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Abstract

Chaperone-mediated autophagy (CMA) was the first studied process that indicated that 

degradation of intracellular components by the lysosome can be selective — a concept that is now 

well accepted for other forms of autophagy. Lysosomes can degrade cellular cytosol in a 

nonspecific manner but can also discriminate what to target for degradation with the involvement 

of a degradation tag, a chaperone and a sophisticated mechanism to make the selected proteins 

cross the lysosomal membrane through a dedicated translocation complex. Recent studies 

modulating CMA activity in vivo using transgenic mouse models have demonstrated that 

selectivity confers on CMA the ability to participate in the regulation of multiple cellular 

functions. Timely degradation of specific cellular proteins by CMA modulates, for example, 

glucose and lipid metabolism, DNA repair, cellular reprograming and the cellular response to 

stress. These findings expand the physiological relevance of CMA beyond its originally identified 

role in protein quality control and reveal that CMA failure with age may aggravate diseases, such 

as ageing-associated neurodegeneration and cancer.

Last year, Yoshimori Ohsumi received the Nobel Prize in Medicine or Physiology for his 

molecular discoveries in autophagy. Work from many groups since the discovery of 

lysosomes has paved the way to our current understanding of the autophagic mechanisms 

that mediate the delivery of cytosolic proteins and organelles to lysosomes for 

degradation1,2. These new findings have proved that autophagy can be very selective in what 

it targets for degradation (cargo)3, an idea that originally encountered considerable 

resistance.

It was during this early resistance that the discovery of chaperone-mediated autophagy 

(CMA) occurred. At that time, the best-characterized form of autophagy was 

macroautophagy, a process during which cargo that is sequestered in double-membrane 

vesicles (autophagosomes) is delivered to lysosomes through vesicular fusion4 (Fig. 1). This 
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apparent in bulk trapping of cytoplasm inside autophagosomes was not compatible with the 

idea of selective degradation. A similar in bulk principle applied to microautophagy, 

whereby invaginations at the lysosomal membrane (or the vacuole in yeast) internalize 

cytosolic cargo into small vesicles that then detach into the lumen for degradation5 (Fig. 1).

Macroautophagy and microautophagy are now known to be capable of exquisite cargo 

selectivity. Macroautophagy uses cytosolic receptor proteins (for example, sequestosome 1 

(p62)), next to BRCA1 gene 1 protein (NBR1) and NIP3-like protein X (NIX; also known as 

BNIP3L), that bring cargo and the autophagy machinery together3. This spatial coincidence 

allows assembly of the autophagy proteins to form a limiting membrane around the cargo. 

This membrane grows and seals, giving rise to an autophagosome with the cargo and 

receptors inside. Selective organelle degradation by microautophagy occurs by interaction of 

organelle proteins with surface proteins at the vacuole, lysosomes or late endosomes6,7, 

whereas a cytosolic chaperone, the heat shock cognate 71 kDa protein (HSC70; also known 

as HSPA8), mediates selective protein degradation by micro-autophagy (known as 

endosomal microautophagy in mammals)8 (Fig. 1).

Selectivity has been associated with CMA since its discovery because of the unique 

mechanism that underlies lysosomal cargo delivery. Proteins, the only cargo degraded by 

this pathway, cross the lysosomal membrane one by one. Not all proteins can undergo 

degradation via CMA. To be CMA substrates, proteins must contain a specific targeting 

motif in their amino acid sequence9. This motif binds to a cytosolic chaperone (HSC70), 

which brings the substrate protein to the lysosomal surface for internalization and rapid 

intralysosomal degradation.

The focus of CMA studies has shifted through the years. Early studies optimized systems to 

reconstitute CMA in vitro, which helped in understanding chaperone–cargo recognition and 

substrate lysosomal translocation10,11. Molecular dissection of CMA has been slow because 

model systems, such as yeast, worms or flies, that accelerated discovery in macroautophagy 

are of no use in the study of CMA as one of the essential CMA components is absent in 

these species and, to date, has been described only in birds and mammals12. The 

introduction of mammalian RNAi technology facilitated the identification of new 

components and regulators of the CMA pathway13–16. The ability to genetically modulate 

CMA has been key, in recent years, to linking CMA malfunctioning to human diseases, such 

as neurodegeneration and cancer17,18. Current studies on CMA at the cellular and organism 

level are providing a more comprehensive view of its physiological relevance by discovering 

previously unknown CMA functions19–21. For example, genetic blockage of CMA in mouse 

liver has revealed a key role for CMA in the regulation of glucose and lipid metabolism, 

whereas mouse models with compromised CMA in T cells support the requirement for a 

fully functional CMA to reach maximal T cell activation.

In this Review, we describe recent advances in our understanding of the mechanisms of 

CMA and the finely tuned orchestration of CMA activity as part of the proteostasis 

networks. We also discuss new findings on the pathophysiological relevance of CMA, 

particularly in the context of ageing and two age-related disorders (neurodegeneration and 

cancer).
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Mechanisms of CMA

Biochemical and genetic approaches have helped dissect the steps and molecular machinery 

involved in CMA. These studies have confirmed the unique characteristics of CMA 

regarding substrate identification and delivery inside lysosomes when compared to other 

types of autophagy.

The basis for cargo selectivity

The concept of selective lysosomal degradation by CMA originated from the finding that not 

all cytosolic proteins could undergo lysosomal degradation. Using ribonuclease A, which is 

one of the proteins that can be degraded, the late American biochemist and cell biologist 

Fred Dice and his team identified an 11-amino-acid region in the protein, later narrowed 

down to the pentapeptide KFERQ, which is necessary and sufficient to target proteins for 

lysosomal degradation22.

The properties of the residues that constitute the motif, rather than the specific amino acids, 

determine whether the CMA-targeting chaperone HSC70 can bind to this region9. The motif 

is always flanked by a glutamine on one of the sides (as the pentapeptide functions as a 

targeting sequence in both directions) and contains one or two of the positive residues K and 

R, one or two of the hydrophobic residues F, L, Ior V andone of the negatively charged E or 

D residues. Approximately 40% of proteins in the mammalian proteome contain a canonical 

KFERQ-like motif. In addition, in some substrate proteins, the same targeting motif can be 

generated through post-translational modifications, thus expanding the number of potential 

CMA substrates. Phosphorylation of S, T or Y present in a motif containing only four of the 

canonical residues and missing the negatively charged one can complete the motif and 

convert the protein to a CMA substrate23–26. In some instances, Q can be replaced by K, 

which upon acetylation acquires properties similar to Q, thus completing the motif 27,28. 

Ubiquitylation or acetylation of the same K could, in theory, become a switch between 

proteasomal and lysosomal degradation. Characteristics of canonical or putative CMA 

motifs and recommendations for motif validation are described in Box 1.

Post-translational modifications outside the motif can also modulate CMA targeting of 

proteins bearing canonical motifs by facilitating conformational changes that expose or 

mask the motif. For example, CMA-dependent degradation of hypoxia-inducible factor 1α 
(HiF1α), a validated CMA substrate, takes place only when it is ubiquitylated on Lys63 by 

the E3 ubiquitin-protein ligase STUB1 (REF.29). By contrast, acetylation of mammalian 

Ste20-like kinase 1 (MST1; also known as STK4) in a residue far from the canonical CMA 

motif prevents its lysosomal degradation, and only upon deacetylation can HSC70 bind the 

canonical motif 30.

HSC70 involvement in CMA

The KFERQ-like motif provided the ‘bait’ to identify HSC70 as the cytosolic chaperone 

that, upon binding that region, targeted proteins for lysosomal degradation31. Although 

cochaperones, such as carboxyl terminus of HSC70-interacting protein (CHIP), heat shock 

protein 40 (HSP40; also known as DNABJ1) and HSP70–HSP90 organizing protein HOP 
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modulate substrate targeting to lysosomes in an HSC70-dependent manner32,33, to date, 

HSC70 remains the only chaperone proved to directly bind the KFERQ-like motif. HSC70 

participates in multiple cellular functions by facilitating folding of unfolded or misfolded 

proteins. HSC70 binds hydrophobic regions to assist in protein folding. In contrast, HSC70 

binds KFERQ-like motifs to target proteins for degradation via CMA.

The relationship of cytosolic HSC70 with autophagy has expanded beyond CMA. In 

cooperation with the cochaperones BAG family molecular chaperone regulator 1 (BAG1) 

and BAG3, HSC70 participates in the selective degradation of ubiquitin-positive protein 

aggregates by a type of macroautophagy known as chaperone-assisted selective autophagy 

(CASA)34 (Fig. 1). The search for a process in mammalian cells that is homologous to yeast 

microautophagy led to the discovery of endosomal microautophagy, in which cytosolic 

proteins enter endosomal compartments inside vesicles generated at the surface of late 

endosomes through the assembly of endosomal sorting complexes required for transport 

(ESCRT)8. Although cytosolic proteins are trapped in a nonselective manner as these 

vesicles form, a subset of cytosolic proteins are selectively targeted there by HSC70 (REF.8) 

(Fig. 1). As in CMA, HSC70 binds endosomal microautophagy cargo proteins through a 

KFERQ-like motif. HSC70 is thus at the centre of protein triage between three different 

types of autophagy in mammals.

Discovery of selective endosomal microautophagy8 has necessitated revising the criteria for 

bona fide CMA substrates. Dependence on HSC70 for lysosomal degradation, for many 

years a distinctive characteristic of CMA substrates, is now insufficient to attribute 

degradation to this pathway. Dependence on the lysosomal membrane receptor lysosome-

associated membrane protein type 2A (LAMP2A, discussed below), is the best criteria to 

determine whether protein degradation occurs via CMA, as LAMP2A is not required for 

CASA34 or endosomal-microautophagy8. Whereas HSC70 requires LAMP2A for lysosomal 

docking in CMA, the chaperone binds directly to lipids at the endosomal membrane in 

endosomal microautophagy8.

A fraction of cellular HSC70 that is constitutively present in lysosomes, both at their 

membrane cytosolic side and in the lysosomal lumen, also participates in CMA15,35 (Fig. 2). 

Membrane-bound HSC70 in a complex with the cochaperones HSP90, HSP40, HSP70-

interacting protein (HIP) and HOP has been proposed to participate in substrate unfolding33, 

which is required before lysosomal translocation36. Membrane HSC70 is also required to 

sustain continuous cycles of CMA because after the substrate is internalized, HSC70 

facilitates dissociation of the receptor protein from the CMA translocation complex to allow 

for binding of new substrates15.

The second form of lysosomal HSC70 is located in the lumen35,37 (Fig. 2). The stability of 

HSC70 in this acidic environment with high concentrations of proteases relies on specific 

properties of the luminal HSC70. Although both cytosolic and lysosomal HSC70 originate 

from the same gene, it was shown that luminal HSC70 has a highly acidic isoelectric point, 

which is very different from the neutral isoelectric point of the cytosolic chaperone37. 

Luminal HSC70 becomes unstable with small changes in lysosomal acidification, which are 

physiologically used to modulate the percentage of lysosomes competent for CMA at a 
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given time35. As luminal HSC70 is necessary to complete substrate translocation, lysosomes 

lacking this chaperone cannot perform CMA. An unresolved question is how HSC70 gains 

access to the lysosomal lumen. Blockage of macro-autophagy or CMA does not reduce the 

levels of luminal HSC70 (REF.13,38), thus discarding the possibility that it might be 

internalized through these pathways. It is possible that HSC70 internalization from the 

cytosol occurs into late endosomes through microautophagy and that lysosome–endosome 

fusion facilitates HSC70 transfer to the lysosomal lumen.

Diverse functions of the lysosomal receptor LAMP2A

LAMP2A was the first identified lysosomal component required for CMA39. Participation of 

a receptor protein in CMA was inferred because substrate internalization in lysosomes was 

saturable and trypsinization of the surface of lysosomes (to remove protein components) 

ablated substrate binding and internalization35,40. LAMP2A is one of the three splice 

variants of a single gene, LAMP212. LAMP2A, LAMP2B and LAMP2C have identical 

luminal regions but different transmembrane and cytosolic regions. LAMP2A is the only one 

of the three isoforms required for CMA39,41 (Fig. 2). Although LAMP2A may share with 

LAMP2B and LAMP2C some of the functions attributed to the luminal region that is 

identical in the three LAMP2 variants42, it is not the most abundant of the three proteins, and 

its blockage remains, to date, the most specific way to inhibit CMA. LAMP2A contributes to 

different steps of CMA.

Substrate binding.—The 12-amino-acid cytosolic tail of LAMP2A is required for 

lysosomal docking of HSC70– substrate complexes39,41. HSC70 and the substrate can bind 

this tail at the same time, suggesting that substrate recognition and targeting are coupled 

processes39,41,43; however, the KFERQ-like motif in the substrate is not required for 

LAMP2A binding39. Three positive residues in the cytosolic tail of LAMP2A are essential 

to complete CMA of substrates41, leaving open the possibility that transferring of the 

unfolding substrate requires interaction only with negatively charged residues in the 

substrate protein. Studies using an unfoldable artificial substrate demonstrated that unfolding 

is not required for lysosomal surface binding but is necessary for its translocation36.

LAMP2A assembly.—Multimerization of LAMP2A into a 700 kDa multimeric protein 

complex is essential for substrate translocation into the lumen14,15 (Fig. 2). Assembly of this 

translocation complex occurs step-wise and includes the formation of an intermediate 

LAMP2A homotrimer44 that increases substrate affinity and probably prevents its 

aggregation as the substrate unfolds44. Cytosolic HSC70 associates with LAMP2A 

monomers and homotrimers, but it is released before the fully functional translocation 

complex is assembled15. A form of HSP90 associated at the luminal part of the lysosomal 

membrane interacts with and stabilizes LAMP2A during this transition15 (Fig. 2). HSP90 

may cover protease-sensitive regions of LAMP2A that are otherwise exposed during its 

conformational arrangement for multimeric assembly15.

Regulation of lysosomal levels of LAMP2A.—Luminal HSC70 is required for CMA, 

but LAMP2A is the rate-limiting component of this pathway. Changes in levels and 

dynamics of LAMP2A at the lysosomal membrane regulate CMA flux (that is, the rate at 
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which cargo is degraded). De novo synthesis of LAMP2A occurs during mild oxidative 

stress21,45, genotoxic damage24 or hypoxia32,46 ‒ all conditions that induce CMA 

activation. This transcriptional upregulation of LAMP2A is still poorly understood. The 

transcription factor nuclear factor of activated T cells (NFAT1) has been shown to directly 

promote the transcriptional upregulation of LAMP2A during T cell activation21 (Fig. 3). 

Transcription of several CMA components, including LAMP2A, have been shown to be 

under the negative control of the nuclear retinoic acid receptor-α47. Although most 

lysosomal proteins, including other LAMPs, are part of the programme of the transcription 

factor EB (TFEB), LAMP2 transcription is not regulated, at least directly, by this factor48.

The increase in LAMP2A levels in other conditions that activate CMA, such as starvation, 

does not involve de novo synthesis of LAMP2A and is instead mediated through changes in 

LAMP2A degradation at the lysosomal membrane, which is a finely controlled process43,49 

(Fig. 2). LAMP2A is usually well protected from the luminal proteases by its abundant 

glycosylation and unique spread conformation against the inner leaflet of the membrane50. 

Degradation of LAMP2A requires its mobilization to lipid microdomains49,51, where it 

undergoes a dual cleavage by cathepsin A and a yet unidentified metalloproteinase to be 

released into the lumen for rapid degradation51 (Fig. 2). Changes in the lipid composition of 

the lysosomal membrane with age or upon high-lipid dietary challenges accelerate this 

regulated degradation of LAMP2A because it becomes trapped in the expanded lipid 

microdomains52,53. The half-life of LAMP2A in lysosomes is approximately 36 h, but it 

becomes more than 72 h in hepatocytes and in fibroblasts in culture during prolonged 

starvation51. This reduced degradation leads to a net increase in LAMP2A levels in 

lysosomes. Mobilization of a fraction of LAMP2A resident in the lysosomal lumen (likely in 

micelles) to the lysosomal membrane is responsible for the further increase in LAMP2A 

levels at the lysosomal membrane observed when starvation persists beyond 48 h (REF.43).

There is no evidence yet that Golgi complex-to-lysosome trafficking of LAMP2A modulates 

CMA activity under physiological conditions. However, mis-targeting of LAMP2A has been 

identified as the basis of reduced CMA observed in the lysosomal storage disorder 

cystinosis54. Defective trafficking seems specific for LAMP2A, as other LAMPs reach 

lysosomes normally in this disease, thus suggesting the existence of LAMP2A-dedicated 

Golgi-to-lysosomal transport machinery. The small GTPase Ras-related protein Rab- 11A 

(RAB11) and the RAB7 effector Rab-interacting lysosomal protein (RILP) are likely part of 

this transport machinery, as correction of the lower levels observed for both proteins in 

patients is sufficient to correct LAMP2A mistargeting in disease cells55. Small molecules 

that activate CMA by releasing the inhibitory effect of retinoic acid receptor-α (RARα) on 

several CMA components47 also correct LAMP2A trafficking55. Altered endosome-to-Golgi 

retrieval of LAMPs has been found in cells bearing mutations in the retromer component 

vacuolar protein sorting-associated protein 35 (VPS35). These mutations have been 

identified in patients with Parkinson disease (PD)56, which was the first neurodegenerative 

disorder associated with defective CMA activity17. However, contrary to the selectivity for 

LAMP2A observed in cystinosis, VPS35 mutations alter trafficking of multiple lysosomal 

proteins, suggesting a more general lysosomal malfunction in these conditions56.
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Dynamics of LAMP2A assembly.—Changes in rates of LAMP2A assembly and 

disassembly from the translocation complex impact overall CMA activity (Fig. 2). A pair of 

proteins, the monomeric form of the intermediate filament protein glial fibrillary acidic 

protein (GFAP) and its GTP-binding partner elongation factor 1-α (EF1α) modulate the 

stability of multimeric LAMP2A in a GTP-dependent manner14. Part of GFAP at the 

lysosomal membrane is phosphorylated and bound to EF1α, and part is unmodified and 

bound to the LAMP2A multimeric complex, conferring stability14. In the presence of GTP, 

EF1α dissociates from phospho-GFAP, thus promoting mobilization of GFAP from the 

translocation complex to phospho-GFAP and the subsequent disassembly of LAMP2A14.

Conditions that change the lipid composition of the lysosomal membrane impact CMA. 

High-lipid-content diets change the lysosomal membrane lipidome, which compromises 

both LAMP2A stability and its ability to multimerize52. Interestingly, changes in the 

lysosomal membrane lipidome with age have comparable effects on LAMP2A stability and 

dynamics52. It is plausible that interventions to modify lipid membrane composition could 

be utilized to modulate CMA activity under pathological conditions.

Physiological regulation of CMA

CMA was initially described as part of the cellular response to stress, but basal CMA 

activity is detectable in almost all mammalian cells57. The tools and assays currently 

available to study CMA are summarized in TABLES 1,2. Basal levels of CMA differ widely 

among cell types and tissues, suggesting possible differences in their dependence on CMA. 

CMA is upregulated in response to a large variety of stressors, such as starvation, oxidative 

stress, genotoxic insults, lipid challenges, hypoxia and radiation24,29,40,45,58,59. Integration 

of CMA with the rest of the cellular stress response requires fine-tuning of CMA activity. 

Although much is yet to be discovered about physiological regulators of CMA, cues from 

cytosolic signalling pathways and signalling events at the lysosomal membrane have been 

shown to regulate CMA (Fig. 2).

NFAT and calcium signalling

The first signalling pathway identified in the activation of CMA was the calcineurin–NFAT 

pathway, required for CMA activation in T cells21, which also provided novel insights on 

CMA activation in response to oxidative stress45. The transcription factor NFAT1 directly 

binds the lamp2 proximal promoter region, which contains several putative NFAT1-binding 

sites. Generation of reactive oxygen species (ROS) during T cell activation promotes the 

nuclear translocation of NFAT1 and the subsequent increase in lamp2a expression. Both 

calcineurin inhibition by cyclosporine A or blocking ROS production ablate CMA activation 

in these cells21. T cell receptor (TCR)-induced CMA activation favours CMA degradation of 

TCR signalling inhibitors such as E3 ubiquitin-protein ligase Itchy homolog (ITCH) and 

regulator of calcineurin 1 (RCAN1) — a requirement for maintaining T cell activation in 

these cells21.
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RARα signaling

Signalling through RARα, but not through other abundant members of this nuclear receptor 

family (such as RARβ, RARγ or RXR), inhibits CMA47. Genetic and chemical blockage of 

RARα demonstrate that not only LAMP2A47 but also proteins that facilitate LAMP2A 

trafficking to lysosomes, such as RAB11 or RILP, are also under the negative regulation of 

this receptor55. It is thus likely that RARα controls a discrete CMA-related transcriptional 

programme. In fact, structure-based chemical design has made possible generating synthetic 

derivatives of all-trans retinoic acid that block only the inhibitory effect of RARα on CMA 

without affecting the RARα-dependent transcriptional programme47. Chemical upregulation 

of CMA with these compounds rendered cellular protection from oxidative stress and 

proteotoxicity47. Given the ubiquitous expression of RARα, these atypical RARα inhibitors 

hold great promise in the systemic restoration of impaired CMA in ageing.

The TORC2–AKT1–PHLPP1 axis

Physiological regulation of CMA activity also occurs directly at the lysosomal membrane. 

As previously mentioned, dynamics of the CMA translocation complex depend on GFAP 

phosphorylation status14, which determines its oligomeric state. Lysosomal GFAP 

phosphorylation is performed by a form of AKT1 that resides at the lysosomal membrane16. 

AKT1 activity is closely monitored by the phosphatase PH domain leucine-rich repeat-

containing protein phosphatase 1 (PHLPP1) and the kinase TOR complex 2 (TORC2)16 at 

the lysosomal membrane (Fig. 2). Lysosomal TORC2 phosphorylates AKT1, which, by 

phosphorylating GFAP, puts a break on CMA activity. Contrary to TORC1, TORC2 does not 

shuttle and is always present at the membrane of CMA-active lysosomes16. TORC2 and 

AKT1 exert sustained inhibition on CMA as chemical TORC2 inhibitors such as torin (at 

concentrations that do not affect TORC1), knockdown of the TORC2 component rapamycin-

insensitive companion of mTOR (RICTOR), or chemical or genetic blockage of AKT1 all 

lead to CMA induction16. The TORC2–AKT1-axis inhibition on CMA is physiologically 

released through RAC1-dependent recruitment of the phosphatase PHLPP1 to the lysosomal 

membrane whenever CMA activation is needed16. PHLPP1 dephosphorylates AKT1, and 

inactivation of this kinase makes dephosphorylated GFAP available to accelerate the rounds 

of LAMP2A assembly and disassembly16 (Fig. 2). Confining these signalling events to the 

lysosomal membrane may allow fine-tuning of CMA to rapidly adjust to the cellular needs. 

Interestingly, several of the CMA regulators at the lysosomal membrane (that is, GFAP, 

EF1α, RICTOR and AKT1) contain CMA-targeting motifs and undergo some, albeit 

discrete, lysosomal degradation14,16. It is tempting to speculate that the targeting motif may 

be used not only for degradation but, in some instances, for delivery of CMA regulators to 

the lysosomal membrane and that degradation of these regulators by CMA may be a way to 

terminate their stimulatory or inhibitory effect on CMA.

Physiological roles of CMA

The diverse nature of already identified CMA substrates and the additional potential CMA 

substrates that can be generated by post-translational modification justifies the variety of 

cellular processes impacted by CMA (Fig. 3). Early studies emphasized the role of CMA in 

protein quality control and considered abnormally synthesized or post-translationally 
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damaged KFERQ-containing proteins as main CMA substrates45. However, the finding that 

during starvation most KFERQ-bearing proteins can undergo CMA degradation revealed 

that protein damage is not a requirement for CMA targeting. There is evidence that properly 

folded, fully functional proteins can become CMA substrates in specific cellular scenarios 

and that their timely selective degradation by CMA contributes to the regulation of the 

cellular pathways in which these proteins participate. Experimental approaches to designate 

a protein as a CMA substrate are described in TABLE 2.

CMA and protein quality control

CMA activation is often triggered by stressors that cause protein damage, such as mild 

oxidative stress45, hypoxic stress32,58 or protein denaturation60, and in fact, CMA-

incompetent cells and organs accumulate oxidized and aggregated proteins13,20 (Fig. 3). 

CMA cannot degrade proteins once they aggregate, but it is part of the first line of defence 

against protein aggregation by mediating degradation of single proteins upon damage or 

partial unfolding17,61. Interestingly, in tissues such as the liver, loss of proteostasis is not 

imminent upon CMA blockage because compensatory upregulation of macroautophagy and 

the proteasome can handle the load of CMA substrates19. However, ageing or additional 

stressors (that is, oxidative stress or lipid challenge) increase protein damage and 

aggregation in CMA-incompetent tissues, where the compensatory systems become 

insufficient to maintain proteostasis20. In further support of the role for CMA in protein 

quality control, both genetic and chemical upregulation of CMA in vitro and in vivo reduce 

levels of oxidized and aggregated proteins and improve cellular resistance against 

proteotoxicity47,62.

CMA in the response to starvation

Lack of nutrients activates CMA in most organs and cell types tested22,40,59. Considering the 

role of autophagy in adaptation to starvation and the timing of CMA activation — after at 

least 8 h of starvation13,63, when macroautophagy has already peaked — it was suggested 

that starvation-induced CMA provides cells with free amino acids for the generation of 

energy and for the synthesis of crucial proteins required for cell function (Fig. 3). In organs 

such as the liver, proteolysis through macroautophagy lasts for about 8 h of starvation and 

then switches to preferential degradation of lipids64. In the face of nutrient deprivation 

beyond 10 h, the pool of intracellular amino acids may be mostly replenished through CMA, 

which is upregulated and sustained at this high level for up to three days in rodents40. CMA 

generates amino acids that sustain protein synthesis but some amino acids, such as alanine 

and glutamine, also provide the carbon skeletons for gluconeogenesis. Interestingly, tissues 

with high gluconeogenesis rates, such as the liver and kidney, are very active for CMA. In 

support of the contribution of CMA to cellular energetics, in vitro and in vivo models with 

impaired CMA exhibit reduced levels of ATP during nutrient deprivation13,18,19, while 

genetic restoration of CMA in aged mice normalizes their ATP levels62. The ability of CMA 

to generate free amino acids through degradation has been proposed to be utilized by 

pathogens, such as Salmonella, which recruits CMA components to gain host-derived 

peptides for its growth65.
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The signals that activate CMA during starvation are still for the most part unknown. Ketone 

bodies, the choice fuel in prolonged starvation, activate CMA59, and hydrolysis of amino 

acids derived from CMA generate α-ketoacids themselves, thus establishing a positive 

feedback loop between CMA and energy production. Intriguingly, CMA activation by 

ketone bodies occurs through generation of ROS59, suggesting that similar mechanisms to 

those described during T cell activation are in play.

An interesting combination of CMA-dependent quality control and cellular energetics has 

been recently described to occur through the CMA degradation of oxidatively damaged 

nonfunctional mitochondrial enzyme protein/nucleic acid deglycase DJ-1 (PARK7)66. By 

efficiently degrading this mitochondrial protein, CMA helps preserve mitochondrial function 

and should have a positive impact on cellular energetics66.

Recent studies in mice with CMA-incompetent livers have revealed a new level of 

complexity in the interplay between CMA and cellular energetics whereby, as described in 

the next section, CMA regulates the rates of metabolic pathways through timely selective 

degradation of key enzymes in these pathways19,67.

Selective proteome remodelling by CMA

Protein degradation is extensively utilized by cells to downregulate cellular processes in 

which these proteins participate. The selectivity of CMA makes it suitable for this type of 

regulatory degradation, which underlies the basis of some of the recent novel physiological 

functions attributed to CMA (Fig. 3)

Regulation of metabolic pathways.—CMA contributes to the regulation of glucose 

and lipid metabolism through selective degradation of key enzymes in these pathways (Fig. 

3). Studies in mice have revealed that basal degradation of many metabolic enzymes via 

CMA in the liver is accelerated several-fold during fasting19,40. Timely CMA degradation of 

glycolytic enzymes contributes, for example, to shutting off hepatic glycolysis during 

starvation, and failure to do so leads to abnormally elevated rates of hepatic glycolysis and 

the subsequent energy deficiency in peripheral organs19. Comparative proteomic analysis of 

lysosomes from CMA-defective mouse livers and from control littermates confirmed that the 

majority of the glycolytic enzymes and some of the enzymes in the tricarboxylic acid cycle 

undergo CMA degradation during starvation19. Abnormal upregulation of CMA activity, 

such as that observed in patients with tripeptidyl peptidase II (TPPII) mutations68 can also 

become deleterious for cellular energetics. In this case, CMA activation is secondary to the 

lysosomal expansion that occurs upon the loss of TPPII in an attempt to maintain the pool of 

free amino acids normally provided by this peptidase. The caveat, however, is that general 

lysosomal upregulation increases degradation via CMA of hexokinase 2, a key glycolytic 

enzyme, which further impairs cellular energetics in these patients68.

CMA also contributes to regulate lipid metabolism (Fig. 3). Proteins involved in lipid 

metabolism — lipogenesis enzymes, lipid carriers and lipid droplet coat proteins — have 

been identified as bona fide CMA substrates19,67. Control of both lipogenesis and lipolysis 

by CMA underlies the basis of the marked derangements in lipid usage and pronounced 

hepatosteatosis observed in CMA-incompetent mouse liver19. CMA facilitates lipolysis by 
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selective degradation of lipid droplet coat proteins, such as perilipins 2 and 3 (PLIN2 and 

PLIN3)67. Selective removal of these proteins from the surface of the lipid droplets by CMA 

is required to facilitate access of cytosolic lipolytic enzymes and the macroautophagy 

machinery to the lipids stored in the core of the droplets to initiate both lipolysis and 

lipophagy67. These findings place CMA upstream of both lipolytic pathways. Timely 

removal of lipid droplet coat proteins by CMA during starvation is triggered in part via 5’-
AMP-activated protein kinase (AMPK)-dependent phosphorylation of PLIN2 (REF.23). 

CMA contributes to keeping intracellular lipid levels in check by reducing lipogenesis and 

increasing lipolysis19. In fact, cells upregulate CMA in response to acute lipid challenges, 

and failure to do so results in cellular toxicity52.

Transcriptional regulation by CMA.—Additional regulatory roles for CMA, beyond the 

control of metabolic pathways, have been recently identified (Fig. 3). CMA regulates 

transcriptional programmes mediated by nuclear factor-κB (NF-κB) by degrading its 

inhibitor NF-κ-B inhibitor-α (IκBα) during starvation69. Timely CMA degradation of 

paired-box protein PAX2, a transcription factor important for cell proliferation and 

differentiation70, maintains renal size and growth, whereas CMA protects neurons against 

stressors through selective degradation of the transcription factors myocyte-specific 

enhancer factor 2A (MEF2A) and MEF2D, which are required for neuronal survival71,72.

CMA and the immune response.—CMA is important for CD4+ T cell activation 

because it selectively degrades two negative regulators of TCR signalling, namely, ITCH and 

RCAN1 (REF.21) (Fig. 3). Persistent high levels of these two factors in CMA-incompetent T 

cells are responsible for their reduced cell proliferation and cytokine secretion following 

activation. These observations unveil an important link between CMA activity and the 

immune response, further supported by the fact that mice with defective T cell CMA are 

compromised in their responses to immunization and to infection by pathogens such as 

Listeria monocytogenes21. Recent studies have revealed contribution of CMA to the 

regulation of innate immunity through degradation of stimulator of interferon genes protein 

(STING), a signalling protein in the response against cytosolic nucleic acids73. The trigger 

for STING degradation is desumoylation, which unmasks its KFERQ-like motif during the 

late phase of viral infection to shut off the innate immune response73.

Control of cell cycle.—Following genotoxic insults, CMA is required to initiate cell 

cycle progression after DNA repair has been completed24. This effect is mediated in part by 

degrada tion of phosphorylated serine/ threonine-protein kinase CHK1 (also known as cell 

cycle checkpoint kinase), which in the absence of CMA, stays in the nucleus, interfering 

with DNA repair24 (Fig. 3). CMA also degrades HIF1α32,46, another regulator of cell cycle 

progression, thus adjusting its levels to the different phases of the cell cycle under conditions 

of hypoxia. This close regulation is possible through the opposite effects of a pair of cyclin-

dependent kinases, whereby CDK1 blocks HIF1α lysosomal degradation, and CDK2 

promotes it46. K63 ubiquitylation appears to be the trigger for degradation of HIF1α via 

CMA29.
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Anti-ageing functions of CMA

Age-dependent decrease in CMA activity occurs in almost all cell types and tissues in 

rodents and in humans21,22,62,74,75. Lower stability and therefore reduced levels of 

LAMP2A at the lysosomal membrane is one of the main causes of decline in CMA 

activity53. Changes in the lipid composition of the lysosomal membrane with age are 

responsible for the loss of LAMP2A stability49,52,53. Recently generated, tissue-specific 

AMP2A-knockout mice19 have begun to expand our understanding of the organism’s 

reaction to CMA malfunctioning and the consequences of reduced function of this pathway 

with age. Studies in cultured cells have previously demonstrated crosstalk between 

macroautophagy and CMA, whereby cells respond to blockage of one of these pathways by 

upregulating the other13,38. Similar positive compensation by macroautophagy has also been 

found in vivo in mouse models with selective blockage of CMA in liver or in T cells19,21. 

However, studies in mouse retina suggest that compensation for CMA failure is not 

universal75. While the age-related decline in retinal macroautophagy coincides with 

pronounced upregulation of CMA, blockage of CMA does not elicit a compensatory 

activation of macroautophagy in this organ75, thus explaining its higher sensitivity to stress 

upon CMA blockage75. In general, although macroautophagy and CMA can compensate for 

some of each other’s functions, they are not redundant, and their loss of function, even when 

the other pathway is upregulated, becomes evident. For example, CMA-incompetent livers 

do not accumulate damaged or aggregated proteins because increases in macroautophagy 

and the proteasome take over some of the CMA protein quality control functions. However, 

owing to the different timing of activation and substrate-targeting mechanisms of these two 

pathways, they cannot compensate for CMA regulatory functions and problems with 

metabolic flux, DNA repair, and so on, which become evident in these animal livers19. 

Furthermore, upregulation of macroautophagy and the proteasome in CMA-incompetent 

livers is rapidly lost when animals are subjected to stressors (that is, oxidative stress and 

lipid challenges) and as the animals age20. Compensation failure with age can explain the 

gradual loss of protein homeostasis and higher sensitivity to stress of aged AMP2A-

knockout mice livers.

Genetic interventions to restore CMA function in old mouse liver have shown remarkable 

improvement in age-related changes in this organ. Expressing an inducible exogenous copy 

of Lamp2a protected aged livers from stressors and led to overall improvement in 

proteostasis and organ function62. Preventing the systemic decline of CMA with age may 

prove an attractive strategy against organism functional loss and age-associated disorders.

The contribution of CMA failure to human disease

A better understanding of CMA dynamics, the identification of novel CMA molecular 

effectors and regulators and the development of tools to track CMA (TABLES 1,2) have all 

contributed to linking CMA malfunctioning to a growing number of human diseases. We 

have selected two types of pathologies with defective CMA to illustrate examples in which 

diminished or increased CMA activity contributes to disease progression. A more 

comprehensive description of other CMA-related diseases, summarized in TABLE 3, can be 

found in recent reviews76,77.
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CMA failure in neurodegenerative disorders

The first connection between CMA malfunctioning and a human disease was with PD17. 

Since then, CMA failure has been linked to the pathogenesis of a growing number of 

neurodegenerative disorders (TABLE 3). CMA contributes to the degradation of several 

proteins that have a propensity to aggregate and, consequently, a decline in CMA activity 

leads to the accumulation of toxic aggregates.

The pathogenic variants of several CMA substrates are involved in PD, Alzheimer disease, 

frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurodegeneration-

related proteins validated as CMA substrates include α-synuclein17,61,78–80, PARK7 (REF.
66), leucine-rich repeat serine/threonine-protein kinase 2 (LRRK2)81 and ubiquitin carboxyl-

terminal hydrolase isozyme L1 (UCHL1)82,83 (in PD), Tau protein84, TAR DNA-binding 

protein 43 (TDP-43)85 (in tauopathies such as Alzheimer disease or frontotemporal 

dementia) and huntingtin86–88 (in Huntington disease). However, it is possible that a larger 

number of proteins that are associated with neurodegeneration are CMA substrates, as many 

other proteins in these diseases contain the KFERQ-targeting motif.

A common characteristic of these neurodegeneration-related proteins is that, in most cases, 

the unmodified protein behaves as a conventional CMA substrate, whereas the pathogenic 

variants are targeted to lysosomes but fail to degrade and inhibit CMA (Fig. 4). In PD, 

pathogenic forms of α-synuclein17,61,89, UCHL1 (REFS82,83) and LRRK2 (REF.81) bind 

cytosolic HSC70 but, unlike their wild-type counterparts, interact abnormally with CMA 

components at the lysosomal membrane. Their obliterated entry into the lysosomal lumen 

often favours their organization into oligomeric complexes at the lysosomal surface, which 

negatively impacts CMA-mediated degradation of other substrates and further disrupts 

neuronal proteostasis17,61,78,80,82,85,90. Failed assembly of LAMP2A into the CMA 

translocation complex upon binding of PD proteins to this receptor has been demonstrated as 

the basis of their toxic effect on CMA81. Accordingly, in vitro and in vivo upregulation of 

CMA with small molecules47 or by viral-mediated LAMP2A expression91 has been shown 

to decrease α-synuclein levels and to protect against neurodegeneration91. Similarly, Nrf2 
(also known as Nfe2l2) expression in astrocytes slows down CMA decline in PD mice by as-

yet unidentified mechanisms and has a similar neuroprotective effect92. CMA malfunction is 

becoming a common feature of most PD types, although CMA failure may originate through 

different mechanisms. Besides the direct toxic effect on CMA described for pathogenic α-

synuclein, UCHL1 or LRRK2, PD-related proteins, such as mutant VPS35 (REF.56) or 

GBA1 (REF.93), may reduce CMA activity by affecting lysosomal biogenesis. Although 

direct measurement of CMA in PD patient brains is still not feasible, correlative evidence 

supporting CMA malfunctioning in PD patients has populated the literature in recent years 

(TABLE 3). Reduced LAMP2A levels have been reported in both familial and idiopathic PD 

patients’ brains94, especially in the areas more vulnerable to disease95. PD-linked sequence 

variants in the LAMP2 promoter96 and increased levels of specific microRNA in PD 

patients97 seem responsible, at least in part, for the changes in LAMP2A in PD brains. Early 

stage PD brains show reduced LAMP2A levels, even before α-synuclein accumulation, 

suggesting that CMA dysfunction is an early event in PD pathogenesis95.
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Several of the proteins associated with frontotemporal dementias and tauopathies, including 

Alzheimer disease, have also been validated as bona fide CMA substrates whose degradation 

through this pathway is reduced in the diseased brains84,85,98,99. Similar to PD-related 

proteins, mutant forms of tau protein are targeted to lysosomes but fail to reach the 

lysosomal lumen84. In this case, the mutant proteins do not disrupt LAMP2A 

multimerization, but their translocation through this complex is halted halfway into the 

lysosomal lumen84 (Fig. 4). Incomplete translocation of mutant tau leads to its partial 

cleavage into highly amyloidogenic peptides that form irreversible oligomers at the 

lysosomal membrane, thus inhibiting CMA84. CMA also contributes to the degradation of 

other neurodegeneration-related proteins such as RCAN199, ubiquilin 1 (REF.100) and 

TDP-43 (REF.85), but less information is available about the CMA of their pathogenic 

variants or their impact on CMA. An unexpected relation has been suggested between CMA 

and the processing of amyloid precursor protein (APP), a protein closely associated with 

Alzheimer disease98. APP is a single-span membrane protein and, as such, is not a candidate 

for CMA degradation. However, APP undergoes physiological cleavage to release a short 

cytosolic stub where, coincidentally, the KFERQ motif is located. Although direct evidence 

for its CMA degradation is still missing, mutation of this motif led to cytosolic accumulation 

of this small, highly toxic peptide98.

Despite most studies pointing towards faulty functioning of CMA in neurodegenerative 

disorders, in Huntington disease, CMA activity is upregulated as a compensatory response to 

macroautophagy failure87. In fact, CMA can degrade both wild-type and mutant huntingtin, 

the protein that aggregates in the affected neurons, and artificial CMA targeting of mutant 

huntingtin has proved effective in reducing neurotoxicity in experimental mouse 

models86,88. However, the therapeutic applicability of mutant huntingtin re-routing towards 

CMA may be limited by the fact that the normal age-related decline in CMA activity is 

accelerated in the Huntington disease brain87.

Associations between CMA and other neuropathogenic proteins, such as prion proteins, and 

changes in CMA components in conditions, such as brain ischaemia or traumatic brain and 

spinal cord injury, have begun to appear (TABLE 3).

Accumulating evidence points towards a failure in CMA in several neurodegenerative 

diseases. A common theme that has also emerged is that the mechanism of this CMA 

inhibition varies on a case-by-case basis. Studying the pathological protein along with the 

wild-type version and delineating the exact step affected in CMA would be key in providing 

specific therapeutic interventions.

Complex role of CMA in cancer biology

Despite connections between CMA and cancer having been first established little more than 

6 years ago18, some common key features of this interplay have since emerged. CMA 

activity is markedly upregulated in most cancer cell lines, and levels of CMA components, 

mainly LAMP2A, are elevated in a large array of human tumours18,30,101 (TABLE 3). 

Blocking CMA in cancer cells adversely affects cell survival and decreases their 

tumorigenicity, whereas blocking CMA in preformed xenografts causes tumour shrinkage 

and reduces metastasis18. The bases for the pro-oncogenic effect of CMA are probably 
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multiple and depend on the type and stage of cancer (Fig. 4). The contribution of CMA to 

protein quality control explains why upregulating CMA provides the cancer cells several 

survival benefits, for example, resistance to hypoxia, oxidative stress and DNA damage — 

all key elements of a growing tumour microenvironment and of most anti-oncogenic 

interventions26,101–108. The role of CMA in tumour growth goes beyond quality control of 

damaged proteins and has been linked to selective degradation of specific regulatory 

proteins. Thus, CMA activity is required in some cancers to sustain the Warburg effect — 

aerobic glycolysis important for tumour progression18,27. CMA degradation of some 

glycolytic enzymes, such as acetylated pyruvate kinase PKM2, results in increased levels of 

glycolytic intermediates, which promote growth and proliferation27. Additionally, CMA 

indirectly reduces p53 levels, thus releasing its transcriptional inhibition on key glycolytic 

enzymes and resulting in higher glycolytic rates18. CMA also sustains tumour growth by 

degrading antiproliferation proteins (such as Rho-related GTP-binding protein RhoE 

(RND3)26), tumour suppressor proteins (such as MST1 (REF.30), 15 kDa phosphoprotein 

enriched in astrocytes (PEA-15; also known as PED)25 and mutant p53 (REF.109)) or pro-

apoptotic proteins (such as Bcl-2-binding component 3 (BBC3; also known as PUMA110)), 

and by indirectly contributing to stabilize prosurvival proteins such as the induced myeloid 

leukaemia cell differentiation protein MCL1 (REF.111). Accordingly, blockage of CMA in 

cancer cells causes oxidative stress and higher susceptibility to chemotherapeutic agents and 

apoptosis101, and is being pursued as a possible antitumorigenic intervention. Upregulation 

of CMA — beyond that already occurring in the tumour — after blocking macroautophagy 

and the proteasome promotes cell death in specific tumours through metabolic collapse due 

to rapid degradation of glycolytic enzymes via CMA112,113.

Despite this protumorigenic role of CMA in cancer cells, it is important to note that the role 

of CMA in non-transformed cells is remarkably the opposite and that all evidence supports 

an anti-oncogenic role for CMA under physiological conditions (Fig. 4). CMA plays a 

tumour suppressive role in nontumorigenic cells by accelerating MYC’s proteasomal 

degradation and thus abolishing its oncogenic activity114 by directly degrading oncoproteins 

such as E3 ubiquitin-protein ligase MDM2 (REF.115), and by perhaps facilitating 

immunogenic cell death116. CMA may also protect against malignant transformation by 

assuring genome stability through its role in efficient DNA repair24. Progressive decrease in 

CMA with age may thus contribute to the higher risk of malignant transformation in ageing. 

In fact, mice with hepatic blockage of CMA develop spontaneous tumours20. Therefore, 

interventions aiming to preserve or restore CMA activity in ageing individuals may have 

potential value in cancer prevention.

Conclusions and perspectives

Research on CMA has a long way to go to reach the wealth of knowledge accumulated on 

other forms of autophagy during the past 2 decades. However, the identification of the 

essential CMA molecular players, the better understanding of the unique dynamics of CMA 

substrate degradation and the in vivo validation of the physiological relevance of CMA 

through the study of transgenic mouse models have all contributed to the coming of age of 

CMA.
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Discovery of the regulated LAMP2A multimerization at the lysosomal membrane was key in 

understanding how CMA is regulated at the mechanistic level, but in the cellular context, the 

number of signalling pathways known in CMA regulation is still discrete, especially when 

considering the variety of CMA-activating stimuli present. Whether endosomal 

microautophagy is the CMA alternative in species where LAMP2A is not present or whether 

there could be yet another CMA-equivalent pathway in these species needs exploration. The 

growing evidence in support of a close interplay between CMA and macroautophagy makes 

it a priority to understand the molecular players involved in this crosstalk. Ongoing studies 

using high-resolution technologies on CMA reconstituted translocation units should provide 

new insights on the energetic requirements, driving forces and roles of cochaperones and 

chaperones at each side of the lysosomal membrane.

CMA bears functions common to all cell types (that is, protein quality control) and also 

more cell-type- specific regulatory functions that stem from its ability to selectively degrade 

single still-functional proteins. The introduction of mouse models with increased or reduced 

CMA and the future expansion of the tissue-specific conditional models will help us better 

understand these CMA regulatory functions and how tissue-specific changes in CMA impact 

whole organism function. Similarly, despite the already impressive list of connections 

between CMA malfunctioning and disease, a large number of them are still correlative, and 

experimental evidence of changes in CMA activity, the CMA step affected and the 

molecular mechanisms by which CMA contributes to pathogenesis is still missing. Is the 

toxic effect of α-synuclein or tau protein on CMA reversible? What are the more vulnerable 

CMA steps and/or components? Is CMA upregulation in these disease conditions always 

possible, or is there a ‘point of no return’? Multiple questions also surround the dual role of 

CMA as an anti-oncogenic mechanism in normal cells but a protumorigenic one in 

transformed cells. What mediates the switch from low to high CMA during transformation? 

How do oncogenic proteins protect themselves from CMA degradation in the cancer cell? 

As our knowledge of the contribution of CMA malfunction to disease grows, the need for 

good chemical modulators of CMA will increase. Despite recent success in the development 

of selective CMA activators47, the field still lacks selective inhibitors of CMA beyond those 

that inhibit lysosomal proteolysis and thus disrupt all forms of autophagy. Research on CMA 

has reached a mature stage, and the recent advances in understanding its cellular functions 

and uncovering new links between CMA failure and human diseases open new avenues for 

basic and clinical research.
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Chaperone

A protein that assists during folding of other proteins until they reach their functional 

conformations. Chaperone substrates include both de novo synthesized native proteins 

and previously folded proteins that undergo partial unfolding.

Proteostasis networks

Intracellular components, mainly chaperones and proteolytic systems, that control each of 

the processes that occur from protein synthesis to degradation to prevent protein 

aggregation and ensure maintenance of a stable proteome.

HIF1α

The hypoxia-inducible factor 1α is a transcription factor that modulates the cellular 

response to hypoxia. HiF1α orchestrates the transcription of a large set of genes involved 

in cell proliferation, cell survival, and glucose and iron metabolism.

E3 ubiquitin-protein ligase

Intracellular enzyme that participates in the covalent attachment of ubiquitin moieties to 

cargo proteins. This tagging is commonly used for the targeting of the protein to the 

proteasome system for degradation.

MST1

The mammalian STE20-like protein kinase 1 is a protein component of the Hippo 

signalling pathway that modulates cell proliferation and differentiation.

Cochaperones

Proteins that assist chaperones in their functions by modulating their ATP hydrolytic 

capability.

HSP90

Heat shock protein 90 is a chaperone that stabilizes proteins in transient conformations 

and facilitates their final folding. HSP90 often acts in conjunction with other intracellular 

chaperones such as HSC70.

Lysosome-associated membrane protein (LAMP).

Single-span membrane proteins at the lysosomal membrane with a short C-terminus (12 

amino acids) exposed to the cytosol while the rest of the protein is in the lysosomal 

lumen.

Isoelectric point

The pH at which the net charge on a protein is zero.

Nuclear retinoic acid receptor-α

Nuclear receptor activated by retinoic acid that activates or represses gene expression. its 

wide range of targets include genes involved in development, apoptosis, differentiation, 

autophagy and circadian regulation.
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Lipid microdomains

Cholesterol and/or glycosphin-golipid-rich regions in membranes that present higher 

order and density than the surrounding membrane. They can be transient and highly 

dynamic in terms of resident proteins and lipids and in their size.

Cathepsin

Protease located in the lysosomal lumen that is maximally active at acidic pH.

Cystinosis

Lysosomal storage disorder characterized by the abnormal accumulation of cysteine 

inside lysosomes owing to a defect in its normal export from this organelle.

Retromer

Multiprotein complex made up of membrane-associated sorting nexin and vacuolar-

protein-sorting proteins that recycle transmembrane proteins from endosomes to the golgi 

complex and the plasma membrane.

AKT1

Intracellular kinase that participates in signalling pathways that regulate a wide array of 

intracellular processes, including proliferation, cell survival, metabolism, growth and 

angiogenesis.

TOR complex 2 (TORC2).

One of the two functional multiprotein complexes containing the nutrient sensing kinase 

ToR. ToRC2 plays regulatory roles in actin cytoskeleton dynamics, proliferation, growth 

and metabolism.

Perilipins

Proteins that cover the surface of lipid droplets and shield the hydrophobic lipid core 

from the aqueous cytosol. Perilipins also regulate the rate of consumption of the lipids 

(lipolysis) in the lipid droplet.

Warburg effect

Unique metabolic characteristic of many cancer cells whereby they sustain very high 

levels of glycolysis followed by lactic acid fermentation rather than the common usage of 

oxidation of pyruvate in mitochondria that follows glycolysis in most cells.

Immunogenic cell death

Functionally peculiar variant of regulated cell death that — in immunocompetent 

syngeneic hosts — is sufficient to activate an adaptive immune response against dead 

cell-associated antigens.
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Box 1

Validation of KFerQ-like motifs for cMa targeting

Despite the dynamic nature that post-translational modifications have conferred to the 

KFerQ-like motif, it is important to notice that the specific requirements for a motif to 

function in chaperone-mediated autophagy (CMa) targeting have been established and 

validated experimentally. several published studies have proposed as CMa-targeting 

motifs what appear to be randomly chosen sequences. in order to maintain consistency 

and avoid confusion in the field, it is important that any new proposed motif is validated 

experimentally according to the following original criteria: elimination of the motif 

abolishes lysosomal degradation of the protein independent of macroautophagy; insertion 

of the proposed motif in a well-characterized non-CMa substrate makes it amenable to 

CMa degradation; and elimination or mutation of residues in the motif suppresses 

binding of the protein to heat shock cognate 71 kDa protein (HsC70; also known as 

HsPa8), or if there is still HsC70 binding, it can no longer compete with a KFerQ-

containing peptide.

The figure summarizes the types of post-translational modifications to take into 

consideration as possible enablers or disruptors of HsC70 bind ing to substrate proteins 

through the KFerQ-like motif (details in the main text). examples of canonical motifs and 

how post-translational modifications can complete a motif are shown in the left panel, 

whereas the right panel illustrates how post-translational modifications in a protein 

outside the motif can change the protein conformation and unmask the KFerQ-like motif.

Kaushik and Cuervo Page 26

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Autophagic pathways in mammals.
a Macroautophagy sequesters cytosolic cargo by a delimiting membrane that forms through 

conjugation of specific proteins among themselves and with lipids in a complex multistep 

process. The membrane then seals into an autophagosome that is trafficked by microtubules. 

Fusion of autophagosomes with lysosomes mediates degradation of the trapped cargo. 

Macroautophagy can be in bulk or selective depending on the cargo sequestered. b 
Microautophagy entraps cytosolic cargo in small vesicles formed by invagination of the 

lysosomal membrane either in bulk or selectively via recognition and targeting by heat shock 

cognate 71 kDa protein (HSC70; also known as HSPA8) and cochaperones that are yet to be 

determined. c Chaperone-mediated autophagy (CMA) involves the selective degradation of 

KFERQ-like motif-bearing proteins delivered to the lysosomes via chaperone HSC70 and 

cochaperones, such as carboxyl terminus of HSC70-interacting protein (CHIP), heat shock 

protein 40 (HSP40; also known as DNABJ1) and HSP70–HSP90 organizing protein (HOP), 

and their internalization in lysosomes via the receptor lysosome-associated membrane 

protein type 2A (LAMP2A). Bottom: evolutionary conservation of each autophagy pathway. 

CASA, chaperone-assisted selective autophagy; GFAP, glial fibrillary acidic protein; lys-

HSC70, lysosomal HSC70; Ub, ubiquitin.
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Fig. 2. Lysosomal effectors and regulators of CMA.
Steps in selective degradation of proteins by chaperone-mediated autophagy (CMA): 

recognition of the KFERQ-like motif in the substrate by heat shock cognate 71 kDa protein 

(HSC70; also known as HSPA8) (step 1); binding of the substrate–chaperone complex to 

lysosome-associated membrane protein type 2A (LAMP2A) (step 2); unfolding of the 

substrate by the chaperone complex (step 3); formation of the CMA translocation complex 

(step 4); substrate translocation mediated by lysosomal HSC70 (lys-HSC70) (step 5); 

substrate degradation by lysosomal proteases (step 6); and dissociation of LAMP2A from 

the translocation complex (step 7). CMA regulation via cytosolic and lysosomal signalling 

events is shown. Turnover of LAMP2A occurs in lipid microdomains by the dual action of 

cathepsin A and a metalloproteinase. Top right: activators and inhibitors of CMA. EF1α, 

elongation factor 1-α; GFAP, glial fibrillary acidic protein; HSP90, heat shock protein 90; 

mb-HSC70, membrane-associated HSC70; NFAT1, nuclear factor of activated T cells 1; 

PHLPP1, PH domain leucine-rich repeat-containing protein phosphatase 1; RAR, retinoic 

acid receptor; TORC2, TOR complex 2.
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Fig. 3. Main physiological roles of CMA.
In most cells, chaperone-mediated autophagy (CMA) participates in protein quality control 

by degrading oxidized and damaged proteins under stress conditions and also contributes 

amino acids through degradation of proteins at advanced times of starvation. In addition, 

depending on the protein substrate degraded, CMA has a modulatory role in multiple 

cellular pathways. This CMA-mediated selective remodelling of the proteome has recently 

demonstrated a role for CMA in modulation of carbohydrate and lipid metabolism, 

transcriptional programmes, immune responses and the cell cycle. The selective CMA 

substrates linked to those pathways are shown in blue boxes. GFAP, glial fibrillary acidic 

protein; HSC70, heat shock cognate 71 kDa protein; HSP90, heat shock protein 90; 

LAMP2A, lysosome-associated membrane protein type 2A; lys-HSC70, lysosomal HSC70; 

TCA, tricarboxylic acid.
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Fig. 4. CMA in neurodegeneration and cancer.
Chaperone-mediated autophagy (CMA) malfunctioning has been observed in multiple 

human disorders. Depicted here are two conditions, neurodegeneration and cancer, for which 

stronger experimental evidence of CMA involvement has been obtained. In 

neurodegeneration, pathogenic proteins can exert a toxic effect on CMA directly by 

disrupting the dynamics of the CMA translocation systems or indirectly by affecting levels 

of CMA effectors or lysosomal biogenesis. Most studies support that CMA has an anti-

oncogenic role in normal untransformed cells and prevents malignant transformation, at least 

in part, through the mechanisms depicted here. In contrast, CMA has a protumorigenic effect 

in cancer cells by favouring their replication and growth and protecting them from 

extracellular insults. GFAP, glial fibrillary acidic protein; HSC70, heat shock cognate 71 

kDa protein (also known as HSPA8); HSP90, heat shock protein 90; LAMP2A, lysosome-

associated membrane protein type 2A; lys-HSC70, lysosomal HSC70.
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