
Article

YAP1-LATS2 feedback loop dictates senescent or
malignant cell fate to maintain tissue homeostasis
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Abstract

Dysfunction of the homeostasis-maintaining systems in specific cell
types or tissues renders the organism susceptible to a range of
diseases, including cancers. One of the emerging mechanisms for
maintaining tissue homeostasis is cellular senescence. Here, we
report that the Hippo pathway plays a critical role in controlling the
fate of ovarian cells. Hyperactivation of Yes-associated protein 1
(YAP1), the major effector of the Hippo pathway, induces senescence
in cultured primary human ovarian surface epithelial cells (hOSEs).
Large tumor suppressor 2 (LATS2), the primary upstream negative
regulator of YAP1, is elevated in both YAP1-induced and natural
replicative-triggered senescence. Deletion of LATS2 in hOSEs
prevents these cells from natural replicative and YAP1-induced
senescence. Most importantly, loss of LATS2 switches ovarian cells
from YAP-induced senescence to malignant transformation. Our
results demonstrate that LATS2 and YAP1, two major components of
the Hippo/YAP signaling pathway, form a negative feedback loop to
control YAP1 activity and prevent ovarian cells from malignant
transformation. Human cancer genomic data extracted from TCGA
datasets further confirm the clinical relevance of our finding.
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Introduction

The Hippo signaling pathway is an evolutionarily conserved

pathway that controls development and tumorigenesis through

regulating cell proliferation, survival, differentiation, and stem cell

self-renewal [1,2]. The core of the canonical Hippo pathway is a

kinase cascade consisting of mammalian STE20-like protein kinase

1/2 (MST1/2) and large tumor suppressor kinase 1/2 (LATS1/2),

as well as their co-activators and scaffold proteins. Upon activation,

MST1/2 and Salvador homolog 1 (Sav1) form the first kinase

complex, which phosphorylates LATS1/2. Phosphorylated LATS1/2

forms the second kinase complex with activated MOB kinase acti-

vator 1A (MOB1A), resulting in phosphorylation of growth-

promoting transcriptional co-activator Yes-associated protein 1

(YAP1, or more commonly YAP) and WW domain containing tran-

scription regulator 1 (WWTR1 or more commonly TAZ). Phospho-

rylation of YAP and TAZ leads to their cytoplasmic retention and

ubiquitination-dependent degradation [3–5]. Non-phosphorylated

YAP/TAZ translocate from the cytoplasm into the nucleus and bind

to transcription factors such as TEADs and KLF4 to drive expres-

sion of a wide range of genes that are involved in cell proliferation,

survival, and stem cell renewal. Therefore, the physiological output

of this pathway is to restrict the activities of YAP/TAZ co-activators

[6–8].

A role for the Hippo/YAP pathway in tumorigenesis has been

reported frequently [2,3,6,8–15]. Overall, the upstream core kinases

of the Hippo pathway are tumor suppressors, while the major down-

stream effectors, YAP1/TAZ, have been described as oncoproteins

[2,4,11]. Elevated YAP expression has been observed in many types

of human cancers, including cancer of lung, liver, ovary, cervix,

colon, and others [1,6,9,16–22]. Consistently, the upstream tumor

suppressors of the Hippo pathway, such as NF2 and LATS1/2, are

frequently deleted or mutated in many malignancies [23,24].

Although mutations of YAP/TAZ are rare, a recent study reported

that a germline point mutation of YAP (R331W) is correlated with a

significantly higher incidence of lung carcinomas [25]. Multidimen-

sional analyses of human cancer patient genomic data extracted

from The Cancer Genome Atlas (TCGA) also suggest that the

Hippo/YAP pathway is frequently altered in many types of cancers

[26]. However, the molecular mechanism by which the Hippo/YAP
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signaling pathway contributes to the malignant transformation is

still unclear.

Our previous studies showed that YAP, the major effector of the

Hippo signaling pathway, is overexpressed and highly activated in

ovarian cancer cells [22,27]. Using immortalized cell lines and xeno-

graft mouse models, our recent research indicates that YAP interacts

with EGFR signaling pathway to induce tumorigenesis of ovarian

surface epithelial cells (OSE) [22]. Our data also demonstrate that

the Hippo/YAP pathway interacts with FGF signaling pathway to

form a positive feedback loop to drive the malignant transformation

of fallopian tube secretory epithelial cells (FTSECs) [9], which have

been implicated as a cell of origin of ovarian high-grade serous

carcinoma. In efforts to further explore the molecular mechanisms

by which the Hippo/YAP pathway regulates ovarian cell transforma-

tion, we ectopically expressed constitutively active YAP (YAPS127A)

in primary human ovarian surface epithelial (hOSE) cells and

ovarian granulosa cells (GCs). Surprisingly, we found that hyper-

activation of YAP induces senescence in these primary cells. Our

subsequent mechanistic studies indicate that the Hippo/YAP

signaling pathway, via a YAP1-LATS2 negative feedback system,

serves as a switch between YAP-induced cellular senescence and

tumorigenesis.

Results

YAP regulates growth of cultured primary human ovarian surface
epithelial (hOSE) cells

Our recent studies show that suppression of Hippo signaling or acti-

vation of YAP promotes proliferation and induces malignant trans-

formation of immortalized epithelial cell lines in vitro and in vivo

[9,22,26,27]. To investigate the function of the Hippo/YAP pathway

in normal human ovarian surface epithelial cells, we used YAP1

siRNA to knock down YAP protein in cultures of primary human

ovarian surface epithelial (hOSE) cells. Non-targeting siRNA (si-Ctrl)

was used as a control. Western blot analysis indicated that YAP

siRNA successfully reduced YAP protein in hOSE cells (Fig 1A).

However, knockdown of YAP protein did not affect proliferation of

hOSE cells within 4 days. Since recent studies suggested a compen-

satory effect of TAZ (a homolog of YAP gene) in YAP-depleted cells

[28], we knocked down both YAP and TAZ protein in hOSE cells to

examine their effects on cell proliferation. We found that knock-

down of either YAP or TAZ did not significantly change proliferation

of hOSE cells. However, YAP and TAZ double knockdown signifi-

cantly reduced the number of hOSE cells (Fig 1B).

To further study the role of YAP in normal hOSE cells, we estab-

lished three cell lines with differential YAP protein levels and activi-

ties, including hOSE-MXIV cells (transfected with control vector

MXIV), hOSE-YAP cells (transfected with a vector expressing wild-

type YAP), and hOSE-YAPS127A cells (transfected with a vector

expressing YAPS127A, a constitutively active form of YAP). As shown

in Fig 1C, YAP and YAPS127A were successfully overexpressed in

hOSE cells. We observed that ectopic expression of YAP or YAPS127A

promoted cell proliferation over the course of four passages (two

passages after transfection) (Fig 1D). However, YAP- and YAPS127A-

overexpressing cells almost stopped proliferation after seven

passages (five passages after transfection, Fig 1E). BrdU cell

proliferation assay also showed that hyperactivation of YAP in

the 7th passage hOSEs significantly reduced BrdU incorporation

(Appendix Fig S1), suggesting that hyperactivation of YAP1

suppressed DNA synthesis of the primary hOSE cells. The size of

YAP- and YAPS127A-overexpressing cells increased as observed using

light microscope (Fig 1F). Fluorescent immunohistochemistry

indicated that YAP levels in YAP and YAPS127A expressing cells

dramatically increased compared to control cells. In control and

hOSE-YAPS127A cells, YAP protein was localized to both nuclei and

cytoplasm (Fig 1G). In hOSE-YAP cells, YAP was primarily localized

to cytoplasm. Moreover, YAP and DAPI staining indicated that the

size of nuclei in hOSE-YAP and hOSE-YAPS127A cells was markedly

increased. In addition, many multinucleated cells were observed in

hOSE-YAP and hOSE-YAPS127A cells (Fig 1G).

Hyperactivation of YAP induced cellular senescence in primary
hOSE cells

The phenotype of hOSE-YAP and hOSE-YAPS127A cells is appeared

to be similar to senescent cells which have lost their proliferative

capacity [29]. Senescence-associated b-galactosidase (SA-b-gal)
staining indicated that the percentage of SA-b-gal-positive cells in

control group was very low at passage seven. In contrast, about

60% of hOSE-YAP cells and 80% of hOSE-YAPS127A cells were SA-b-
gal positive (Fig 2A and B) at passage seven, suggesting that hOSE-

YAP and hOSE-YAPS127A cells were undergoing senescence.

Formation of senescence-associated heterochromatin foci

(SAHF) is another characteristic of cells undergoing oncogene-

induced or replicative senescence. We found that macroH2A and

H3K9Me3, two markers of SAHF, were accumulated and formed foci

in hOSE-YAP and hOSE-YAPS127A cells, while their immunosignals

were relatively weaker and formed fewer foci in control cells

(Fig EV1).

Cell cycle arrest is a major feature of senescent cells. To further

confirm our results, the expression of several key cell cycle regula-

tory proteins in control and YAP-overexpressing cells was exam-

ined. Compared to the control cells, hOSE-YAP and hOSE-YAPS127A

cells have elevated levels of RB1 and p16. However, ectopic expres-

sion of YAP or constitutively active YAP had no obvious effect on

the level of p53 protein in hOSE cells. Increases in the levels of

phosphorylated RB, cyclin A, and cyclin B were also observed in

hOSE-YAP and hOSE-YAPS127A cells. Although YAP up-regulated

cyclin D1 in several immortalized or cancerous cells [30], it did not

affect cyclin D1 expression in hOSE cells (Fig 2C). Confocal

immunofluorescent microscopy indicated that hOSE-YAP and hOSE-

YAPS127A cells had higher level of phosphorylated RB (807/811),

which was mainly co-localized with DAPI in the nucleus. These data

suggest that ectopic expression of YAP induced cell cycle arrest in

primary cells (Fig 2D). Although morphology of hOSE-YAP and

hOSE-YAPS127A cells also displayed some features normally attrib-

uted to OSE cells undergoing autophagy, our immunoblotting results

showed that expressions of ATG3, ATG7, and Beclin-1, three well-

characterized cell autophagy regulatory proteins, were not affected

by ectopic expression of YAP and YAPS127A (Fig 2C). These results

provide evidence to suggest that hyperactivation of YAP in hOSE

cells induced cell growth arrest and cellular senescence.

It is known that senescent cells are metabolically active and have

a senescence-associated secretory phenotype (SASP). Under
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ª 2019 The Authors EMBO reports 20: e44948 | 2019 3 of 21

Chunbo He et al YAP1-LATS2 feedback loop dictates cell fate EMBO reports



physiological or pathophysiological conditions, SASP factors

produced by the senescent cells affect surrounding cells and induce

cell proliferation, inflammation, tissues repair, and angiogenesis.

We examined mRNA expressions of several known SASP factors

(bFGF/FGF2, VEGFa, IL-6 and IL-8, CTGF, and hbEGF) in hOSE-

MX, hOSE-YAP, and hOSE-YAPS127A at their seventh passages. The

results showed that all examined SASP factors were up-regulated in

passage 7 hOSE-YAP and hOSE-YAPS127A cells (Fig EV2A). These

results further confirmed that hyperactivation of YAP induced cellu-

lar senescence in primary hOSE cells. Consistent with these observa-

tions, we found that YAP target genes such as AREG, CCNE1,

ERBB3, and MYC were up-regulated by hyperactivation of YAP1 in

passage 4, but not passage 7 hOSEs, suggesting that the transcrip-

tional activity of YAP1 is also altered in the pre-senescent or senes-

cent hOSEs (Fig EV2B).

To examine whether YAP can induce senescence in other cell

types, we repeated above experiments in primary cultures of human

umbilical vein endothelial cells (HUVEC), human ovarian granulosa

cells (hGC), and human ovarian microvascular endothelial cells

(HOMEC). HUVEC cells transfected with vectors expressing wild-

type YAP (HUVEC-YAP) or vectors expressing constitutively active

YAP (HUVEC-YAPS127A) proliferated significantly slower than

control cells (HUVEC-MXIV, transfected with empty MXIV vectors)

(Appendix Fig S2A and B). Like hOSE-YAP and hOSE-YAPS127A cells,

HUVEC-YAP and HUVEC-YAPS127A cells also exhibit senescent cellu-

lar morphology, which is indicated by enlargement and flattening of

cells in culture dishes (Appendix Figs S2B and S3A–C), appearance

of multinucleated cells (Appendix Fig S2B), heterogeneous cell

nuclei (Appendix Fig S2B), as well as significantly increased SA-b-
galactosidase activity (Appendix Fig S3C and D). Moreover, ectopic

expression of constitutively active YAP suppressed tubule formation

of cultured HUVEC cells (Appendix Fig S3E and F), perhaps due to

the senescence of HUVEC cells. Similar results were observed in

human ovarian microvascular endothelial (HOMEC) cells

(Appendix Fig S4A and B) and human ovarian granulosa cells

(Appendix Fig S4C). These results indicate that hyperactivation of

YAP can induce senescence in different types of human cells, not

only in hOSE cells.

Human papillomavirus E6/E7 oncoproteins prevent hOSE cells
from YAP-induced cellular senescence

Our previous studies showed that YAP promoted proliferation and

induced malignant transformation in HOSE-T80, an immortalized

human ovarian surface epithelial cell line [22]. Since HOSE-T80 cells

ectopically express HPV oncoproteins E6/E7, we speculate that E6/

E7 protein is able to prevent human OSE cells from YAP-induced

cellular senescence. To test this hypothesis, we transfected hOSE-

MXIV, hOSE-YAP, and hOSE-YAPS127A cells with a lentivirus-based

vector expressing HPV16 E6/E7 proteins. Previous studies demon-

strate that HPV E6 and E7 proteins regulate the cell cycle progres-

sion via suppressing TP53 and RB1, respectively [31–33].

Consistently, Western blot analysis showed that ectopic expression

of HPV E6/E7 in these cells markedly reduced p53 and RB1 protein

levels (Fig 3A), indicating that E6/E7 were successfully expressed in

these cells. Expression of E6/E7 blocked YAP-induced cell cycle

arrest in hOSE cells. In E6/E7 expression hOSE cells, both YAP and

YAPS127A promoted cell proliferation, even after nine passages

(Fig 3B). Importantly, in HPV E6/E7 expressing hOSE cells, neither

YAP nor YAPS127A induced senescence-associated morphological

changes (Fig 3C). In addition, expression of HPV E6/E7 almost

totally blocked the YAP- or YAPS127A-induced increase in SA-b-gal-
positive cells (Fig 3C and D). These results indicate that HPV-E6/E7

assists hOSE cells to escape from YAP-induced cellular senescence.

In our culture system, hOSE cells gradually stop proliferation and

become senescent after thirteen passages. Expression of HPV E6/E7

in hOSE cells was also able to prevent these cells from natural

replicative senescence (Fig 3E). Similarly, HPV E6/E7 protein

prevented YAP-induced senescence in cultures of the primary

human umbilical vein endothelial cells (Appendix Fig S5).

RB1 pathway is involved in YAP-induced cellular senescence

As mentioned, HPV E6 and E7 proteins regulate the cell cycle

progression via suppressing protein levels of TP53 and RB1 [31–33].

Consistently, we observed drastic reduction of TP53 and RB1 in E6/

E7-transfected hOSE cells (Fig 3A). Intriguingly, we found that

◀ Figure 1. Ectopic expression of YAP or constitutively active YAP induces arrest of cell growth in cultured primary human ovarian surface epithelial cells
(hOSE).

A Left panel: Representative blots showing protein levels of YAP and phosphorylated YAP (Ser127) in control (si-Ctrl) and YAP knockdown (si-YAP) hOSEs. Protein levels
were detected by Western blotting. b-Actin was used as a protein loading control. Right panel: Cell proliferation (cell number) in control (si-Ctrl) and YAP knockdown
(si-YAP) hOSE cells. Each bar represents the mean � SEM (n = 8). Bars with different letters are significantly different from each other (P < 0.01).

B Left panel: Representative blots showing protein levels of YAP and phosphorylated YAP (Ser127) in control (si-Ctrl), YAP knockdown (si-YAP), TAZ knockdown (si-TAZ),
and YAP/TAZ double knockdown (si-YAP/TAZ) hOSE Cells. b-Actin was used as a protein loading control. Right panel: Cell proliferation (cell number) of control (si-Ctrl),
YAP knockdown (si-YAP), TAZ knockdown (si-TAZ), and YAP/TAZ double knockdown (si-YAP & si-TAZ) hOSE cells. Each bar represents the mean � SEM (n = 6). Bars
with different letters are significantly different from each other (P < 0.05).

C Representative blots showing protein levels of YAP and phosphorylated YAP (Ser127) in control hOSEs (MXIV) and hOSEs expressing wild-type YAP (YAP) or
constitutively active YAP (YAPS127A). Cells were collected at passage 4. b-Actin was used as a protein loading control.

D Growth of hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells at passage 4. Each bar represents mean � SEM of four independent samples. Bars with different letters
are significantly different from each other (P < 0.001).

E Growth curves of hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells at passage 7. Each point represents mean � SEM of four independent samples.
F Representative images showing the morphologic changes of hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells at passage 7. Scale bar: 50 lm.
G Representative images showing expression and location of YAP in hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells at passage 7. YAP was visualized using an Alexa-488

(green)-conjugated secondary antibody. Nuclei were stained with DAPI. Scale bar: 50 lm.

Data information: Data were analyzed for significance using one-way ANOVA with Tukey’s post hoc tests.
Source data are available online for this figure.
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Figure 2. YAP induces cellular senescence in cultured primary human OSE cells.

A Representative images showing SA-b-gal staining in hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells at passage 7. Scale bar: 50 lm.
B Quantitative data showing the ratio of SA-b-gal-positive cells in hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells. Each bar represents the mean � SEM (n = 6). Bars

with different letters are significantly different from each other (P < 0.05). Data were analyzed for significance using one-way ANOVA with Tukey’s post hoc tests.
C Representative blots showing expression of key proteins associated with cell cycle arrest in hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells analyzed using Western

blotting at the 7th passage. b-Actin was used as a protein loading control.
D Representative images showing expression and location of phosphorylated pRB (807/811) in hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells at the 7th passage.

Phosphorylated pRB (807/811) was visualized using an Alexa-488 (green)-conjugated secondary antibody. Nuclei were stained with DAPI (blue). Scale bar: 50 lm.
Each experiment was repeated at least three times.

Source data are available online for this figure.
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overexpression or constitutive activation of YAP in hOSE cells

significantly increased protein level of RB1, but not TP53 (Fig 3A),

indicating that RB1 may be involved in YAP-induced cell cycle

arrest. RB1 was then knocked down in hOSE cells using lentivirus-

based RB1 shRNAs to examine its potential role in YAP-induced

senescence. Non-targeting shRNA was used as a control (shCtrl).

Western blot analysis demonstrated that RB1 shRNAs successfully

reduced RB1 protein level in hOSE-YAP and hOSE-YAPS127A cells

(Fig 4A). Similar to ectopic expression of E6/E7, knockdown of RB1

also reversed YAP- and YAPS127A-induced cell growth arrest in hOSE

cells, even after nine passages (Fig 4B). Consistently, knockdown of

RB1 also blocked YAP-induced morphology change in hOSE cells

(Fig 4C) and reduced YAP- or YAPS127A-induced SA-b-galactosidase
activity in hOSE cells (Fig 4C). These results clearly indicate that

loss of RB1 can prevent YAP-induced senescence. Interestingly,

although TP53 was not up-regulated by YAP in these cells, knock-

down of TP53 still partially blocked YAP- and YAPS127A-induced SA-

b-gal staining in hOSE cells (Fig 4C, Appendix Fig S6).

LATS2 is a critical regulator of natural replicative senescence

To further elucidate the mechanism underlying YAP induction of

cellular senescence, we compared changes of YAP expression and

localization in hOSE cells during YAP-induced cellular senescence

and natural replicative senescence. In hOSE-MXIV control cells (at

the 7th passages), YAP immunosignal in nuclear was relatively

higher than that in cytoplasm (Fig EV3A). However, in YAP-induced

senescent hOSE cells, YAP immunosignal was primarily localized to

the cytoplasm. Importantly, in the senescent hOSE-YAPS127A cells,

which express constitutively active type of YAPS127A (nuclear YAP),

we also detected relatively strong YAP immunosignal in the cyto-

plasm (Fig EV3A). These observations suggest that Hippo pathway

might be activated during YAP-induced cellular senescence, leading

to cytoplasm retention of YAP protein. Consistent with this, YAP

protein was localized to both nuclei and cytoplasm of hOSE cells at

the 4th passage, but predominantly to cytoplasm of senescent hOSE

cells at the 13th passage (Fig EV3B). Taken together, these data

suggest that the Hippo pathway may be activated during YAP induc-

tion of senescence, and the activity of YAP protein is suppressed

during YAP-induced and natural replicative senescence.

To confirm the involvement of the Hippo pathway in the replica-

tive and YAP-induced senescence, we examined the expression and

phosphorylation of YAP and LATS using RT–PCR and Western blot

in hOSE cells. We found that LATS protein level in hOSE cells was

elevated with the increased passage number, and the increased

LATS protein was associated with increased phosphorylation of

YAP protein, although the total protein level of YAP was reduced in

the senescent cells (Fig 5A). The RT–PCR result indicated LATS2,

but not LATS1, was up-regulated during cellular senescence

(Fig 5B). These results suggested LAST2 might be an important

player in natural replicative cellular senescence.

To further examine the role of LATS2 in cellular replicative

senescence, we knocked out LATS2 in hOSE cells using the CRISPR/

Cas9 gene editing technique. RT–PCR analysis indicated that LATS2

was successfully deleted by the CRISPR/Cas9-LATS2 system in

hOSE cells (Fig 5B). Fluorescent immunohistochemistry showed

that YAP protein translocated to nucleus of LATS2-knockout hOSE

cells in both passage 4 and passage 13 (Fig 5C and D). Moreover,

knockout of LATS2 inhibited senescence-associated cell enlargement

and significantly reduced the ratio of multinuclear cell in P13 hOSE

cells (Fig 5D–F). Most importantly, knockout of LATS2 in hOSE

cells diminished natural replicative cellular senescence, as indicated

by the decrease in the activity of SA-b-galactosidase in LATS2-

knockout hOSE cells after culture for 13 passages (Fig 5F and G).

Similar results were also observed in HUVEC cells, in which deletion

of LATS2 significantly reduced the number of SA-b-gal-positive cells

after culture for 16 passages (Appendix Fig S7).

Deletion of LATS2 prevents YAP-induced senescence in hOSE cells

To determine whether LATS2 is also involved in YAP-induced cellu-

lar senescence, first we used Western blotting and PCR to detect the

expression levels of the LATS2 and LATS2-associated genes in hOSE

cells with different levels of YAP activity. As shown in Fig 6A,

protein levels of YAP1 downstream targets such as CCNE1 and

CCND1 were significantly up-regulated in the early passage (passage

4), but not in the late passage (passage 7) hOSE-YAP and hOSE-

YAPS127A cells. However, LATS1/2 proteins were consistently

elevated in hOSE-YAP and hOSE-YAPS127A cells regardless cell

passage (Fig 6A). Similarly, ectopic expression of YAP and YAPS127A

in hOSE cells up-regulated expression of YAP1 downstream genes

such as AREG, ERBB3, MYC, NF2, and AMOT in P4 cells, but not in

P7 cells (Fig EV2, Appendix Fig S8). Importantly, both real-time

PCR and semi-quantitative PCR results indicated that LATS2, but

not LATS1, was consistently up-regulated by YAP and YAPS127A in

hOSE cells (Appendix Fig S8, Fig 6B and C). Since LATS2 is a major

◀ Figure 3. HPV E6/E7 oncoproteins prevent hOSEs from YAP-induced senescence.

A Representative blots showing expression of TP53 and RB1 expression in hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells in the presence or absence of HPV E6/E7
oncoproteins at the 7th passage. b-Actin was used as a protein loading control.

B Growth curves of hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells in the presence of HPV E6/E7 oncoproteins at the 9th passage. Each point represents mean � SEM
of four independent samples.

C Representative images showing SA-b-gal staining in hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells in the presence or absence of HPV E6/E7 oncoproteins at the 7th

passage. Scale bar: 50 lm.
D Quantitative data showing the ratio of SA-b-gal-positive cells in hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells in the presence or absence of HPV E6/E7

oncoproteins. Each bar represents the mean � SEM (n = 6). Bars with different letters are significantly different from each other (P < 0.01).
E Representative images showed SA-b-gal staining in cultured primary hOSE cells in the presence or absence of HPV E6/E7 oncoproteins. Cells were collected and

stained at the 13th passage. Scale bar: 25 lm. Right graph showing the ratio of SA-b-gal-positive cells in P13 hOSE cells transfected with empty vectors (CTRL-P13) or
vectors expressing E6/E7 oncoproteins (E6/E7-P13). Each bar represents the mean � SEM (n = 4). Bars with different letters are significantly different from each other
(P < 0.05).

Data information: Data were analyzed for significance using one-way ANOVA with Tukey’s post hoc tests.
Source data are available online for this figure.
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Figure 4. Involvement of RB1 signaling pathways in YAP-induced senescence.

A Representative blots showing the expression of YAP and RB1 in hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells with or without pRB knockdown. Cells were collected
at the 7th passage, and protein levels were analyzed using Western blotting. b-Actin was used as a protein loading control.

B Growth curves of hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells after RB1 knockdown. Each point represents mean � SEM of four independent samples.
C Representative images showing SA-b-gal staining in the hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells with or without RB1 or TP53 knockdown. Cells were collected

at the 7th passage. Scale bar: 50 lm.

Source data are available online for this figure.
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upstream suppressor of YAP in the Hippo signaling pathway, these

results suggest that LATS2 expression is regulated by YAP via a

potential negative feedback mechanism. Consistent up-regulation of

LATS2 in P7 hOSE-YAP and hOSE-YAPS127A cells also suggests that

LATS2 may be involved in YAP-induced senescence. We then

knocked out LATS2 in hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A

cells using CRISPR/Cas9 system (Fig 6C). Knockout of LATS2 inhib-

ited YAP and YAPS127A-induced enlargement of cell size and reduced

the ratio of multinucleated cells in both hOSE-YAP and hOSE-

YAPS127A groups (Fig 6D). Immunofluorescent results showed that

in the presence of LATS2, overexpressed YAP protein was localized

to both nucleus and cytoplasm in hOSE-YAP and hOSE-YAPS127A

cells (Fig EV4). However, knockout of LATS2 not only rescued cellu-

lar morphological changes induced by hyperactivation of YAP, but

also changed cellular localization of YAP protein (Fig EV4). In the

LATS2 knockout hOSE-YAP and hOSE-YAPS127A cells, YAP is

predominated localized to the nuclear. These results indicate loss of

high levels of LATS2 resulted in re-activation of YAP1 in hOSE cell

(Fig EV4). Consistently, knockout of LATS2 almost eliminated SA-b-
galactosidase activity in hOSE-YAP and hOSE-YAPS127A cells (Fig 6D

and E). In addition, we observed that YAP and YAPS127A significantly

promoted cell proliferation in LATS2-knockout hOSE cells (Fig 6F).

BrdU incorporation assays also showed that deletion of LATS2 can

rescue YAP1-induced inhibition of DNA synthesis in late passage

hOSE-YAP and hOSE-YAPS127A cells (Appendix Fig S9A and B).

These data indicate that the loss of LATS2 prevents hOSE cells from

YAP1-induced senescence. Importantly, we found that YAP also

induced expression of LATS2 and RB1 in HUVEC cells (Appendix Fig

S10). Knockout of LATS2 in HUVEC cells also prevents these cells

from YAP-induced senescence (Appendix Fig S11). Serine 127 is one

of the LATS2 phosphorylation sites of YAP. Similar to YAPS127A,

mutation of all five LATS2 phosphorylation sites (Ser61, Ser109,

Ser127, Ser164, and Ser381, hereinafter referred to as YAP5SA) also

induced drastic senescence in hOSE-YAP5SA cells at the 4th passage

(Appendix Fig S12). However, in the LATS2 knockout hOSE-YAP5SA

cells, no senescent phenotype was observed at the 4th passage

(Appendix Fig S12). Interestingly, IHC studies showed that high

LATS2 was translocated to the nucleus of the hOSE-YAP5SA cells

(Appendix Fig S13). This observation is consistent with previous

report that under oncogenic stress, LATS1/2 translocated to the

nucleus to facilitate TP53-mediated apoptosis [34].

Ectopic expression of LATS2 induces cell cycle arrest and
cellular senescence

To further examine the role of LATS2 in cellular senescence, we

ectopically expressed LATS2 in hOSEs using a lentivirus-based

LATS2-expressing vector. Control cells were transfected with empty

vector. Fluorescent microscopy and real-time PCR analyses showed

that cells were successfully transfected, and LATS2 mRNA expres-

sion significantly increased (Fig 7A and B) in the hOSE-LATS2 cells

when compared to control cells. LATS1 and YAP transcripts were

slightly, but significantly suppressed by LATS2 overexpression

(Fig 7B). As expected, ectopic expression of LATS2 suppressed

proliferation and induced senescence in hOSEs (both passage 4 and

passage 9 cells), which is indicated by the reduced cell number,

enlarged cell size, and increased SA-b-gal-positive cells in LATS2-

overexpressing hOSEs when compared to control groups (Fig 7C–H).

◀ Figure 5. Involvement of LATS2 in natural replicative senescence of hOSEs.

A Representative blots showing LATS and YAP protein levels in hOSEs at the fourth, ninth, and thirteenth passage. b-Actin was used as a protein loading control.
B Representative gel photographs showing mRNA levels of LATS1 and LATS2 in hOSEs with or without LATS2 knockout. CRISPR/Cas-9 system was used to knock out

LATS2 in hOSEs. LATS1/2 mRNA levels were analyzed using qRT–PCR at the fourth, ninth, and thirteenth passage.
C Representative images showing the expression and location of YAP in control and LATS2 knockout hOSE cells. Cells were collected at the 4th passage, and YAP

expression was examined by fluorescent immunohistochemistry. YAP protein was visualized using an Alexa-488 (green)-conjugated secondary antibody. Nuclei
were stained with DAPI. Scale bar: 50 lm.

D Representative images showing YAP protein expression in the 13th passage hOSE Cells with or without LATS2 knockout. YAP protein was examined by fluorescent
immunohistochemistry and visualized using an Alexa-488 (green)-conjugated secondary antibody. Nuclei were stained with DAPI (blue). Scale bar: 50 lm.

E, F Representative images showing morphological change (E) and SA-b-gal staining (F) in the 13th passage (P13) hOSE cells with (LATS2 KO) or without (CTRL) LATS2
knockout. Scale bar: 50 lm.

G Quantitative data showing the ratio of SA-b-gal-positive cells in the control (CTRL) and LATS2-knockout (LATS2KO) P13 hOSE cells. Each bar represents mean � SEM
(n = 4). ***P < 0.001, compared to control group (CTRL). Data were analyzed for significance using one-way ANOVA with Tukey’s post hoc tests.

Source data are available online for this figure.

▸Figure 6. Involvement of LATS2 in YAP-induced senescence of hOSE cells.

A Representative blots showing expression levels of LATS1/2, CCNE1, CCND1, and YAP in hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells. Cells were collected at passage
four (P4) and passage seven (P7). Actin was used as internal control.

B mRNA levels of LATS1, LATS2, and YAP in hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells. Cells were collected at passage seven, and mRNA levels were analyzed using
quantitative real-time PCR. Each bar represents mean � SEM (n = 5). Bars with different letters are significantly different from each other (P < 0.05).

C Representative gel photographs showing mRNA levels of LATS1, LATS2, and YAP in the control and LATS2-knockout hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells
examined using semi-quantitative RT–PCR at passage seven.

D Representative images showing the morphologic changes and SA-b-gal staining in control and LATS2-knockout hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells. Scale
Bar: 50 lm.

E Quantitative data showing the ratio of SA-b-gal-positive cells in the control and LATS2-knockout hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells at the seventh
passage. Each bar represents mean � SEM of four independent samples. Bars with different letters are significantly different from each other (P < 0.05).

F Growth curves of the control and LATS2-knockout hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells. Each point represents mean � SEM of four independent samples.

Data information: Data were analyzed for significance using one-way ANOVA with Tukey’s post hoc tests.
Source data are available online for this figure.
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The similar results were observed in HUVEC cells. Ectopic expres-

sion of LATS2 also rapidly induced senescence in cultured primary

HUVEC cells (Appendix Fig S14). Interestingly, ectopic expression

of LATS2 induced significant increase in the expression of genes

involved in DREAM complex formation, including E2F4, E2F5,

RBBP4, and TFDP2 (Fig 7I, P < 0.001, compared to control

groups). Most importantly, in the RB1 knockdown hOSEs, overex-

pression of LATS2 also induced cellular senescence, which is indi-

cated by the arrest of cell proliferation (Fig 7J) and significant

increase in the percentage of cells with positive SA-b-gal staining
(Fig 7K–L).

Blocking YAP-induced senescence initiates cell transformation
and tumorigenesis

Our previous study shows that overexpression of YAP induces

malignant transformation in immortalized human ovarian surface

epithelial cells, cervical squamous epithelial cells, and fallopian tube

fimbria epithelial cells [9,22,26]. We speculate that hyperactivation

of YAP and deficiency of LATS2 or RB1 may induce transformation

of hOSE cells. As postulated, soft agar assays showed that

hOSE-MXIV, hOSE-YAP, hOSE-YAPS127A, hOSE-shRB1-MXIV, and

hOSE-LATS2KO-MXIV cells did not form colonies after culture for

9 days. However, hOSE-shRB1-YAP cells, hOSE-LATS2KO-YAP cells,

hOSE-shRB-YAPS127A cells, and hOSE-LATS2KO-YAPS127A cells

formed abundant large colonies on soft agar (Fig 8A and B). These

results indicate that interruption of senescence signaling in

YAP-hyperactivated hOSE cells induces cell transformation.

To further examine the tumorigenic activity of transformed hOSE

cells, hOSE-YAPS127A cells, HOSE-shRB-YAPS127A cells, hOSE-

LATS2KO-YAPS127A cells, and hOSE-E6/E7-YAPS127A cells were

injected subcutaneously into athymic nude mice. As shown in

Fig 8C, no tumors were observed in mice injected with the hOSE-

YAPS127A cells. However, tumors formed in mice injected with

HOSE-shRB1-YAPS127A cells (80%, 8 out of 10) and hOSE-LATS2KO-

YAPS127A cells (80%, 8 out of 10). However, tumors formed in mice

injected with hOSE-shRB1-YAPS127A cells (80%, 8 out of 10) and

hOSE-LATS2KO-YAPS127A cells (80%, 8 out of 10). These results indi-

cate that YAPS127A was sufficient to induce tumorigenesis in hOSE

cells deficient with LATS2 or RB1. Immunohistochemistry analysis

showed strong staining for CAS9, YAP, and Ki67 in tumor tissues

derived from HOSE-LATS2KO-YAPS127A cells, but LATS2 could not

be detected in these tumor cells (Fig 8D and Appendix Fig S15).

LATS2 is involved in the process of human pathological senescence

Detection of senescent cells in human tissue is difficult because

accumulation of senescent cells in normal tissues is very rare.

◀ Figure 7. Ectopic expression of LATS2 suppressed proliferation and induced senescence in cultured primary hOSE cells.

A Representative images showing cells with ectopic expression of LATS2, which is labeled with GFP (the control is empty vectors). Scale bar: 50 lm.
B Relative mRNA levels of LATS1, LATS2, and YAP in the control and LATS2-expressing hOSEs at the 4th passage. Relative mRNA levels were determined with RT–PCR.

Each bar represents mean � SEM (n = 4). ***P < 0.001, compared to control.
C Growth curves of hOSE cells at the 4th passage with or without ectopic expression of LATS2. Each point represents mean � SEM of at least four independent

samples.
D Representative images showing the effects of LATS2 overexpression on the morphology and growth of hOSE cells at the 9th passage. Scale bar: 50 lm.
E Growth curves of control and LATS2-overexpressing hOSE cells. Each point represents mean � SEM of at least four independent samples.
F Quantitative data showing the ratio of SA-b-gal-positive hOSEs at their 4th passage with or without ectopic expression of LATS2. Each point represents

mean � SEM of at least four independent samples. *P < 0.05, compared to the control.
G Representative images showing the effect of LATS2 on the morphology and b-galactosidase activities in cultured primary hOSE cells at the 9th passage. Scale bar:

50 lm
H Quantitative data showing the ratio of SA-b-gal-positive hOSEs at their 9th passage with or without ectopic expression of LATS2. Each bar represents mean � SEM

of at least four independent samples. ***P < 0.001, compared to the control.
I mRNA levels of major components of the DREAM complex (E2F4, E2F5, RBBP4, TFDP2) in the control and LATS2-overexpressing hOSEs at the 9th passage. Relative

mRNA levels were examined by real-time PCR. Each bar represents mean � SEM (n = 4). **P < 0.01; ***P < 0.001, compared to control.
J Growth curves of the hOSE-shRB1 cells and hOSE-shRB1-LATS2 cells at their 16th passages. Each point represents mean � SEM of at least four independent

samples.
K, L Representative images showing cellular morphology and b-galactosidase activities in control and LATS2-overexpressing hOSEs (K). Scale Bar: 50 lm. Right bar graph

(L) showing quantitative results of SA-b-gal-positive cells in the hOSE-shRB1 cells and hOSE-shRB1-LATS2 cells. Each bar represents mean � SEM of at least four
independent samples. ***P < 0.001, compared to control.

Data information: Data were analyzed for significance using one-way ANOVA with Tukey’s post hoc tests.

▸Figure 8. YAP induces malignant transformation of hOSE cells with LATS2 deletion or pRB knockdown.

A Representative images showing colony formation in hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells with or without pRB knockdown or LATS2 knockout. hOSEs at the
7th passage were incubated in the growth medium in a soft agar culture system for 9 days before imaging. Scale bar: 500 lm.

B Quantitative data showing colony numbers in hOSE-MXIV, hOSE-YAP, and hOSE-YAPS127A cells with or without pRB knockdown or LATS2 deletion. hOSE cells at the
7th passage were incubated in the growth medium in a soft agar culture system for 9 days before counting colonies under a microscope. Each bar represents
means � SEM of four independent repeats. Bars with different letters are significantly different from each other (P < 0.001). Data were analyzed for significance
using one-way ANOVA with Tukey’s post hoc tests.

C Representative images showing tumorigenesis (red circle area) of hOSE-YAPS127A cells with or without pRB knockdown or LATS2 deletion. Tumors formed by hOSE-
YAPS127A cells with RB1 knockdown or LATS2 deletion are shown in red circle area. Right panel showing representative tumors formed by hOSE-YAPS127A-LATS2KO and
hOSE-YAPS127A-shRB1 cells. Please note that no tumor xenografts formed in hOSE-YAPS127A alone group.

D Representative images showing expression of YAP, Ki67, and LATS2 in hOSE-LATS2KO-YAPS127A cell-derived tumors examined by immunohistochemistry. Scale bar:
50 lm.
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However, human melanocytic nevus has been identified to

display several established hallmarks of cellular senescence and

has been recognized as a good model for studying human cellular

senescence [35]. Therefore, we used nevus tissues to examine

whether LATS2 was also involved in regulation of cellular senes-

cence in human tissues. As predicted, immunohistochemistry

analysis indicated that LATS2 was highly expressed in nevus

tissues (Figs EV5A and 5C, Appendix Fig S16). The intensity of

the LATS2 immunosignal in melanocytes in the nevus tissues was

significantly higher than in normal skin tissues (Figs EV5A and

5B and C, Appendix Fig S16). LATS2 protein in melanocytes of

normal skin is nearly undetectable (Appendix Fig S16). Consistent

with previous reports [35], we found that few cells were positive

for Ki67, a well-known proliferation biomarker, in nevus tissues

(Fig EV5C). LATS2 expression was very low in melanoma tissues.

These results indicated that LATS2 is up-regulated and potentially

involved in senescent process of human tissues under pathologi-

cal (or potentially physiological) conditions.

Discussion

Cells in the multicellular organisms employ a wealth of molecular

mechanisms to maintain tissue homeostasis. Dysfunction of the

homeostasis-maintaining system in specific cell types or tissues

renders the organism susceptible to a range of diseases, including

malignancies. One of the emerging mechanisms for maintaining

cell/tissue homeostasis is cellular senescence, a process whereby

cells permanently lose the ability to divide. Normal human diploid

cells undergo a certain number of divisions and then enter so-called

replicative senescence, which results from telomere shortening-

induced DNA damage. Hyperactivation of oncogenes, exposure to

DNA-damage agents, or excessive oxidative stress can also push cells

to enter senescence. Since senescence prevents damaged or dysfunc-

tional cells from proliferation, it serves as an important mechanism

to constrain the malignant transformation of stress-damaged cells

[36,37]. Moreover, studies also demonstrate that cellular senescence

drives the aging process and is essential for embryo development

[36–39]. Despite its role in the development, aging, and tumorigene-

sis, the exact molecular mechanism underlying the induction and

progress of cellular senescence is still unclear. In the present study,

we found that the Hippo/YAP signaling pathway plays a critical role

in controlling cellular senescence of ovarian cells. Our results

demonstrate that YAP, the major effector of the Hippo signaling

pathway, induces senescence in primary human OSE cells in the

presence of LATS2. Knockout of LATS2 in human ovarian OSE cells

using the CRISPR/Cas9 technique blocked YAP-induced senescence

and induced malignant transformation of these cells. Most impor-

tantly, we found that hyperactivation of YAP induced expression of

LATS2 protein in ovarian OSE cells, suggesting that LATS2 and YAP,

two major components of the Hippo/YAP pathway, form a feedback

loop to induce senescence and prevent ovarian cells from malignant

transformation.

The effect of YAP on cell proliferation and transformation has

been well documented. Most of these studies indicate that elevated

expression and activation of YAP induce transformation in various

types of cell lines [1,5,14,18,19,22,27,39–41]. Our previous studies

also showed that hyperactivation of YAP induced tumors in

immortalized ovarian surface epithelial cells and promote growth of

ovarian granulosa cells [22,27]. While a majority of previous studies

used immortalized cell lines or cancer cells as cellular models, the

present study utilized primary cultures of human OSE cells (and

other type of primary cells) to examine the role of YAP in the non-

immortalized cells. Indeed, ectopic expression of wild-type YAP or

constitutively active YAP (YAPS127A) in these cells promoted cell

proliferation within four passages (two passages after cell transfec-

tion). However, high YAP and YAPS127A inhibited cell proliferation

after seven passages (five passages after transfection). Further stud-

ies indicated that hyperactivation of YAP induced cellular senes-

cence in primary cultures of hOSE cells (and other types of cells),

which was evidenced by the arrest of cell cycle, enlargement of cell

size, increase in the number of multinucleated cells, and expression

of senescence-associated b-galactosidase. Importantly, we also

found that hyperactivation of YAP induced cellular senescence in

primary cultures of ovarian granulosa cells (hGC) and endothelial

cells (HOMEC and HUVEC), suggesting that YAP also induces senes-

cence in other type of cells.

Previous studies, including ours, clearly implicate YAP as an

oncogene. While it may seem counterintuitive that expression of

specific oncogenes can induce senescence, the concept is not new.

Serrano and colleagues found that expression of oncogene H-rasV12

in human primary cells led to cell cycle arrest [43]. Many other

oncogenes, such as RAF, AKT, E2F1/3, cyclin E, and CDC6, can

induce cellular senescence in vitro and in vivo [42,44–47]. From this

perspective, it is not surprising that YAP induces cellular senescence

in cultures of primary ovarian cells. Although a recent report

demonstrated that silencing of YAP inhibits cell proliferation and

induces premature senescence in an immortalized fibroblasts [48],

this discrepancy could be explained by the difference of cell types

used in two experiments. We used primary human cells, while Xie

et al [48] used an immortalized human fetal lung fibroblast cell

lines (IMR90). Our previous studies have also shown that hyperacti-

vation of YAP induced proliferation and transformation of immortal-

ized human OSE cells [22]. Interestingly, Fausti et al [49] showed

that up-regulation of YAP in colorectal cancer cells also correlated

with slower cell proliferation and accelerated senescence. It will be

interesting to explore how up-regulation of YAP induces senescence

in colorectal cancer cells if the results are confirmed in other model

systems.

Although molecular mechanisms involved in oncogene-induced

cellular senescence are not fully understood, previous studies have

shown that tumor suppressive pathways, such as P53/P21 and P16/

RB1 pathways, were involved in almost all cases of oncogene-

induced senescence [14,35,45]. Consistently, we found that expres-

sion of the RB1 gene was markedly up-regulated by constitutively

active YAP in hOSEs and silencing RB1 rescued hOSE cells from

YAP-induced senescence. Although TP53 levels were not signifi-

cantly affected by constitutively active YAP, knockdown of TP53

still partially prevented hOSEs from YAP-induced senescence. These

results indicate that P53 and RB1 tumor suppressive pathways are

also important mediators of YAP-induced senescence. Accumulating

evidence indicates that the Hippo pathway is a powerful tumor

suppressive pathway. However, previous reports considering the

role of the Hippo pathway on cellular senescence are controversial

[50,51]. LATS1 was showed to suppress cellular senescence [50,51],

while LATS2 was demonstrated to be essential for RAS-induced
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senescence [52]. Therefore, the role of the Hippo/YAP pathway in

oncogene-induced cellular senescence is still unclear. In the present

study, we found that ectopic expression of wild-type YAP or consti-

tutively active YAP in primary cultured hOSE cells, which induced

senescence in these cells, significantly increased expression of

LATS2, but not LATS1. These results suggested that LATS2, but not

LATS1, may be involved in YAP-induced senescence. We then

deleted LATS2 gene in hOSE cells using CRISPR/Cas 9 technique.

Surprisingly, knockout of LATS2 completely inhibited YAP-induced

senescence. Most importantly, we found that hOSE-YAP and hOSE-

YAPS127A cells with normal LATS2 were not tumorigenic. In

contrast, deletion of LATS2 in hOSE-YAP and hOSE-YAPS127A cells

induced tumor formation in the xenograft mouse models (Fig 8).

Our results, for the first time, demonstrate that in normal cells, the

Hippo/YAP pathway uses LATS2 kinase to surveil and regulate YAP

activity to prevent oncogene-induced tumorigenesis. The functional-

ity of the Hippo/YAP pathway orchestrates the cell fate (senescence

or transformation) and plays crucial role in maintaining cellular and

tissue homeostasis. Interestingly, we found that LATS2 expression

increased not only in YAP-induced senescent cells, but also in cells

undergoing nature replicative senescence. Moreover, knockout of

LATS2 inhibited replication-induced senescence. These data suggest

that the Hippo/YAP pathway may represent a common signaling

pathway that is critical for maintaining tissue homeostasis via

controlling cell fate (senescence or tumorigenesis).

It is known that RB1 cooperates with a variety of repressor

complexes to suppress expression of proliferation-promoting E2F

targets to promote cell cycle exit [53,54]. However, the role of

LATS2 in cellular senescence is largely unknown. In the present

study, we found that LATS2 significantly increased expression of

major components of the DREAM repressor complex (dimerization

partner, RB-like, E2F, and multi-vulval class B). Previous studies

have shown that the transcriptional silencing of E2F target genes is

important for the establishment of a stable arrest of the cell cycle

and is implemented by changes in chromatin organization that are

characteristic marks of senescent cells [55,56]. Therefore, LATS2

may mediate YAP-induced senescence via repressing the assembly

of the DREAM repressor complex, which is a RB1-independent

senescent pathway. However, knockdown of RB1 rescued YAP-

induced senescence in hOSE cells, which have elevated levels of

LATS2, suggesting that the RB1 senescent pathway may also inter-

act with LATS2 pathway to mediate YAP-induced senescence.

Consistent with this idea, Tschop et al [52] showed that knockdown

of LATS2 suppresses some RB1-induced senescence markers, and

LATS2 cooperates with RB1 to promote the silencing of E2F target

genes in a RB1 and TP53 mutant human osteosarcoma cells.

However, our studies using primary cells showed that overexpres-

sion of LATS2 induced cell cycle arrest and expression of senescent

marker in RB knockdown hOSE cells, suggesting that LATS2 along

is sufficient to induce senescence in cultured primary hOSE cells.

Obviously, more experiments are needed to fully figure out the role

of LATS2 and RB1, as well as their crosstalk, in mediating YAP-

induced and natural replicative senescence.

In summary, the present study demonstrates a previously

unprecedented mechanism by which the Hippo pathway controls

cell fate to maintain ovarian tissue homeostasis. Under normal

physiological conditions, the LATS2-YAP negative feedback loop is

presented in normal ovarian cells and the Hippo pathway is func-

tional in these cells. Activation of YAP will induce increased expres-

sion of LATS2 via the negative feedback loop. Increased LATS2 will

inactivate YAP protein by phosphorylating and retaining it in the

cytoplasm to block its action on cell proliferation, which will effi-

ciently control cell growth (Fig 9A). Under pathological conditions,

proliferative stress signals or other intrinsic or extrinsic tumorigenic

signals may trigger over-activation of YAP oncogene in ovarian cells

in a Hippo pathway-dependent or Hippo pathway-independent

manner. If the Hippo pathway is functional and the YAP-LATS2

feedback loop is still active in these cells, high YAP activity can still

A B C

Figure 9. Schematic illustrations showing the proposed mechanism underlying the Hippo pathway regulation of cellular senescence and tumorigenesis.

A–C Data in this study support the existence of a YAP-LATS2 negative feedback loop consisting of oncogene YAP and its upstream suppressor LATS2. Under normal
physiological conditions, the feedback loop is functional, and activation of YAP leads to increased expression of LATS2, which may inactivate YAP via
phosphorylating YAP and retain YAP in the cytoplasm, leading to the blockage of its proliferative action on hOSE cells (A). Under certain circumstances, YAP protein
may be over-activated by the intrinsic and extrinsic stresses (e.g., YAP gene amplification). If the Hippo pathway is still functional and the YAP-LATS2 negative
feedback still exists in these cells, hyperactivated YAP may induce cellular senescence via high expression of LATS2 (B). However, if the Hippo pathway is
dysfunctional and the YAP-LATS2 feedback loop is deficient, YAP may induce transformation and carcinogenesis of OSE cells (C).
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trigger the feedback loop to induce expression of LATS2. High

LATS2 will, on the one hand, phosphorylate YAP to suppress its

action on cell proliferation; on the other hand, it facilitates the setup

of the DREAM complex (or interacts with other tumor suppressors)

to induce senescence of YAP1-hyperactivated cells. In so doing, the

Hippo pathway can successfully maintain controlled cell growth and

ovarian tissue homeostasis (Fig 9B). However, if the Hippo pathway

is disrupted and LATS2 is inactivated (e.g., mutations or deletions),

YAP1-hyperactivated cells will bypass YAP-induced senescence and

become tumorigenic (Fig 9C). Consistent with our findings, two

recent studies have shown that YAP activation resulted in high

expression of LATS2 and NF2 (neurofibromatosis type 2) kinases in

both cultured cells and mouse tissues [28,57]. Importantly, multidi-

mensional analyses of human cancer genomic data from TCGA data-

base indicate that in human cancers, including in ovarian cancer,

RB1 gene is frequently mutated or deleted in human cancers, and

LATS2 gene is frequently inactivated (mutation, deletion, and

reduced expression). At the same time, the YAP gene is frequently

amplified in many different cancers (Appendix Fig S17A–C). Intrigu-

ingly, the LATS2 locus is physically linked with RB1 on 13q, and

this region frequently displays loss of heterozygosity in human ovar-

ian cancers [58]. These observations further confirm the clinical

relevance of our findings and strongly support our conclusion that

the Hippo/YAP pathway plays critical role in maintaining tissue

homeostasis via controlling cell fate (senescence or tumorigenesis)

in ovary. In human tissues, dysregulation of the Hippo/YAP path-

way in ovarian cells may result in disruption of cellular homeostasis

and development of ovarian cancer.

Materials and Methods

Chemicals and cell lines

HOMEC and hOSE cells, as well as their culture media, were

purchased from ScienCell Research Laboratories (Carlsbad, CA).

HUVEC cells were purchased from ATCC (Manassas, VA). Human

ovarian granulosa cells (HOGC) were purified from discarded granu-

losa cells of healthy IVF patients after oocyte retrieval. Fetal bovine

serum (FBS) was from Atlanta Biologicals, Inc. (Lawrenceville, GA).

The Ribogreen RNA Quantification Kit and Alexa-conjugated

secondary antibodies were from Life Technologies Corp. (Grand

Island, NY); RNeasy Mini Kit was from Qiagen, Inc. (Valencia, CA).

YAP siRNA, TAZ siRNA, LATS1 siRNA, and LATS2 siRNA were

from Dharmacon/Thermo Scientific (Pittsburgh, PA). Lentivirus-

based shRB1 vectors were from Addgene (Cambridge, MA). Lenti-

virus (contains HPV16 E6/E7 and CRISP-Cas9 all-in-one LATS2

knockout vectors) was from Applied Biological Materials (ABM),

Inc. (Richmond, BC, Canada). PCR chemicals were from Invitrogen

(Carlsbad, CA), Qiagen (Carlsbad, CA), or Bio-Rad (Hercules, CA).

Antibodies against YAP, phospho-YAP (Ser127), phospho-YAP

(Ser397) LATS1/2, p53, pRB (phospho-RB1), p16, CCND1, CCNA2,

ATG3, ATG7, and Beclin-1, SA-b-gal detection kit were from Cell

Signaling Technology, Inc. (Danvers, MA). Antibodies against

b-actin were from Sigma-Aldrich (St. Louis, MO). Peroxidase-

conjugated secondary antibodies for Western blot analysis were from

Jackson Immunoresearch Laboratories, Inc. (West Grove, PA); the

SuperSignal West Femto Chemiluminescent Substrate Kit was from

Pierce/Thermo Scientific (Rockford, IL); and Optitran nitrocellular

transfer membrane was from Schleicher & Schuell Bioscience (Dassel,

Germany). All other molecular-grade chemicals were purchased from

Sigma (St. Louis, MO), Fisher (Pittsburgh, PA), or United States

Biochemical (Cleveland, OH). The melanoma and nevus tissue arrays

were purchased from US Biomax (Rockville, MD). This array

contained 8 malignant melanoma cases and 9 nevus cases.

Western blot analysis, immunohistochemistry,
and immunofluorescence

Western blot was used to determine protein levels as described

previously [59]. Briefly, normal or treated cells were harvested on

ice with ice-cold lysis buffer containing 10 mM Tris pH 7.4, 100 mM

NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM NaF, 20 mM Na4P2O7, 1%

Triton X-100, 10% glycerol, 0.1% SDS, and 0.5% deoxycholate and

protease and phosphatase inhibitor cocktails. Samples (30 lg
protein) were loaded to a 10% SDS–PAGE, fractioned through elec-

trophoresis, and transferred onto nitrocellulose membranes. The

membranes were blocked with 5% BSA and then probed with

appropriate primary and horseradish peroxidase (HRP)-conjugated

secondary antibodies. The immunosignal was detected using a

Thermo Scientific SuperSignal West Femto Chemiluminescent

Substrate Kit. The images were captured and analyzed using a UVP

gel documentation system (UVP, Upland, CA). Information for the

validated antibodies used for Western blot, IHC, and IF (see below)

is presented in the Appendix Table S1.

LATS2 expression in melanoma and nevus tissues was detected

by using peroxidase-based immunohistochemistry as described

previously [60]. Briefly, human tissues were deparaffinized with

xylene, rehydrated with graded ethanol series, and autoclaved in an

unmasking solution (Vector Laboratories, Burlingame, CA) for anti-

gen retrieval before blocking endogenous peroxidase activity with

3% hydrogen peroxide. Tissues were then blocked with 10%

normal donkey serum (NDS) at room temperature for 1 h followed

by incubation with primary antibodies at 4°C for 16 h. After wash-

ing three times with PBS, tissues were incubated consecutively with

biotinylated secondary antibody and streptavidin–peroxidase

complex (Vector Laboratories, Burlingame, CA) at room tempera-

ture for thirty and 10 min, respectively. The immunosignal was

visualized with an immPACT DAB kit (Vector Laboratories, Burlin-

game, CA). The sections were counterstained with Mayer’s hema-

toxylin. For negative controls, the primary antibody was replaced

with blocking buffer containing the same amount of IgG from the

non-immune rabbit serum. Sections were scanned with an iSCAN

Coreo Slide Scanner (Ventana Medical Systems, Inc. Oro Valley,

AZ). The intensity of the positive immunosignal was quantified

using Aperio ImageScope software (Vista, CA). The intensity of

positive signal and the positivity (i.e., the ratio of positive cell

number relative to the total cell) of each section was recorded.

Co-localization of LATS2 and melanocyte markers in normal skin

and nevus tissue was performed using an ImmPRESS Duet Double

Staining HRP/AP Polymer Kit following the instructions from the

manufacturer (Vector Laboratories, Burlingame, CA). Melanocytes

in healthy skin and nevus were probed with a mouse antibody cock-

tail for MART-1, Tyrosinase, and gp100 (Novus Biologicals, Centen-

nial, CO) and visualized using the ImmPACTTM SG substrate which

develops blue-gray color in melanocytes. LATS2 protein was probed
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with a rabbit monoclonal antibody (Cell Signaling Technology, Inc.

Danvers, MA) and visualized using the ImmPACT
TM Vector� Red

substrate which develops red color in positive cells (Vector Labora-

tories, Burlingame, CA).

Immunofluorescent histochemistry (IF) was used to localize YAP

in the established cell lines [61]. Briefly, cells were fixed in freshly

prepared 4% paraformaldehyde and stained for YAP using a proto-

col established in our laboratory [27,62]. Images were captured

using a Zeiss 710 Meta Confocal Laser Scanning Microscope and

analyzed using Zeiss Zen 2010 software (Carl Zeiss Microscopy,

LLC, Thornwood, NY).

Quantitative real-time PCR

Quantitative real-time PCR (QT–PCR) was used to determine mRNA

expression [63]. Total RNA was prepared with TRIzol reagent

(Invitrogen; Carlsbad, CA) and Qiagen RNeasy Mini Kit (Qiagen,

Carlsbad, CA). RNA concentration was determined with Nano-

DropTM Spectrophotometers. Reverse transcription was done by

using high-capacity cDNA reverse transcription kit (Applied Biosys-

tems, Grand Island, NY). PCR was performed in a Bio-Rad CFX96

real-time fast PCR system. Primers for cell division-associated genes

(E2f4, E2f5, Rbbp4, Tfdp2) were from a Human Retinoblastoma

Gene Primer Library (Item# HRBG-I), primers for cell cycle-asso-

ciated genes (CCNE1, E2F4, RB1, TP53) were from a human cell

cycle gene primer library (Item# HCC-I), and primers for the Hippo

pathway-associated genes (YAP1, LATS1, LATS2, Tead1, Tead2,

Tead3, Tead4, AMOT, MYC, NF2, CTGF) were from a human Hippo

signaling gene primer library (Item# HHPO-I). Primers for cytokine

genes (IL-6, IL-8, FGF2, VEGFA) were from a human cytokine primer

library. Primers for the ERBB pathway (HBEGF, AREG, ERBB3) were

from a Human ERBB Signaling Primer Library (Item# HERBB-I).

These kits were purchased from the Real Time Primers, LLC (Elkins

Park, PA). Each kit contains 88 primer sets directed against the

retinoblastoma gene pathway and 8 housekeeping gene primer sets

that has been validated by the manufacturer.

BrdU cell proliferation assay

The effect of YAP1 on DNA incorporation was analyzed using a

BrdU Cell Proliferation Assay Kit (Cell Signaling Technology, Inc.

#6813). Briefly, cells (5,000 cells/well) were plated in 96-well plate

and incubated with growth medium for 48 h. Cells were then incu-

bated with BrdU containing medium (final concentration: 10 lM)

for 6 or 24 h before fixation for BrdU concentration analysis accord-

ing to the instructions provided in the assay kit. Optical density

(OD) was recorded at 450/550 nm within 30 min.

Cell line establishment, cell proliferation, SA-b-gal staining, and
colony formation assays

Primary cells were cultured to 40% confluent and then transfected

with retrovirus or lentivirus-based gene expression constructs. Stable

genes expressing clones were selected using G418 or puromycin. Cell

proliferation was determined by counting cell number with an Invit-

rogen Countess� Automated cell counter (Carlsbad, CA). SA-b-gal
activations were detected by following the kit instructions (Cell

Signaling Technology, Inc.). The ability of anchorage-free cell

growth was assessed with soft agar cell colony formation assay using

Cytoselect 96-Well Cell Transformation assay kit (Cell Biolabs, Inc.).

A LATS2 sgRNA CRISPR (Vector: pLenti-U6-sgRNA-SFFV-Cas9-

2A-Puro) All-in-one Lentivirus set (Applied Biological Materials Inc.

Catalog Number: K1198315) was used to generate LATS2 deleted

cells. Three lentiviruses (titer: 9.7 × 10⁷ IU/ml) with different

sgRNA were used to ensure the knockout efficiency. The targeted

LATS2 sequences are (i) 26-ATTTCCAGAATAAGTCG; (ii) 116-

GTCACTGTTTGGTCCTG; and (iii) 215-CTTATCAGAAAGCCTTG.

The primary hOSE cells and HUVEC cells were cultured to 40% con-

fluent and then transfected with Lentivirus #1 (20 MOI) on day 0.

Forty-eight hours later, puromycin was added to the medium to

select the positive cells for 4 days. Lentivirus #2 and lentivirus #3

(both at 20 MOI) were transfected on day 6 and day 7, respectively.

Since cells with intact LATS2 or partially deleted LATS (delete one

copy) grew much slower, gradually became senescent, and eventu-

ally eliminated from the culture, LATS2-knockout cells rapidly accu-

mulated and become the dominant population. Therefore, although

not from a single cell clonal population, this pool of cells is

composed predominantly of LATS2-negative cells. Fluorescent

immunohistochemistry of CAS9 was used to verify the enrichment

of LATS2 deleted cells. qRT–PCR and semi-quantitative PCR were

used to monitor the expression of LATS2.

In vivo tumorigenicity

Animal handling and all experimental procedures were approved by

the Institutional Animal Care and Use Committee (IACUC) of the

University of NebraskaMedical Center. Cells (6 × 106 cells suspended

in 0.1 ml PBS with Matrigel) were injected subcutaneously into the

right and left dorsal flank of 6-week-old female athymic nude mice.

The tumor volume (mm3) was estimated by measuring the longest

and shortest diameter of the tumor and calculating as follows:

volume = (shortest diameter)2 × (longest diameter) × 3.14/6. All

mice were euthanized 2 months after tumor cell inoculation. Tumors

were collected, weighed, and processed for preparation of paraffin

and frozen sections, protein and RNA. Immunohistochemistry was

performedwith a protocol described previously [60].

Human cancer genomic data analysis and statistical analysis

Genomic data mining was performed using cBioPortal for Cancer

Genomics (available at http://www.cbioportal.org) as described

previously [64]. For analysis of YAP, LATS2, and pRB alterations in

different cancer types, we used 146 available datasets from The

Cancer Genome Atlas (TCGA) Data Portal in accordance with the

publication guidelines (TCGA, Provisional).

Statistics

All experiments were repeated at least five times unless otherwise

noted. Data are presented as mean � SEM. Statistical analysis was

conducted using GraphPad Prism software (GraphPad Software, Inc.

La Jolla, CA). Data were analyzed for significance using one-way

ANOVA with Tukey’s post hoc tests. A value of P < 0.05 was consid-

ered statistically significant.

Expanded View for this article is available online.
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