* + ϵ × q* − ϵ, q* + ϵ |H 1.

Since Pr((p, q) ∈ ω*|H) ≥ Pr ((p, q) ∈ [p* − ϵ, p* + ϵ] × [q* − ϵ, q* + ϵ]|H), we also have

Pr (p, q) ∈ ω* |H 1.

It is also true that

Pr (p, q) ∈ ω′ |H 0,

where ω′ is any union of the sets in {TT, NME, SE, UN} − ω*.

If ω* = TT, then we have

Pr p > pT |H = Pr((p, q) ∈ TT |H) 1.

Thus,

Pr ω = ω* |H = Pr Pr p > pT |H > 𝒞1 Pr 1 > 𝒞1 = 1.

If ω* = NME, then we have
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Pr p > pT |H = Pr((p, q) ∈ TT |H) 0

Pr(q ≤ q(l − 1) | p ≤ pT , H) = Pr((p, q) ∈ NME |H)
1 − Pr((p, q) ∈ TT |H) 1.

Thus,

Pr ω = ω* |H = Pr Pr p > pT |H ≤ 𝒞1 ∩ Pr q ≤ q(l − 1) | p ≤ pT , H > 𝒞2
Pr 0 ≤ 𝒞1 ∩ 1 > 𝒞2 = 1.

If ω* = SE, then we have

Pr p > pT |H = Pr ((p, q) ∈ TT |H) 0

Pr q ≤ q(l − 1) | p ≤ pT , H = Pr((p, q) ∈ NME |H)
1 − Pr((p, q) ∈ TT |H) 0

Pr p ≤ pA|p ≤ pT , q >q(l − 1), H = Pr((p, q) ∈ SE |H)
Pr((p, q) ∈ SE|H) + Pr((p, q) ∈ UN |H) 1.

Thus,

Pr ω = ω* |H = Pr Pr(p > pT |H) ≤ 𝒞1 ∩ Pr(q ≤ q(l − 1) | p < pT , H) ≤ 𝒞2 ∩

Pr(p ≤ pA|p ≤ pT , q >q(l − 1), H) > 𝒞3
Pr(0 ≤ 𝒞1 ∩ 0 ≤ 𝒞2 ∩ 1 > 𝒞3) = 1.

If ω* = UN, then we have

Pr p > pT |H = Pr((p, q) ∈ TT |H) 0

Pr q ≤ q(l − 1) | p ≤ pT , H = Pr((p, q) ∈ NME |H)
1 − Pr((p, q) ∈ TT |H) 0

Pr p ≤ pA|p ≤ pT , q >q(l − 1), H = Pr((p, q) ∈ SE |H)
Pr((p, q) ∈ SE|H) + Pr((p, q) ∈ UN |H) 0.

□

Thus,

Pr(ω = ω* |H) = Pr{Pr(p > pT |H) ≤ 𝒞1 ∩ Pr(q ≤ q(l − 1) | p < pT , H) ≤ 𝒞2 ∩

Pr(p ≤ pA|p ≤ pT , q >q(l − 1), H) ≤ 𝒞3}

Pr(0 ≤ 𝒞1 ∩ 0 ≤ 𝒞2 ∩ 0 ≤ 𝒞3 = 1.

The proof of Corollary 1 is as follows.

Proof. The proof is trivial since, for all the models, the likelihood is a continuous function of 

p and q. Moreover, the prior distributions, possibly induced by π(θ), all have support [0, 1] × 

[0, 1]. □
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FIGURE 1. 
Dose escalation decision regions based on the posterior distribution π(p(l), q(l)|H). The entire 

space is split into Regions TT: too toxic, NME: no more effective than its lower dose levels, 

SE: safe and effective, and UN: uncertain
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FIGURE 2. 
Flow chart of the overall study design
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FIGURE 3. 
Scenarios for the simulation study. The solid red line is DLT risk p(l); the dashed blue line is 

the immune response probability q(l); the gray dashed line is at pT = 0.3
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FIGURE 4. 
Average total number of patients and rate of reporting the optimal dose level(s) for scenarios 

1 to 15
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FIGURE 5. 
Average rate of reporting the optimal dose level(s) for scenarios 7 to 15. The numbers in the 

parenthesis following the design are batch sizes
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FIGURE 6. 
Scenarios under which the study operating characteristics are evaluated for the TA-CIN 

phase I study
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FIGURE 7. 
Cohort-by-cohort dose escalation illustration. NoT(T): Without(With) DLT; NoR(R): 

Without(With) immune response. E: Escalate to the next higher dose level when applicable. 

In the decision maps I-III that correspond to interim analyses I-III, respectively, the region 

filled with color corresponds to the region identified by the proposed algorithm. The 

numbers in each region are the posterior probabilities (%) and the numbers in parenthesis are 

the conditional probabilities (%)
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TABLE 1

Simulation results using the nonparametric model for scenarios 1 to 6 from Thall and Cook.31(p, q): DLT risk 

and immune response probability. Dose levels that are safe (p ≤ pT) and have the highest immune response 

probability are in bold. %: rate of reporting a dose level. N: average number of patients treated. (D, R): 

average number of DLTs and immune responses. Note that the total rate of reporting any dose level is less than 

100% when the chance that dose level 1 is considered too toxic is larger than 0 (eg, in scenarios 5 and 6)

Scenario

Dose Level

1 2 3 4 5 Total

1 (p, q) (0.01,0.05) (0.02,0.2) (0.03,0.35) (0.04,0.6) (0.05,0.8)

% 2.1 6.2 3.7 4.3 83.7 100

N 7.47 8.48 8.16 8.05 8.01 40.17

(D,R) (0.08,0.38) (0.14,1.65) (0.24,2.89) (0.34,4.81) (0.43,6.39) (1.23,16.12)

2 (p, q) (0.01,0.57) (0.03,0.58) (0.06,0.6) (0.2,0.62) (0.32,0.64)

% 21.7 20.3 27.7 20 10.3 100

N 7.5 8.3 7.16 5.98 2.93 31.88

(D,R) (0.08,4.3) (0.28,4.84) (0.46,4.34) (1.23,3.66) (0.99,1.92) (3.04,19.06)

3 (p, q) (0.02,0.2) (0.03,0.4) (0.04,0.6) (0.06,0.68) (0.2,0.74)

% 4.1 5 12.9 24.9 53.1 100

N 7.86 8.34 8.3 8.36 8.46 41.32

(D,R) (0.14,1.55) (0.24,3.29) (0.32,5.03) (0.49,5.67) (1.71,6.27) (2.91,21.81)

4 (p, q) (0.01,0.52) (0.01,0.62) (0.02,0.71) (0.03,0.79) (0.03,0.86)

% 12.4 10.9 7.9 6.4 62.4 100

N 7.46 7.58 6.96 6.1 5.59 33.68

(D,R) (0.07,3.85) (0.11,4.68) (0.16,4.9) (0.14,4.87) (0.16,4.8) (0.63,23.09)

5 (p, q) (0.18,0.05) (0.22,0.2) (0.26,0.35) (0.3,0.47) (0.33,0.58)

% 15.6 24.1 24 15.6 9.9 89.2

N 11.65 10.57 8.35 5.26 2.58 38.4

(D,R) (2.09,0.6) (2.22,2.03) (2.2,3.04) (1.6,2.5) (0.89,1.53) (9,9.7)

6 (p, q) (0.08,0.15) (0.18,0.38) (0.25,0.52) (0.3,0.59) (0.35,0.62)

% 14.9 26.7 29.1 19.7 8.2 98.6

N 10 11.32 9.5 6 2.62 39.44

(D,R) (0.8,1.49) (2.03,4.25) (2.39,4.91) (1.82,3.5) (0.96,1.71) (7.99,15.85)
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TABLE 2

Selected percentage followed by the average number of patients treated in parenthesis. Dose levels with bold 

(p, q) are the optimal dose level(s) in each scenario. The numbers in the parenthesis following the design are 

batch sizes

Scenario

Dose Level

1 2 3 4 5 Total

7 (p, q) (0.01,0.05) (0.02,0.25) (0.03,0.25) (0.04,0.25) (0.05,0.25)

Nonparametric(7) 1.8(7.4) 20(8.4) 20(8.4) 15.4(6.6) 42.8(5.3) 100(36.1)

EffTox(7) 5(9.1) 52(18.2) 32(11.1) 4(1.2) 1(0.2) 94(39.8)

EffTox(3) 4(5.6) 40(15.2) 26(10.9) 10(3.4) 5(1.1) 85(36.2)

UAROET(6) 0.5(7.5) 16.2(12) 29.7(11.1) 34.4(7) 15.5(3.5) 96.3(41.1)

UAROET(3) 0.2(4.5) 11(8.8) 25(10) 28.8(9.2) 30.5(8.1) 95.5(40.7)

8 (p, q) (0.01,0.05) (0.02,0.25) (0.03,0.4) (0.04,0.4) (0.05,0.4)

Nonparametric(7) 1.5(7.5) 7.5(8.2) 21.5(8.1) 17.6(7.7) 51.9(6.2) 100(37.7)

EffTox(7) 4(8.8) 31(14.8) 52(15) 7(1.4) 1(0.2) 95(40.2)

EffTox(3) 4(5.5) 27(11.9) 48(16.9) 11(3.2) 2(0.8) 92(38.3)

UAROET(6) 0.3(7.2) 12.5(11.1) 33.8(12.5) 34.7(7.2) 16.5(3.3) 97.8(41.3)

UAROET(3) 0.1(4.4) 4.9(8.4) 28.2(11.1) 34.1(9.5) 30.3(7.8) 97.6(41.2)

9 (p, q) (0.01,0.05) (0.02,0.25) (0.03,0.4) (0.04,0.6) (0.05,0.6)

Nonparametric(7) 1.4(7.5) 7.3(8.1) 7.1(8.2) 19.4(7.8) 64.8(7.2) 100(38.8)

EffTox(7) 3(8.6) 32(14.8) 47(14.3) 9(1.7) 3(0.2) 94(39.6)

EffTox(3) 5(5.7) 22(10.9) 39(14.7) 18(4.8) 4(0.9) 88(37)

UAROET(6) 0.6(7.4) 9.1(11) 28.2(11.9) 40.3(7.8) 19.3(3.1) 97.5(41.3)

UAROET(3) 0(4.3) 3.7(7.7) 16.4(9.9) 40.4(10.9) 37(8.4) 97.5(41.2)

10 (p, q) (0.01,0.05) (0.02,0.25) (0.03,0.05) (0.04,0.05) (0.05,0.05)

Nonparametric(7) 1.2(7.6) 65.7(8.3) 10.3(9.2) 5.2(3.8) 17.6(2.6) 100(31.5)

EffTox(7) 5(9.4) 78(22.6) 4(6.2) 2(0.7) 1(0.3) 90(39.2)

EffTox(3) 5(5.7) 54(19.7) 6(4.2) 5(1.8) 3(1.2) 73(32.6)

UAROET(6) 0.5(7.4) 22.3(12.2) 17.9(8.2) 21.7(5.9) 8.5(3.8) 70.9(37.5)

UAROET(3) 0.6(4.4) 16.3(10) 18.7(8) 17.9(7.1) 10.3(6.1) 63.8(35.7)

11 (p, q) (0.01,0.05) (0.02,0.2) (0.03,0.4) (0.04,0.15) (0.05,0.15)

Nonparametric(7) 2.3(7.5) 4.7(8.4) 61.2(8.2) 10.7(7.3) 21.1(3) 100(34.5)

EffTox(7) 5(9.5) 23(12.2) 61(15.9) 3(1.5) 0(0) 92(39.1)

EffTox(3) 4(5.7) 19(9.5) 58(19.1) 5(2.1) 3(0.7) 89(37.1)

UAROET(6) 0.3(7.3) 11.3(11) 44.2(12.6) 29.8(6.7) 9.8(3.3) 95.4(40.8)

UAROET(3) 0.3(4.6) 6.5(7.8) 44(12.7) 26.9(8.6) 16.5(6.8) 94.2(40.5)

12 (p, q) (0.01,0.05) (0.02,0.2) (0.03,0.3) (0.04,0.6) (0.05,0.3)

Nonparametric(7) 1.7(7.5) 8.3(8.4) 2.2(8.4) 62.6(7.9) 25.2(6.9) 100(39.1)

EffTox(7) 6(9.2) 32(14) 39(13.5) 13(2.2) 2(0.3) 92(39.2)

EffTox(3) 4(5.7) 25(11.1) 28(11.3) 29(8) 2(0.8) 88(36.9)

UAROET(6) 0.2(7.5) 10(10.7) 24.1(10.9) 49.2(8.7) 13.4(3.3) 96.9(41.1)

UAROET(3) 0.1(4.4) 6(8) 13.8(10) 49.6(11.3) 27.2(7.3) 96.7(41)

Stat Med. Author manuscript; available in PMC 2019 March 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 30

Scenario

Dose Level

1 2 3 4 5 Total

13 (p, q) (0.01,0.05) (0.02,0.05) (0.03,0.3) (0.04,0.05) (0.05,0.05)

Nonparametric(7) 15.1(7.4) 0.8(9.5) 64.2(7.3) 6.2(7.3) 13.7(2.4) 100(34)

EffTox(7) 15(12.6) 8(8.8) 57(14.4) 6(2.5) 2(0.2) 88(38.5)

EffTox(3) 6(6.7) 6(4.9) 51(16.6) 5(2.7) 3(1.1) 71(32)

UAROET(6) 0.6(7.4) 2.1(6.7) 46.3(13.8) 20.5(6.6) 9(3.3) 78.5(38)

UAROET(3) 0.2(4.4) 1.9(5.5) 42.4(13.1) 15.5(7.3) 11.7(5.6) 71.7(35.9)

14 (p, q) (0.01,0.05) (0.02,0.05) (0.03,0.05) (0.04,0.3) (0.05,0.05)

Nonparametric(7) 13.3(7.5) 14.8(9.5) 0.6(8.9) 55.1(6.7) 16.2(6.2) 100(38.8)

EffTox(7) 20(13.9) 18(10.9) 7(6.2) 32(4.9) 4(1.3) 81(37.2)

EffTox(3) 8(6.8) 8(6) 8(4.5) 40(11) 4(2.1) 68(30.4)

UAROET(6) 0.6(7.3) 3.3(6.6) 7.3(6.5) 43.8(11.2) 22.9(6.3) 77.9(37.9)

UAROET(3) 0.5(4.3) 0.8(5.1) 6.2(6) 36.1(11.2) 29.1(9.6) 72.7(36.2)

15 (p, q) (0.01,0.05) (0.02,0.05) (0.03,0.05) (0.04,0.05) (0.05,0.3)

Nonparametric(7) 15(7.5) 13.2(9.5) 11.9(8.6) 0.9(7.7) 59(5.4) 100(38.6)

EffTox(7) 20(13.7) 18(10.6) 13(7.2) 9(3.2) 16(1.8) 76(36.5)

EffTox(3) 10(7.3) 8(5.7) 9(5.1) 8(3.2) 28(7.1) 63(28.4)

UAROET(6) 0.5(7.4) 4.3(6.6) 6.6(6.5) 13.4(6.4) 52.9(10.9) 77.7(37.8)

UAROET(3) 0.1(4.4) 1.8(5.3) 4.8(5.8) 9.2(6.5) 57.9(14) 73.8(36)
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TABLE 3

Simulation results based on the parametric model approach for scenarios 5 and 6. Correct τ(l) are chosen to be 

the true p(l); misspecified τ(l) are chosen to be half of the true p(l)

Scenario

Dose Level

τ(l) 1 2 3 4 5 Total

5 Correct (p, q) (0.18,0.05) (0.22,0.2) (0.26,0.35) (0.3,0.47) (0.33,0.58)

% 9.3 12.6 19.7 19.1 33.7 94.4

N 12.11 11.73 11.06 9.11 6.38 50.39

(D,R) (2.24,0.65) (2.59,2.28) (2.88,3.89) (2.89,4.39) (2.08,3.65) (12.69,14.86)

Misspecified % 8.3 11.2 15.5 14.9 46.6 96.5

N 12.25 12.22 11.57 9.93 7.83 53.8

(D,R) (2.23,0.59) (2.66,2.36) (3.02,4.1) (2.94,4.65) (2.57,4.54) (13.41,16.24)

6 Correct (p, q) (0.08,0.15) (0.18,0.38) (0.25,0.52) (0.3,0.59) (0.35,0.62)

% 4.8 15.6 25.2 31 23.3 99.9

N 9.99 11.45 11.97 9.71 5.85 48.97

(D,R) (0.76,1.5) (2.1,4.43) (3.06,6.17) (2.9,5.73) (2.02,3.6) (10.84,21.43)

Misspecified % 4.6 11.5 21.9 29.3 32.5 99.8

N 10.03 11.19 12.26 10.46 7.1 51.04

(D,R) (0.8,1.5) (2.05,4.24) (3.14,6.43) (3.25,6.22) (2.53,4.39) (11.77,22.78)
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TABLE 4

Study operating characteristics for the TA-CIN phase I study

Scenario

Dose Level

r 1 2 3 Total

1 (p, q) (0.02,0.05) (0.06,0.1) (0.08,0.25)

10 % 20.5 12.3 67.2 100

N 10.9 11.94 9.86 32.69

(D,R) (0.21,0.57) (0.76,1.23) (0.78,2.48) (1.76,4.28)

100 % 17.9 13.7 68.1 99.7

N 10.92 12.14 10.25 33.3

(D,R) (0.23,0.55) (0.76,1.26) (0.86,2.55) (1.85,4.36)

2 (p, q) (0.02,0.05) (0.06,0.15) (0.08,0.15)

10 % 11.3 38.1 50.5 99.9

N 10.84 12.16 10.48 33.48

(D,R) (0.2,0.51) (0.73,1.8) (0.83,1.57) (1.76,3.87)

100 % 12.6 39 48.2 99.8

N 10.93 12.21 10.43 33.56

(D,R) (0.22,0.56) (0.75,1.86) (0.86,1.61) (1.83,4.03)

3 (p, q) (0.02,0.05) (0.06,0.25) (0.08,0.1)

10 % 5.6 74.8 19.5 99.9

N 11.02 12.13 10.12 33.27

(D,R) (0.24,0.57) (0.68,3.08) (0.78,1.01) (1.71,4.66)

100 % 4.3 80 15.5 99.8

N 10.88 12.14 10.32 33.34

(D,R) (0.22,0.55) (0.72,3.08) (0.84,1.04) (1.78,4.66)

4 (p, q) (0.02,0.05) (0.06,0.05) (0.08,0.25)

10 % 25.6 6 68.4 100

N 10.93 11.7 9.5 32.13

(D,R) (0.22,0.51) (0.69,0.59) (0.8,2.34) (1.71,3.44)

100 % 28.1 5.8 65.9 99.8

N 10.94 11.86 9.09 31.88

(D,R) (0.23,0.57) (0.7,0.58) (0.74,2.23) (1.68,3.38)

5 (p, q) (0.02,0.05) (0.08,0.2) (0.3,0.35)

10 % 10.8 73 16.1 99.9

N 10.96 12.55 10.16 33.67

(D,R) (0.23,0.58) (1.03,2.52) (3.02,3.57) (4.28,6.68)

100 % 11.6 74.7 13.6 99.9

N 10.82 12.54 9.88 33.24

(D,R) (0.2,0.54) (1.02,2.53) (2.95,3.46) (4.17,6.54)
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