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Abstract

Psychosocial stress is a risk factor for the development of depression. Recent evidence suggests that glial activation could
contribute to the development of depressive-like behaviour. This study aimed to evaluate in vivo whether repeated social
defeat (RSD) induces short- and long-term inflammatory and metabolic alterations in the brain through positron emis-
sion tomography (PET). Male Wistar rats (n=40) were exposed to RSD by dominant Long-Evans rats on five consecu-
tive days. Behavioural and biochemical alterations were assessed at baseline, day 5/6 and day 24/25 after the RSD
protocol. Glial activation (''C-PKI1195 PET) and changes in brain metabolism (‘®F-FDG PET) were evaluated on day
6, |1 and 25 (short-term), and at 3 and 6 months (long-term). Defeated rats showed transient depressive- and anxiety-
like behaviour, increased corticosterone and brain IL-1f3 levels, as well as glial activation and brain hypometabolism in the
first month after RSD. During the third- and six-month follow-up, no between-group differences in any investigated
parameter were found. Therefore, non-invasive PET imaging demonstrated that RSD induces transient glial activation and
reduces brain glucose metabolism in rats. These imaging findings were associated with stress-induced behavioural
changes and support the hypothesis that neuroinflalmmation could be a contributing factor in the development of
depression.
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persistent immunological activation might contribute
(either additively or in parallel) to treatment resistance
to conventional antidepressants.*’ !

Introduction

Major depressive disorder (MDD) is a highly prevalent
mental disorder affecting approximately 350 million
people worldwide.! Although MDD patients can bene-
fit from treatment with antidepressants, over 30% of
them are (at least partly) treatment-resistant.” It is
likely that the lack of treatment efficacy arises from

IDeparcment of Nuclear Medicine and Molecular Imaging, University of
Groningen, University Medical Center Groningen, Groningen, the
Netherlands

“Biomedical Gerontology, Pontifical Catholic University of Rio Grande do

the gaps in our understanding of MDD etiology.’
One of the risk factors for the development of MDD
is exposure to psychosocial stress. Currently, it is esti-
mated that 20-25% of individuals exposed to highly
stressful events develop MDD.*> Notably, recent evi-
dence suggests that (neuro)inflammatory processes may
be involved in the physiopathology of MDD.® In this
sense, it is possible that psychosocial stress and
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Microglia and astrocytes are involved in the
immunological response of the central nervous
system. These cells are known to undergo a series of
events, commonly known as “glial activation,” in
response to brain disturbances such as neuronal
damage or infection. These events include cell prolifer-
ation, morphological changes, increased expression of
specific cell surface markers, production of cytokines
and other inflammatory mediators.'> Depending on
the type of stimulus and its duration, microglia activa-
tion can be classified as acute or chronic.'? Stress could
be such a stimulus for glia activation. Glucocorticoids
released as a consequence of psychosocial stress can
bind to corticoid receptors on microglia and induce a
shift towards a pro-inflammatory phenotype.'*!3
Chronically activated microglia produce well-known
pro-inflammatory cytokines'® such as interleukin-6
(IL-6), interleukin-1f (IL-18) and tumour necrosis
factor-o. (TNF-a), all of which can affect the hypotha-
lamic-pituitary-adrenal (HPA) axis and alter central
serotonin levels'” and thus could ultimately trigger
mood disorders.'®

Nowadays, a widely accepted biomarker for acti-
vated microglia and astrocytes is the translocator pro-
tein (TSPO)." Under normal conditions, TSPO
expression is low, but the receptor is highly overex-
pressed upon activation by an inflammatory stimulus.
Therefore, TSPO overexpression has been used as a
glial activation biomarker,”® measured noninvasively
by means of positron emission tomography (PET)
using '""C-PK11195 as the tracer.>’ At the same
time, PET offers the possibility to image other
(patho)physiological processes that are seemingly
altered in MDD patients, such as brain glucose metab-
olism.?? Glucose metabolism can be measured with the
tracer '*F-FDG.

A growing body of preclinical evidence has impli-
cated microglia activation in the neuroinflammatory
response to psychosocial stress.> 2® Repeated social
defeat (RSD) constitutes a model of psychosocial
stress in rats with a high ethological validity.”” RSD
is able to induce adverse physiological, behavioural
and neuronal deficits, which resemble certain core
symptoms of depression.”?® However, the effects of
RSD on glial activation and brain metabolism have
not been assessed in vivo and the long-term effects of
RSD are largely unknown.

Therefore, the aim of this study was to longitudin-
ally investigate the short- and long-term effects of
psychosocial stress on the development of glial activa-
tion and brain metabolism in the RSD rat model of
stress-induced depressive behaviour, using non-invasive
PET imaging. To confirm the validity of the animal
model, behavioural changes and corticosterone levels
were assessed.

Materials and methods
Experimental animals

Male outbred Wistar Unilever rats (n=40, 8 weeks,
261 +15g; Harlan, Horst, The Netherlands) were ran-
domly divided in two groups: control (n=20) and
social defeat (SoD, n=20). Sample size was calculated
based on previous studies using ''C-PK 11195 PET for
glial activation detection in rats.*>* The rats were indi-
vidually housed during the experiment and kept in
humidity-controlled,  thermo-regulated (21 £2°C)
rooms under a 12:12-h light:dark cycle with lights on
at 7a.m. After experimental day 25, rats were housed in
pairs for the six-month follow-up in order to prevent
social isolation stress effects.’** Rats had ad libitum
access to food and water, and were weighed every day.
Animal experiments were performed in accordance
with the Dutch Experimental Animals Act (Wet op
Dierenproeven; WoD) of 1977 and its later amend-
ments. All procedures were approved by the
Institutional Animal Care and Use Committee of the
University of Groningen (Dier Experimenten Comissie
— DEC), protocol DEC 6828A and 6828B, and are
reported according to the ARRIVE guidelines.*”

Study design

The overall design of the study is depicted in detail in
Figure 1. Wistar rats (SoD group) were subjected to RSD
on day 0-4. Controls were handled similarly, but not
exposed to aggressive residents. In each group, 10 rats
were randomly selected for PET imaging and followed-
up longitudinally with ''C-PK11195 and "F-FDG on
days—1, 6, 11 and 25 (same rats scanned with both tra-
cers at all-time points). Behavioural assessments were
performed on days —2, 5 and 24 (short-term follow-
up). The previously scanned rats were re-evaluated after
three and six months (long-term follow-up) in order to
determine the persistence of behavioural alterations, glial
activation and differences in brain metabolism. During
the follow-up, the rats were weighed once a week.

The remaining 10 rats per group were handled
exactly the same, but were subjected to sham scans
(anesthetized for the same period). On day 25, the
rats that underwent sham scans were terminated and
the brains were collected for the quantification of pro-
inflammatory cytokines.

RSD

SoD rats were introduced into the cage of a dominant
(resident) male outbred Long Evans rat (502+36g;
Harlan, IN, USA). The male Long Evans rats were
housed in a separate experimental room in large cages
(80 x 50 x 40cm) with a Long Evans female rat, with
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Figure 1. Study design. (a) Short-term follow-up: SoD (n=20) and control rats (n =20) were subjected to repeated social defeat
from day 0—4. Open field (OF) and sucrose preference test (SPT) were carried out at day —2 and day 5. The elevated plus maze (EPM)
was conducted on day 5. The novel object recognition test (NOR) was performed on day 24. PET scans with ''C-PK11195 and '®F-
FDG or sham scans were performed on day —1I, 6, || and 25, with collection of serum samples for corticosterone (CORT) meas-
urements on day —| and 6. On day 25, 10 SoD and 10 control rats that underwent sham scans were terminated for brain collection
and pro-inflammatory cytokines quantification. (b) Long-term follow-up: SoD (n = 10) and control (n = 10) rats were followed during
six months after the cessation of RSD, with OF, SPT, EPM, NOR and PET scans being repeated after three and six months.

ligated oviducts, to stimulate territorial aggression.”’
The residents were trained and screened for aggressive
behaviour at least three times prior to the experiment.®
Only residents that attacked an intruder within 1 min
were used for the actual social defeat experiment.

The RSD experiment always took place between 16:00
and 18:00 p.m. Prior to RSD, females were removed from
the cage of the resident. The experimental rat (intruder)
was placed in the cage of the resident and they were
allowed to interact for a period of 10min or shorter if
the intruder assumed a supine (submissive) position for at
least 3s. After submission (or 10-min exposure), the
intruder was placed inside a wire mesh cage to avoid
further physical contact, but still allowing intense
visual, auditory and olfactory interactions for a total
exposure period of 60min. The social defeat protocol
was repeated on five consecutive days using different

residents. Control rats were placed in a new clean cage
without resident for 60 min on five consecutive days.

Body weight gain (g)

Body weight gain (g) was calculated for each rat as the
difference between the body weight at a given time
point minus the weight on experimental day 0 (first
day of RSD).

Behavioural tests

Open field (OF), elevated plus maze (EPM) and novel
object recognition (NOR) tests were recorded on video
for further analysis using Ethovision XT8.5 software
(Noldus Information Technology, Wageningen, The
Netherlands).
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Sucrose preference

The sucrose preference test (SPT) was used to assess
anhedonia, a sign of depressive behavior.® Prior to
the experiment, rats were habituated four times by
exposure to a 1% sucrose solution for 1h. At baseline
and after five days of RSD, a bottle with water and one
with 1% sucrose solution were randomly placed in the
cage of the rat. The preference for sucrose was calcu-
lated as the total intake of sucrose solution divided by
the total liquid intake and multiplied by 100%.%*

Open field

To investigate the effects of social defeat on explorative
and anxiety-related behaviour, the rats were placed
inside a square box (100 x 100 x 40cm) for 10 min on
day —2 and 5. The time spent in the centre of the arena
relative to the time spent at the borders (a proxy meas-
urement for anxiety), and the total distance moved
(locomotor and explorative activity) were documented.

Elevated plus-maze

A standard elevated plus-maze (EPM) with 52 cm arms
extending from a 9 x 9 cm central area, 62 cm above the
floor, was used to assess anxiety-like behaviour on day
5 and month 3.%° Each session of 5min was started by
placing the rat in the central area facing the closed arms
of the maze.® The percentage of time spent in the open
and closed arms, and in the centre was measured. The
EPM could not be applied in the six-month follow-up
since the size of the animals impeded their mobility in
the apparatus.

Novel object recognition

A NOR test was performed to evaluate visual
memory>’ and the long-lasting memory impairment
induced by RSD on day 24, month 3 and 6.%% Rats
were placed in a square box (50 x 50 x 40cm) with
two identical objects (plastic bottles or Lego cubes).®
They were allowed to explore the objects for 3 min. The
objects were removed and after 2h, one familiar and
one new object were presented to the rat for 3 min. The
preference index (PI) was calculated as the ratio
between time spent on exploring the new object and
the total time spent on object exploration.*

Corticosterone levels

For corticosterone quantification, rats were anesthe-
tized with isoflurane mixed with medical air and
0.5mL of whole blood was quickly collected from the
tail vein on day —1 and 6. Samples were always

collected at 10a.m. The whole blood was allowed to
cloth for 15min and centrifuged at 6000 r/min (3.5 g)
for 8 min at room temperature to obtain serum sam-
ples. Samples were stored at —20°C until further ana-
lysis by radioimmunoassay. Corticosterone (Sigma
Chemical Co., MO, USA.) was used as standard and
*H-corticosterone as tracer (Perkin & Elmer, MA,
USA). The sensitivity of the assay was 3nM. The
intra- and inter-assay variations were 6% and 9.6%,
respectively.

PET imaging

PET scans were performed using a small animal PET
scanner (Focus 220, Siemens Medical Solutions, USA).
Both ''C-PK 11195 and "8F-FDG PET scans were per-
formed on the same day for each investigated time
point. ""C-PK 11195 PET scans were always carried
out in the morning (between 10:00 and 11:00a.m.).
For the procedure, rats were anesthetized with isoflur-
ane mixed with medical air (5% for induction, 2%
for maintenance) and ''C-PK11195 was injected
via the penile vein (66+29 MBq, 1.4+2.3nmol).
Immediately after injection, rats were allowed to wake
up and recover in their home cage. '*F-FDG PET scans
were carried out in the afternoon (between 15:00
and 16:00 p.m.), respecting an interval of at least 10
half-lives (t 1/2) of '"'C isotope decay. Rats were
deprived from food for 4-6h, injected intraperitone-
ally?"*! with '"SF-FDG (31 +8 MBq), and returned to
their home cage afterwards. For both ''C-PK 11195 and
BE.FDG PET, rats were anesthetized 45min after
tracer injection and placed in prone position into the
camera with the head in the field of view. A 30-min
static scan was acquired, the body temperature was
maintained at 37°C with heating pads, heart rate and
blood oxygen saturation was monitored, and eye salve
was applied to prevent conjunctival dehydration.
A transmission scan was obtained using a °>’Co point
source for attenuation and scatter correction.

PET scans were iteratively reconstructed (OSEM2D,
4 iterations and 16 subsets) into a single frame after
being normalized and corrected for attenuation and
decay of radioactivity. Images with a 128 x 128 x 95
matrix, a pixel width of 0.632 mm, and a slice thickness
of 0.762mm were obtained. PET images were auto-
matically co-registered to a functional '"'C-PK11195
or "8F-FDG rat brain template,** which was spatially
aligned with a stereotaxic T2-weighted MRI template
in Paxinos space®® using VINCI 4.26 software (Max
Planck Institute for Metabolism Research, Germany).
Aligned images were resliced into cubic voxels (0.2 mm)
and converted into standardized uptake value (SUV)
images: SUV ={[tissue activity concentration (MBq/
g) x body weight (g)]/[injected dose (MBq)], assuming
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a tissue density of 1g/ml. "SF-FDG uptake was not
corrected for blood glucose levels.?'**

Tracer uptake was calculated in several predefined
volumes-of-interest (VOI). VOIs were selected based on
previous findings,>***>! taking the size of the brain
regions into consideration. Due to the limited resolution
of the small animal PET scanner (1.4 mm),>* small brain
regions were excluded to minimize partial volume
effects.® Therefore, the investigated regions were the
amygdala/piriform complex, brainstem, cerebellum,
cingulate cortex, entorhinal cortex, frontal association
cortex, hippocampus, hypothalamus, insular cortex,
medial prefrontal cortex, motor/somatosensory cortex,
orbitofrontal cortex and striatum.

Enzyme-linked immunoassay for pro-inflammatory
cytokines in the brain

On day 25, rats were terminated under deep anaesthesia
by transcardial perfusion with phosphate-buffered
saline pH 7.4. Brains were collected and rapidly
frozen and stored at —80°C. Frontal cortex, hippo-
campus, cerebellum and parietal/temporal/occipital
cortex were dissected and prepared as published.?”
Pro-inflammatory cytokines 1L-6, TNF-a (Biolegend,
San Diego, USA) and IL-1f (Thermo Scientific,
Rockford, USA) concentrations were determined by
ELISA according to the manufacturer’s instructions.
Total protein concentration in the brain areas was
quantified through Bradford Assay and the cytokine
levels corrected for the amount of protein after
measurement.>*

Statistical analysis

Statistical analyses were performed with the SPSS soft-
ware (IBM Corp. Released 2013. IBM SPSS Statistics
for Windows, Version 22.0. Armonk, NY). Continuous
data are expressed as mean =+ standard error of the
mean (SEM). Data expressed as percentage were
square root arcsine transformed prior to statistical ana-
lysis.>>*> Differences in variables from behavioural and
biochemical tests were tested through a two-sided
paired or independent samples ¢-test and the effect
size of the differences between groups was calculated
through Cohen’s d.°°® The generalized estimating
equations (GEE) model®® was used to account for
repeated measurements in the longitudinal design and
missing data in body weight and PET measurements.
For the statistical model of the body weight gain,
“group,” ““day of measurement” and the interaction
“group x day of measurement” were included as vari-
ables. The GEE model for ''C-PK 11195 and 'F-FDG
uptake (SUV) was applied individually for each brain
region, including the variables ““group,” ““day of scan”

and the interaction ““group x day of scan” in the model.
The data were further explored through pairwise com-
parison of “group x day of scan” in each brain region
for all scan time points combined. The AR(1) working
correlation matrix was selected according to the quasi-
likelihood under the independence model information
criterion value. Wald’s statistics and associated p-values
were considered statistically significant at p <0.05.
A Bonferroni-Holm correction was used to adjust sig-
nificance levels for multiple comparisons.*

Results

As a consequence of methodological issues, two control
rats did not survive a PET scan and a humane endpoint
was applied to one rat due to a lethal wound during the
RSD protocol.

RSD reduced bodyweight gain, normalizing
only after five weeks

The bodyweight of the rats was measured daily until
day 25 and weekly thereafter. No significant differences
in bodyweight between groups were found before the
start of RSD (control: 266 +-19 g, and SoD: 261 +18 g,
p=0.44). For the first 25 days, a significant main effect
was found for the factors group (p <0.001) and day of
measurement (p < 0.001), and for the interaction group-
x day of measurement (p <0.001), showing that RSD
significantly reduced bodyweight gain. More specific-
ally, the reduction in bodyweight gain was already
apparent on experimental day 2 (control: 8.8 +1.4¢g
vs. SoD: 4.2+ 1.3¢g, p=0.01), with no recovery to con-
trol levels until day 25 (control: 100.9 £3.9g vs. SoD:
80.8+2.8g, p<0.001). When comparing the body-
weight gain from 5 weeks after the RSD until week
28 (six months), there was a statistically significant
main effect on day of measurement (p <0.001), and in
the interaction day of measurement x group
(p <0.001), but no difference was found between
groups (Supplementary Figure 1).

RSD provoked acute anxiety-like and depressive-like
behaviour without cognition impairment

Behavioural tests were performed at baseline and at sev-
eral time-points after RSD. Social defeat caused a
reduced preference for sucrose (Figure 2(a)). At baseline,
rats had a 96 £ 1% preference for sucrose, whereas after
the RSD (day 5), the preference decreased to 74+ 4%
(p<0.001, d=1.1). At the third- and six-month
follow-up, the sucrose preference of the SoD group
was restored to the baseline value (Figure 2(b)). The
sucrose preference of the control group remained con-
stant over time.
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Figure 2. RSD-induced behavioral alterations in SoD rats in the
short-term follow-up. (a) Anhedonic-like behavior was demon-
strated in SoD rats through a within-group comparison of the
sucrose preference test (SPT) on baseline and day 5,

### < 0.001. (b) No differences in SPT of control and SoD rats
on the third- and six-month follow-up. Anxiety-like behavior was
demonstrated in SoD rats in the open field test (OF) through (c)
decreased distance moved on day 5 as compared to control rats,
*#kp < 0.001 and (d) decreased total time spent in the centre of
the arena, **p < 0.001. In the third- and six-month follow-up, (e)
no differences were found in distance moved or (f) time spent in
the centre of the OF arena between groups. The elevated plus
maze (EPM) confirmed the anxiety behavior of SoD rats on day 5,

(continued)

The anxiety-like behaviour and explorative activity
were investigated at baseline and immediately after the
RSD protocol (day 5), using the OF. No significant
differences between groups were found at baseline for
distance moved (control: 3.8+0.2m vs. SoD:
3.8+0.2m, p=0.83, d=0.01) and time spent in the
centre of the arena (control: 89 £7s vs. SoD: 80 £7s,
p=049, d=0.2). On day 5, rats exposed to RSD
demonstrated anxiety-like behaviour through decreased
exploration (control: 3.4+0.3m vs. SoD: 2.6 +0.2m,
p<0.001, d=0.7) and a diminished time spent in the
centre of the arena (control: 63413s vs. SoD:
42410s, p <0.001, d=0.5) when compared to controls
(Figure 2(c) and (d)). At three and six months after
RSD, the anxiety-like behaviour of SoD rats had nor-
malized, as the OF test did not reveal any significant
difference between groups (Figure 2(e) and (f)).

Anxiety-like behaviour was additionally assessed
with the EPM. On day 5, rats in the SoD group
spent a significantly lower percentage of time in the
open arms (control: 14+£2% vs. SD: 9+2%,
p<0.05, d=0.6) and a higher percentage of time in
the closed arms (control: 61 +3% vs. SD: 71 £4%,
p<0.05 d=0.7) as compared to controls, showing
that rats exposed to RSD were more anxious. No sig-
nificant difference between groups in time spent in the
centre was found (control: 25+ 2% vs. SoD: 20 £2%,
p=0.114, d=0.6; Figure 1(g)). No significant differ-
ence between groups was observed anymore at month
3 (Figure 2(h)).

To assess whether RSD had long-lasting effects on
memory, the NOR test was performed on day 24,
month 3 and 6. No significant differences were found
between groups (Figure 2(i) and (j)).

Serum corticosterone increased significantly
in response to social defeat

Serum concentrations of corticosterone were measured
before (day —1) and after RSD (day 6). No significant
differences were found between groups on day —1 (ctrl:
235+ 45nmol/L vs. SoD: 186 +43 nmol/L, p=0.44).
Socially defeated rats had significantly increased
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corticosterone levels after the RSD (day -—1:
186 £ 43 nmol/L vs. day 6: 560 + 114 nmol/L, p <0.01,
d=1.00), whereas corticosterone levels in control rats
were not affected (day —1: 235+ 45nmol/L vs. day 6:
207 £40 nmol/L, p=0.675, d=0.1).

Stress-induced glial activation was detected at
short-term follow-up after RSD but not at long-term

Between-group comparison of the ''C-PK11195 PET
data revealed no significant differences in tracer
uptake between groups at baseline or immediately
after RDS (day 6). However, an increased tracer
uptake (suggestive of the presence of activated glial
cells) was observed in defeated rats on experimental
day 11 and 25 (Table 1). The regions that presented
significantly increased uptake on day 11 were the orbi-
tofrontal cortex (+38%, p <0.001), entorhinal cortex
(+30%, p=0.001), insular cortex (+30%, p=0.002),
medial prefrontal cortex (+26%, p<0.001) and cere-
bellum (+23%, p=0.001), as compared to the control
group (Figure 3(a)). On day 25, only the frontal asso-
ciation cortex had increased uptake (+23%, p =0.008).
Furthermore, no between-group differences in ''C-
PK11195 uptake were found in any brain region at
months 3 and 6. Analysis of the effect of time on
tracer uptake in brain regions of control and defeated
rats revealed a global increase in the uptake of ''C-
PK11195 at month 3 and 6 when compared to baseline
levels (Table 2).

Brain glucose metabolism alterations in defeated rats
found at short-term follow-up normalized within
three months

Several brain regions demonstrated alterations in brain
glucose metabolism in SoD rats (Table 3). On day 6,
SoD rats had lower '*F-FDG uptake in the motor/som-
atosensory (—19%, p=0.006), cingulate (—17%,
»=0.03) and entorhinal cortex (—17%, p=0.04) than
controls. On day 25 (Figure 3(b)), a global decrease in
tracer uptake was found in the cingulate cortex (—22%,
p<0.001), motor/somatosensory cortex (—21%,
p <0.001), medial prefrontal cortex (—17%, p=0.001),
entorhinal cortex (—16%, p=0.006), hippocampus
(=16%, p=0.001), insular cortex (—15%, p<0.001),
orbitofrontal cortex (—15%, p<0.001), striatum
(—15%, p=0.002), cerebellum (—14%, p =0.009), hypo-
thalamus (—13%, p=0.013), brainstem (—12%,
p»=0.003) and amygdala/piriform complex (—11%,
p=0.024). In contrast, no differences in '*F-FDG
uptake between groups were observed at baseline,
three months or six months after RDS.

A within-group comparison in control rats showed a
significant increase in the 'SF-FDG uptake in all

investigated brain regions on day 6 and 25, as com-
pared to baseline levels (Table 4). In SoD rats,
increased '"*F-FDG uptake was only found on day 25
in the brainstem (4+13%, p=0.009), entorhinal cortex
(+13%, p=0.03) and hypothalamus (+10%,
p=0.016). Further analysis of the effect of time in the
long-term follow-up showed a significant increase in
E.FDG in all brain regions for both groups at
month 3 and 6, as compared to baseline.

Elevated IL-1 B levels were found in the frontal cortex
three weeks after RSD

A significant increase in the levels of IL-1f was found in
the frontal cortex of defeated rats (Supplementary
Figure 2(a)), when compared to control rats (controls:
74+ 6pg/mg vs. SoD: 122+ 14pg/mg, p=0.012,
d=1.55) at day 25. No differences between groups
were found in hippocampus, cerebellum and parietal/
temporal/occipital cortex. No significant differences in
IL-6 and TNF-a levels (p > 0.05) were found in any of
the brain regions (Supplementary Figure 2(b) and (c)).
However, the Cohen’s effect size values for IL-6 and
TNF-a levels in frontal cortex (d=0.63 and 0.55,
respectively) suggest a trend towards increased expres-
sion of these cytokines.

Discussion

For the first time, we have demonstrated in vivo that
psychosocial stress in rats transiently induces depres-
sive- and anxiety-like behaviour associated with glial
activation and altered brain glucose metabolism, as
measured by PET. Yet, these effects had normalized
during the three and six month’s follow-up.

The RSD protocol effectively exposed rats to recur-
rent stress as was confirmed by increased corticosterone
levels, decreased bodyweight gain, and depressive- and
anxiety-like behaviour. These findings are in line with
previous studies, confirming the validity of the
model.®*17% However, we now observed for the first
time that these effects of RSD on bodyweight and
behaviour did not persist at three and six months
after RSD. Furthermore, we observed that defeated
rats did not reveal long-lasting memory deficits meas-
urable in the NOR test. Previous studies focused on the
cognitive alterations shortly after the termination of the
stressful condition and reported that high levels of cor-
ticosterone impaired object recognition memory.** %
Although we found that corticosterone levels were ele-
vated two days after the five-day RSD protocol, we did
not measure corticosterone levels at the time of the
NOR test (day 24). It is plausible that corticosterone
levels had already normalized three weeks after RSD. A
recent study by McKim et al.®’” subjected mice to RSD
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Figure 3. (a) ''C-PK11195 PET scan of a representative control and defeated rat on experimental day ||, followed by a graphical
representation of ''C-PK11195 SUV on baseline and day 1. *p < 0.05, ¥p < 0.01 and **p < 0.001. (b) '®F-FDG PET scan of a
representative control and defeated rat on experimental day 25, followed by a graphical representation of '®F-FDG SUV on baseline
and day 25. *p < 0.05, ¥p < 0.0 and ***p < 0.001.

Put together, these results suggest that RSD causes only
early, transient deficits in short-term memory recall.®’

PET imaging with the TSPO tracer ''C-PK11195
demonstrated the presence of glial activation seven

for six consecutive days and tested the effects on
memory with the Barnes maze. They reported an
increased number of errors to find the escape hole of
the maze for defeated rats at day 2, but not at day 28.
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Table 4. Effect of time in '8F-FDG SUV values in control (n=8) and SoD (n=9) rats during the long-term follow-up (three and six months).

SoD

Control

6 months

3 months

Day -1

6 months

3 months

Day -1

p

Mean + SE

p

Mean & SE

Mean + SE

p

Mean & SE

p

Mean & SE

Mean 4 SE

Brain regions

1.78 +0.
2.06+0.

.28 +£0.08

41 +0.08
40+0.08

2.16+0.
2.82+0.

90+0.14

1.95+0.

26 +£0.07

1.28+0.05
2.38+0.

.05+£0.06

2.54+0.

<0.001

3

221 £0.
3.07+0.

0.003
<0.001
<0.001

0
6

2.37+0.

2.54+0.

0.004
<0.001

3.00+0.

6

.62+0.12

2.08+0.

.61 £0.09
2.00+0.15

2.89+0.

2.86 +0.

1.95+0.15

1.59 +£0.04

.27 +0.05

1.87 +0.04

40+0.07

1.93 +0.05
263£1.10

.37+0.08

96+0.14

1.76 0.05

.23+0.07

Amygdala/piriform complex

Brainstem

Cerebellum

Cingulate cortex

Entorhinal cortex

1.39+0.04

1.19 +£0.04 0.004

2.14+£0.07

0.98 +£0.06

Frontal association cortex

Hippocampus

1.59+0.11

1.75 +0.06
2.03 £0.04
261 £0.10
2.24+£0.06
2.20£0.06
2.55+£0.07

1.304+0.05

Hypothalamus

I.61 +0.08
201 £0.13

Insular cortex

Medial prefrontal cortex

.76 £0.11

Motor/somatosensory cortex

Orbitofrontal cortex

2.50+£0.08
2.8240.15

0.005
<0.001

1.83+0.10
1.90+0.11

Striatum

SoD: social defeat; SUV: standardized uptake value.

days after RSD in the cerebellum, entorhinal cortex,
insular cortex, medial prefrontal cortex and the orbito-
frontal cortex. The medial prefrontal cortex and orbi-
tofrontal cortex are associated with depressive
behaviour and reward,®®® whereas the cerebellum
and insular cortex have been related to anxiety,*7%"!
and the entorhinal cortex is linked with conscious
memory and spatial navigation.”":’? Three weeks after
RSD, glial activation was only evident in the frontal
association cortex, a brain area associated with depres-
sion.”® Interestingly, increased levels of IL-1p were tem-
porally and spatially consistent with this glial
activation. IL-1p seems to be the key mediator between
increased corticosterone levels as a consequence of psy-
chosocial ~ stress and neuroinflammatory  pro-
cesses.' "4 7 Overall, the observed glial activation
was in accordance with previous preclinical studies
that have evaluated brain cytokine expression in con-
junction with microglia activation after RSD.”’"-7®
However, in the third- and six-month follow-up of
our study, no differences in tracer uptake between
groups were detected anymore, indicating that RSD-
induced glial activation is transient.

We observed that '"F-FDG brain uptake was
decreased in the motor cortex of SoD rats on day 6,
which is in agreement with the decreased locomotor
activity observed in the OF test. The decreased 'F-
FDG uptake in the cingulate cortex combined with
the reduced sucrose preference suggests that RSD
reduced motivation and induced anhedonia.”® Overall,
the global decrease in '*F-FDG uptake in the brain of
SoD rats on day 25 is in line with the results reported in
unipolar depressive patients.?>50 %>

An interesting insight arises from the finding that
longitudinal within-group comparisons revealed an
increase in ''C-PK11195 uptake over a six-month
time period both in control and SoD rats. This is in
agreement with previous studies that demonstrated
age-related microglia activation in healthy rodents®
and humans.®® There was also a time-related increase
in "*F-FDG uptake, which differed between groups. In
contrast to controls, SoD rats had a stable uptake
during the short-term follow-up, which only reached
the levels of the control group during the long-term
follow-up. This suggests that RSD delays rather than
hampers brain metabolism maturation.®

Our most interesting finding was the seemingly
“transient’”” nature of the effects of RSD. However,
this does not mean that there are no long-term effects
of RDS at all, and further efforts should be encouraged
into elucidating whether the observed transient changes
are leading to other deleterious effects. To our know-
ledge, this is the first study that reports a six-month
follow-up after RSD along with non-invasive (PET)
imaging evaluation. Buwalda et al®® evaluated the
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long-term effects (three months) of adolescent exposure
to RSD and showed no differences between controls
and defeated animals in physiological (body tempera-
ture and corticosterone levels) and behavioural (EPM
and social interaction) parameters. These findings are in
agreement with our study that also did not reveal any
long-lasting negative behavioural effects of social defeat
(or at least, not measurable with the reported methods).
Still, the question remains whether exposure to psycho-
social stress conveys hitherto uninvestigated long-term
effects mediated by (neuro)inflammation, which may be
relevant in the pathogenesis and treatment of (treat-
ment-resistant) MDD.

Due to its longitudinal design, this study has some
limitations. First, we did not confirm PET findings by
immunohistochemical analysis of alterations in the
morphology of microglia and/or astrocytes. However,
indirect measurement of the pro-inflammatory glial
phenotype was confirmed by the quantification of pro-
inflammatory cytokines in the brain on day 25. Second,
corticosterone levels were only measured in serum
during two timepoints (before and immediately after
RSD) in order to confirm the biochemical effect of the
RSD protocol in the model. Therefore, we do not have
any information about the longitudinal changes in cor-
ticosterone levels during the whole period of the study.
Third, recent studies have shown that the TSPO tracer
""C-PK11195 is not the most sensitive candidate
for detecting mild glial activation. Tracers like ''C-
CB184,% ''C-PBR28% and '*F-DPA-714%® are second
generation TSPO tracers with superior characteristics in
comparison with "'C-PK 11195 in terms of affinity and/
or nonspecific binding. Therefore, for future preclinical
studies, a second generation TSPO tracer should be con-
sidered. The second generation, however, is sensitive to
polymorphism in the TSPO receptor in humans. Forth,
the SUV is a semi-quantitative measurement of tracer
uptake, with the advantage of enabling individual moni-
toring over time and simplicity of the analysis.*
However, the SUV is sensitive for changes such as
blood flow and tracer delivery. Moreover, it is positively
correlated to the subject’s body weight. To overcome
differences in body weight that might influence SUV
values, it has been clinically proposed to use the body
surface area or lean body mass instead of body weight in
the SUV equation.90 However, this was not validated in
the preclinical setting. Additionally, in order to perform
a fully quantitative determination of tracer binding
to its receptor (e.g. TSPO), performing the kinetic mod-
elling of '""C-PK11195 requires a terminal procedure
with arterial blood sampling for radioactivity measure-
ment of blood and plasma, since no reference region
devoid of TSPO is available within the brain. Due to
the longitudinal nature of the study, such methodology
was not feasible.

In conclusion, psychosocial stress in rats, in the form
of RSD, transiently induces depressive- and anxiety-
like behaviour, provokes immune activation in the cen-
tral nervous system, and significantly diminishes brain
glucose metabolism. PET imaging proved a useful tool
to noninvasively monitoring the effects of stress in a
longitudinal study design. This study supports the
hypothesis of a mechanistic role of (neuro)inflamma-
tion in the development of depressive behaviour.
Nevertheless, further research is warranted to elucidate
how the transient effects of psychosocial stress can lead
to persistent depressive behaviour, as observed in
(treatment-resistant) patients with MDD.
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