Skip to main content
. 2019 Feb 26;13:62. doi: 10.3389/fnhum.2019.00062

Table 1.

Comparison of prediction performance using different predictive models.

Feature method Network-based Edge-based
Regression model NKI-RS-E (K-fold) NKI-RS (external) NKI-RS-E (K-fold) NKI-RS (external)
OLS Pearson's correlation 0.846
(p < 0.0001)
0.786
(p < 0.0001)
0.867
(p < 0.0001)
0.828
(p < 0.0001)
MAE (years) 7.9 9.8 6.7 9.3
SVR Pearson's correlation 0.868
(p < 0.0001)
0.769
(p < 0.0001)
0.890
(p < 0.0001)
0.832
(p < 0.0001)
MAE (years) 7.5 9.9 7.1 9.4
LASSO Pearson's correlation 0.910
(p < 0.0001)
0.838
(p < 0.0001)
0.896
(p < 0.0001)
0.835
(p < 0.0001)
MAE (years) 6.5 8.8 6.9 9.2

Feature selection methods: network-based method and edge-based method; regression model: ordinary linear regression (OLS method), SVR and Lasso.