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A B S T R A C T

Acute kidney injury (AKI) has a significant impact on patient
morbidity and mortality as well as overall health care costs.
eResearch, which integrates information technology and infor-
mation management to optimize research strategies, provides a
perfect platform for necessary ongoing AKI research. With the
recent adoption of a widely accepted definition of AKI and
near-universal use of electronic health records, eResearch is be-
coming an important tool in AKI research. Conducting
eResearch in AKI should ideally be based on a relatively uni-
form methodology. This article is the first of its kind to describe
a methodology for pursuing eResearch specific to AKI and in-
cludes an illustrative database example for critically ill patients.
We discuss strategies for using serum creatinine and urine
output in large databases to identify and stage AKI and ways to
interpolate missing values and validate data. Issues specific to
the pediatric population include variation in serum creatinine
with growth, varied severity of illness scoring systems and medi-
cation dosage based on weight. Many of these same strategies
used to optimize AKI eResearch can be applicable to real-time
AKI alerts with potential integration of additional clinical
variables.
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I N T R O D U C T I O N

Acute kidney injury (AKI) is a significant public health issue,
with an increasing incidence and significant associated deleteri-
ous effects [1]. Numerous studies have described the conse-
quences of AKI, including prolonged hospital stay, increased
health care costs, morbidity and mortality [2, 3]. Historically,
AKI research has suffered from the lack of a unifying definition

and suboptimal strategies to assess large cohorts [4]. After de-
velopment of a consensus definition for AKI, the identification
and staging has been simplified. In 2012, the Kidney Disease:
Improving Global Outcomes (KDIGO) guideline adopted the
RIFLE (Risk, Injury, Failure, Loss, End Stage) and AKIN (AKI
Network) criteria for AKI diagnosis and staging and harmo-
nized the criteria for both adults and children [5] (see Table 1).
With a validated and near-universally accepted definition of
AKI [6, 7], research in this area has grown tremendously.

Within the same era, ‘big data’ research has blossomed. Big
data research generally refers to a large, complex repository of
data, frequently utilized for predictive abilities, refined analyses
and risk stratification models [8]. The incredible growth in
machine learning and computational ability in the past several
decades can be utilized with eResearch, which is the use of in-
formation technology and information management to opti-
mize research strategies [9]. The push for collaborative research
and effective use of information technology has driven the
adoption of eResearch [10], which is particularly useful in
health care informatics.

eResearch is an optimal platform for AKI research. With a
definition mapped to numerical values often readily available in
the electronic health record (EHR), we are not only able to iden-
tify and stage AKI, but can also utilize additional information in
the EHR to understand confounding factors like comorbidities,
medication administration, hypotension, infection and demo-
graphic data. Despite standard definitions for AKI, implemen-
tation of the criteria to EHRs is not as straightforward as one
might guess. The goal of this article is to discuss how to utilize
eResearch and information technology in AKI-based research,
focusing on the critically ill population. We will describe an il-
lustrative database while addressing database development,
AKI identification and staging, management of covariates and
perspectives across adult medicine and pediatrics.
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H I S T O R I C A L C O N T E X T

Much of what has been studied in AKI using EHRs has been an-
alyzed via administrative coding data. Unfortunately, numerous
sources of bias exist with administrative data, including
physician-dependent and institution-dependent coding prac-
tices, evolving clinician awareness and documentation of ‘renal
dysfunction’ without distinguishing AKI from chronic kidney
disease (CKD) [11, 12]. Of course, administrative data may still
prove useful, especially if documented AKI is the subject of the
research. Still, it should be used in conjunction with laboratory
and clinical data [13, 14]. Studies have shown poor sensitivity
(<25%) in identifying AKI using administrative data in both
adults [14] and children [15]. Administrative data are more
likely to identify higher-stage AKI, which does correlate more
highly with mortality [14], although it limits understanding of
the clinical phenotype (oliguric versus nonoliguric) and true
disease prevalence [12]. With readily available information in
the EHR, we are better equipped to assess AKI rates, risk factors
and outcomes [9].

F R O M D A T A M I N I N G T O R E A L - T I M E D A T A
A N A L Y T I C S

There are a variety of ways in which EHR information can be
utilized in eResearch. In addition to epidemiologic and retro-
spective analyses, investigators have developed real-time AKI
alerts and promising tools for clinical trial recruitment and
monitoring [13]. We developed an AKI alert that has been im-
plemented across all University of Pittsburgh Medical Center
(UPMC) hospitals in western Pennsylvania [16]. The alert aides
in clinical decision making in two ways. First, for each patient
encounter, the system will scan and identify the most appropri-
ate baseline serum creatinine. Second, the system identifies
time-based changes in a patient’s creatinine level over the
course of hospitalization. We recently analyzed outcomes for
>500 000 patients over the year preceding and 2 years following
the implementation of the alert. Both hospital mortality {ad-
justed odds ratio 0.76 [95% confidence interval (CI) 0.70–0.83],
P< 0.001} and length of stay [incidence rate ratio 0.91 (95% CI

0.89–0.92), P< 0.001] decreased after initiation of the alert for
patients with AKI, while no effect was seen for non-AKI pa-
tients [17]. However, a recent randomized controlled trial in-
cluding 2393 patients failed to show improvement in patient-
centered outcomes with an automated electronic alert for AKI
[18]. Together, these studies suggest that the effect size expected
from an ‘informational alert’ (one in which clinical guidance is
limited to event detection without management recommenda-
tions) is likely to be small. In order to produce larger effects,
alerts will need to include specific actions. In the pediatric litera-
ture, an EHR-based trigger tool was developed to screen chil-
dren who had significant nephrotoxic medication exposure,
which subsequently prompted the clinical team to monitor
more closely for development of AKI [19, 20]. It has proven to
be effective in lowering AKI rates, with a 42% reduction in AKI
intensity [20]. This use of EHRs has significant potential influ-
ence on future patient care.

While data from EHRs provide much information that can
facilitate large cohort-based AKI eResearch, there are important
limitations that need to be addressed. It is vital to understand
what data are available as well as what is potentially missing in
the medical record to determine the validity of the analyses.
Identification of what influences data recording aides the re-
searcher in deriving rules to address missing, incomplete and/
or questionable data. While data validation on a small scale can
attempt to ameliorate systematic errors, the possibility still
exists for imperfect approximation of renal function as well as
patient characteristics. Additionally, depending on the algo-
rithm used, worsening CKD on admission to the hospital may
be misclassified as AKI, with one report documenting a 14%
misclassification rate [21]. Having a sensitive screening measure
will inevitably lead to false identification of cases. When these
limitations are accounted for and understood, EHR-based re-
search can be very valuable.

A K I R E S E A R C H U T I L I Z I N G E H R S

UPMC Pittsburgh

One of the most susceptible populations to AKI includes
those who are critically ill [1]. Identifying changes in renal func-
tion is most readily apparent in a highly monitored environ-
ment such as the intensive care unit (ICU), since AKI staging is
based on serum creatinine and urine output. Despite the rela-
tive simplicity of AKI criteria, the array of information neces-
sary for eResearch in AKI is still quite significant. The 2000–08
High-Density Intensive Care (HiDenIC-8) database was
developed to study multiple different questions in critically ill
patients, but has been used most extensively to study AKI.
HiDenIC-8 includes all patients who were admitted to an ICU
within the UPMC system from 2000 to 2008, >45 000 patient
encounters. HiDenIC-8 merges data from several sources (see
Figure 1) containing demographics, diagnoses, billing codes, la-
boratory results, surgical procedures and various text elements
such as reports, clinical notes and discharge summaries. These
data are combined with data from the Eclypsis database for
physiologic information that includes vital signs, medications,
fluids, mechanical ventilation, feeding, oxygen, details of renal

Table 1. KDIGO AKI staging

Stage Serum creatinine Urine output

1 1.5–1.9 times baseline
OR
�0.3 mg/dL increase

<0.5 mL/kg/h for 6–12 h

2 2.0–2.9 times baseline <0.5 mL/kg/h for �12 h
3 3.0 times baseline

or
Increase in serum

creatinine to �4 mg/dL
or
Initiation of renal replacement

therapy
or
In patients <18 years, decrease

in eGFR to <35 mL/min/1.73 m2

<0.3 mL/kg/h for �24 h

The stage of acute kidney injury (AKI) is defined by the highest stage from either serum
creatinine or urine output criteria. eGFR, estimated glomerular filtration rate. KDIGO,
Kidney Disease Improving Global Outcomes.
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replacement therapy and transfusions. An honest broker also
obtained information from the US Renal Data System and the
National Death Index and merged these data with the
HiDenIC-8 database. The final data set is deidentified for use in
analyses.

Subsequently a version of HiDenIC was created for the pedi-
atric population (Peds HiDenIC) and includes all patient en-
counters from children>60 days of age admitted to the pediatric
ICU or cardiac ICU at the Children’s Hospital of Pittsburgh of
UPMC between 2010 and 2014 (see supplementary data, supple-
mentary table 1). This database merged information from two
EHRs and includes demographic and admission data, adminis-
trative codes, procedure and surgical information, medication
administration, physiologic variables, laboratory values, mech-
anical ventilation and microbiology results.

KDIGO AKI staging

The 2012 KDIGO criteria, the most current definition of
AKI, describes staging for increasing severity of AKI (see
Table 1). Identification and appropriate assessment of AKI us-
ing large databases such as HiDenIC requires the availability of
baseline serum creatinine values, in-hospital serum creatinine
values and accurate documentation of urine output. Essentially,
once AKI is determined, it can be staged using four methods: (i)
percentage increase in serum creatinine above reference value
(Stages 1–3), (ii) decrease in urine output (Stages 1–3), (iii) initi-
ation of renal replacement therapy for AKI (Stage 3) or (iv) in-
crease in serum creatinine by 0.3 mg/dL within 48 h (Stage 1).

Serum creatinine

AKI staging is dependent on establishing a reliable reference
serum creatinine with which to compare measured values dur-
ing the hospital or ICU stay [22]. Ideally, baseline serum cre-
atinine values are assigned using measurements obtained in the
6 months–1 year prior to admission, utilizing the median value
to sensor outliers. If a baseline serum creatinine is not available,

either a back-calculated value or admission serum creatinine is
used as the reference serum creatinine (see Figure 2).

While using baseline serum creatinine measured prior to ad-
mission is preferred, it certainly has limitations. Outpatient test-
ing of serum creatinine can be triggered by acute illnesses or
monitoring of chronic diseases, which introduces potential bias.
Patients with available values may not be representative of the
general population, and comparing inpatient to outpatient val-
ues may add to error if different assays were used to measure se-
rum creatinine—although this risk has been reduced in recent
years by introduction of the isotope dilution mass spectrometry
(IDMS) standard.

If serum creatinine values are not available prior to admis-
sion, another strategy is the assumption of a low–normal esti-
mated glomerular filtration rate (eGFR) of 75 mL/min/1.73 m2

and back-calculation of the associated serum creatinine using
the Modification of Diet in Renal Disease (MDRD) study equa-
tion [23]:

eGFR ðmL=min=1:73m2Þ ¼ 186 � SCr�1:54 � Age�0:203

� 1:21African�American � 0:742Female

This is a necessary practice in order to analyze patients who
could have community-acquired AKI on admission to the hos-
pital but no known baseline serum creatinine value. This strat-
egy may overestimate the incidence of AKI if prior CKD has
been missed or underestimate AKI if the assumed low–normal
eGFR is too low (which may be an issue in healthy young adults
and children). When comparing the use of the MDRD equation
to serum creatinine–based methods, the MDRD method gener-
ated 78–90% reliable results and most often overestimated the
level of serum creatinine (therefore underestimating AKI) in
adults <25 years of age [24]. Three additional constraints are
generally placed on this approach. First, if there is any history of
CKD, back-calculation cannot be used. Second, if the admission
creatinine is lower than the back-calculated creatinine, the

FIGURE 1: Data acquisition for HiDenIC database. HiDenIC, high-density intensive care; UPMC, University of Pittsburgh Medical Center;
CARe, Center for Assistance in Research using eRecord; BDMC, Biostatistical and Data Management Core; C3N, Center for Critical Care
Nephrology.
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admission value should be used. This helps avoid the overesti-
mation of serum creatinine. Third, the pattern of serum creatin-
ine over the following days should be consistent with AKI. For
example, a patient admitted with a serum creatinine of 1.5 mg/
dL and a back-calculated creatinine of 1.0 mg/dL might have
AKI. However, if the creatinine remains 1.5 mg/dL, this diagno-
sis is unlikely. Conversely a creatinine that continues to increase
or comes down after admission is much more consistent with
AKI.

Lastly, the admission creatinine may be the most appropriate
reference creatinine to use when no baseline creatinine is avail-
able and the patient has a history of CKD or if the admission
creatinine value is lower than the back-calculated value. It
may also be the best reference in cases of elective surgery or
other scenarios where the admission is not prompted by acute
illness. Unfortunately, the admission serum creatinine can be
an unreliable measure of baseline renal function in cases of
community-acquired AKI or if AKI is developing on presenta-
tion to the hospital.

Urine output

AKI is best assessed and staged when using the combination
of urine output and serum creatinine criteria [25], but unfortu-
nately in a majority of studies, particularly in noncritically ill
patients, urine output data are excluded from the AKI stage. Its
use is dependent on accurate urine collection as well as docu-
mentation in a patient’s chart, which is more likely to be done
in a critical care setting. The sheer volume of urine output data
can be enormous and managing the data as well as missingness
can be time consuming. We generally recommend the use of a
rolling 6-h window for urine output in the first 72 h of ICU ad-
mission to classify AKI stage in conjunction with serum

creatinine values. While ideally urine output should be used in
combination with serum creatinine to determine AKI stage at
all time points, limiting the use of urine output to the first 72 h
is more feasible and captures the majority of AKI since it often
presents at or near ICU admission.

Interpolation

Standard methods for interpolation exist for missing values
based on whether the values are missing at random (MAR), miss-
ing not at random or missing completely at random. Many clinical
data sets incur the problem of one or more of the above categories
of missing values. For example, the data may be missing from the
data set entirely due to a ‘true’ missing value, the data may be miss-
ing due to an error or the data may be missing at the point of ana-
lysis and found at a later time point. Whatever the reason may be,
the impact of the missing values and the reasons why they may be
missing often depend on many factors and on the type of disease
studied. As researchers, we hope to aim for MAR, however, there
may be other categories of missinginess in the data set [26].

Interpolation for urine output and creatinine has some unique
features. For creatinine, the known kinetics of the marker help
with interpolation. Over the short term, creatinine can usually be
interpolated linearly across missing days. At early time points after
AKI, an absolute increase in serum creatinine (as opposed to per-
centage increase) can be appropriate to define AKI. Regardless of
underlying renal function, the time to reach an absolute increase
in serum creatinine of 0.5 mg/dL is the same after AKI [27], sug-
gesting the appropriate use of linear interpolation between two
time points within a 24–48-h time period. Generally we do not
recommend interpolating serum creatinine over>48 h.

Ideally serum creatinine is corrected for fluid overload if
feasible. This is most important within the first several days of

FIGURE 2: Assigning reference creatinine in adults. CKD, chronic kidney disease; SCr, serum creatinine.
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ICU admission or within the postoperative period, when fluid
resuscitation is common. Serum creatinine may be diluted with
fluid overload, leading to missed or delayed identification of
AKI [28, 29]. Correction of serum creatinine for fluid balance
can be done according to the following formula [30]:

Corrected SCr ¼ measured creatinine

� ½1 þ ðaccumulated net fluid balance=total body waterÞ�;

where total body water ¼ 0:6 � weight ðkgÞ

For urine output, the principle for interpolation is that volume
is usually not lost but rather, what is not recorded at one time
point is usually available at the next. For example, urine output
that is not recorded at Hour 3 is often carried over into the re-
corded volume for Hour 4. In such cases, urine volume can be
distributed over the missing time points. The limit of interpol-
ation is a matter of judgement. In general, 6-h totals are needed
for AKI ascertainment and we therefore recommend limiting
interpolation to 6 h. We determined a standardized approach
for interpolation of hourly urine output and addressing missing
values up to 3 h. If the difference between any two documented
urine output values is �3 h then, and only then, back-interpol-
ation (distribution) is performed. Otherwise, values are con-
sidered missing within that time frame (see Table 2).

Validation

Data validation focuses on consistency with real clinical in-
formation, which includes cross-system consistency, cardinal-
ity, logistical designs, numeric ranges, missingness, uniqueness,
security vulnerability and anonymization, as well as referential
integrity. Validation of primary data is a necessary and vital
step prior to predictive analytics. Validation methods vary
across different data types given the differences in relative im-
portance to the primary outcome and the susceptibility for er-
ror. For AKI, creatinine and urine output require multiple
rigorous clinical adjudications. We recommend manual valid-
ation of a minimum of 100 randomly selected patient records
using at least two adjudicators [16]. Overall, the approach is

similar to prospective clinical studies where an adjudication
committee determines the presence of AKI [31].

Covariates

Additional variables available in the HiDenIC database
allow statistical modeling to address potential confounders.
Comorbidities can be identified using International Classifica-
tion of Diseases (ICD) codes, accepting a certain degree of vari-
ability based upon clinician recognition of the comorbidity and
entry into the EHR. With the transition from ICD-9 to ICD-10
codes in 2015, mapping diagnoses between the versions needs
to be done as part of the validation. In the adult population,
comorbidities can be combined with patient age to develop a
Charlson Comorbidity Index [32], which can serve as a marker
for the complexity of underlying health-related issues that often
affects the risk for development of AKI. Additionally, various
severity of illness scoring systems are available such as the Acute
Physiology and Chronic Health Evaluation (APACHE), Simpli-
fied Acute Physiology Score (SAPS), Sequential Organ Failure
Assessment (SOFA), Mortality Probability Model (MPM) and
Multiple Organ Dysfunction Score (MODS). These can be
calculated using physiologic variables, demographic data and
laboratory values in the database, which can be useful for de-
scriptive purposes as well as severity adjustment.

Hemodynamic variables including blood pressure and car-
diac output are also important, especially in the ICU. In addition
to the use of vasopressors as a marker of severe hypotension, a
hypotensive index has been developed that integrates the dur-
ation and depth of systolic blood pressure <90 mmHg in the
first 24 h after ICU admission [33]. Lastly, since sepsis is one of
the leading causes of AKI, a feasible definition needs to be ap-
plied using EHR data. Since administrative codes tend to under-
estimate the diagnosis, suspected sepsis has been defined as the
ordering of blood cultures and antibiotics within 24 h of each
other [34]. Utilization of the EHR can develop these covariates
to enhance analyses and generalizability of the results.

P E D I A T R I C - S P E C I F I C I S S U E S

In contrast to AKI research focused on the adult population, re-
search in pediatrics has historically not been as robust, though

Table 2. Urine output hourly interpolations

Example patients UOP,
Hour 1

UOP,
Hour 2

UOP,
Hour 3

UOP,
Hour 4

UOP,
Hour 5

UOP,
Hour 6

Eligibility for
inclusion after
interpolation

Patient 1, actual observation 10 – – – 40 Eligible
Patient 1, interpolation 10 10 10 10 10

Patient 2, actual observation 10 – – 30 30 Eligible
Patient 2, interpolation 10 10 10 10 30

Patient 3, actual observation 10 – 40 10 50 Eligible
Patient 3, interpolation 10 20 20 10 50

Patient 4, actual observation 10 – – – – 50 Not eligible
Patient 4, interpolation 10 – – – – 50

This table illustrates how missing urine output data from four example patients would be interpolated to determine hourly urine output rates. A 6-h rolling window can be used to
identify a decrease in urine output that would qualify as AKI. If the difference between any two observations is �3 h then, and only then, back-interpolations would be done. Otherwise
values are considered missing within that time frame.
UOP, urine output (mL).
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there are promising international pediatric AKI studies under
way [35]. Major contrasts in adult and pediatric eResearch in-
clude different associated comorbidities, varying baseline serum
creatinine values in growing children, alternate eGFR equations
and weight-based dosing of medications. Many of the same
principles can be applied to pediatric eResearch with some flexi-
bility and modifications.

Reference serum creatinine

While identifying an appropriate reference serum creatinine
in adults is challenging, it is amplified in the pediatric popula-
tion given that serum creatinine trends upwards as a child
grows. In adults, if serum creatinine values prior to hospital ad-
mission are available, it is reasonable to assign a baseline serum
creatinine from a median value over the past year. In children,
we would recommend limiting this time frame to 6 months
given the possibility of a more rapidly changing value.

While back-calculations of a reference serum creatinine are
generated using the MDRD equation in adults, eGFR in chil-
dren can be approximated with the modified Schwartz formula,
which includes a term to adjust for a patient’s height [36]. The
modified Schwartz formula is as follows:

eGFR ¼ 0:413 � ðHeight in cmÞ=ðSerum creatinine in mg=dLÞ

It is important to note that if height is missing in the EHR for a
specific ICU encounter, back-calculation of a reference serum
creatinine is not possible and therefore the admission serum
creatinine is assigned as the reference value.

In the adult literature, back-calculating a reference serum
creatinine is done using an eGFR of 75–100 mL/min/1.73 m2

[24], whereas in the pediatric literature eGFR is often 100–
120 mL/min/1.73 m2 [37]. Missingness is more prevalent in
children with regard to baseline serum creatinine measure-
ments [23]. Depending on the reference serum creatinine used,
AKI incidence and outcome associations can differ [37]. While
assuming an eGFR of 120 mL/min/1.73 m2 is less biased with a
25% absolute error, using an eGFR of 100 mL/min/1.73 m2 in
database research may be more conservative to avoid overdetec-
tion of AKI, although it carries up to 50% absolute error [37].

Severity of illness scoring

Several severity of illness scoring systems are used in pediat-
rics, with the Pediatric Index of Mortality 2 (PIM2) score most
widely accepted and validated [38]. This score incorporates
physiologic data, lab values, mechanical ventilation, preceding
surgery and high- and low-risk diagnoses to calculate a risk of
mortality for the ICU admission [39]. While this score is often
used in prospective studies, it has yet to be validated in studies
using EHR data. The issue arises primarily from time of assess-
ment; the PIM2 score was developed as a bedside tool to be
used within the first hour of admission to the ICU. When re-
viewing EHR data, it is less likely that all the information
needed to assess the risk of mortality will be recorded within
the first hour of ICU admission, and the time frame needs to be
expanded to at least the first 4 h of admission.

Medications

In children, assessment of medication administration in re-
lation to AKI is extremely important, as nephrotoxicity is a
leading cause of AKI in hospitalized children [40]. In the critic-
ally ill population, it is often difficult to discern the degree to
which nephrotoxic medications play a role in the development
of AKI given the complexity of these patients. The prevalence of
medication-associated AKI in critically ill children may very
well be underrecognized and underreported. The use of large
databases such as Peds HiDenIC may aid in assessment of
medication-associated AKI, and in the pediatric population, an-
alyzing dose–response relationships as well as timing would be
vital for supporting an association between medication admin-
istration and development of AKI. In children, medications
dose is often based on weight. Therefore, appropriate documen-
tation of a weight in the EHR would be necessary to accurately
assess dose.

D A T A I N T E G R I T Y A N D S E C U R I T Y

Data integrity and security are vital components of conducting
eResearch. Creating policies and procedures for good data stew-
ardship is necessary in collaboration with multiple individuals.
One of the single most important documents that one may
want to create is a data dictionary, depicting the ‘data’ behind
the data by clearly delineating mapping, codes and variable def-
initions. Establishing good data governance principles and se-
curing any protected health information (PHI) are vital aspects
to successfully conducting eResearch. We recommend using a
secure cloud-based server with restricted access or a similarly
secure data repository to safely store any PHI. The inclusion of
dedicated information technology staff members should be
considered to ensure the proper use and dissemination of the
data by including role-based access control, encryption and au-
thentication of data. Finally, it should be mentioned that data
integrity must be maintained and judged to be tenable, reason-
able, deidentified and secure before performing analyses, in-
cluding data mining and predictive modeling techniques.

C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

eResearch provides a useful, efficient and accurate platform to
study AKI. If data are validated and handled appropriately
while accepting some limitations inherent to database re-
search, EHRs can be successfully leveraged to gain informa-
tion in an understudied field. As eResearch in AKI becomes
more robust with the use of EHRs, there are great opportuni-
ties for continued refinement of data accrual, assessment and
inclusion. It has been made readily apparent that an increase
in serum creatinine and a decrease in urine output are late
markers of AKI. Promising urinary biomarkers are being ac-
tively studied and may be incorporated into early AKI detec-
tion in the future, which could prove useful in real-time AKI
alerts. Additionally, integration of clinically relevant informa-
tion into AKI detection, including time course (development
of acute kidney disease or CKD), histological features if avail-
able, clinical context and recovery status could prove useful in
all aspects of eResearch as well.
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Supplementary data are available at ndt online.
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