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Abstract 

Background:  Prostate cancer (PCa) is a malignancy cause of cancer deaths and frequently diagnosed in male. This 
study aimed to identify tumor suppressor genes, hub genes and their pathways by combined bioinformatics analysis.

Methods:  A combined analysis method was used for two types of microarray datasets (DNA methylation and gene 
expression profiles) from the Gene Expression Omnibus (GEO). Differentially methylated genes (DMGs) were identified 
by the R package minfi and differentially expressed genes (DEGs) were screened out via the R package limma. A total 
of 4451 DMGs and 1509 DEGs, identified with nine overlaps between DMGs, DEGs and tumor suppressor genes, were 
screened for candidate tumor suppressor genes. All these nine candidate tumor suppressor genes were validated by 
TCGA (The Cancer Genome Atlas) database and Oncomine database. And then, the gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed by DAVID (Database for 
Annotation, Visualization and Integrated Discovery) database. Protein–protein interaction (PPI) network was con-
structed by STRING and visualized in Cytoscape. At last, Kaplan–Meier analysis was performed to validate these genes.

Results:  The candidate tumor suppressor genes were IKZF1, PPM1A, FBP1, SMCHD1, ALPL, CASP5, PYHIN1, DAPK1 
and CASP8. By validation in TCGA database, PPM1A, DAPK1, FBP1, PYHIN1, ALPL and SMCHD1 were significant. The 
hub genes were FGFR1, FGF13 and CCND1. These hub genes were identified from the PPI network, and sub-networks 
revealed by these genes were involved in significant pathways.

Conclusion:  In summary, the study indicated that the combined analysis for identifying target genes with PCa by 
bioinformatics tools promote our understanding of the molecular mechanisms and underlying the development of 
PCa. And the hub genes might serve as molecular targets and diagnostic biomarkers for precise diagnosis and treat-
ment of PCa.

Keywords:  Bioinformatics, Prostate cancer, Differentially expressed gene, DNA methylation

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
DNA methylation, one of the most important epigenetic 
factors, has been studied extensively over several dec-
ades, and its influence in a variety of human diseases, 
most malignancy tumor, diagnostic biomarkers and ther-
apeutic targets, has been firmly measured and evaluated 
[1–6]. Recently epigenetic study has identified that DNA 

methylation is an important biological mechanism for 
tumor occur and development [5]. In CpG islands, aber-
rant methylation could influence the functions of tumor 
suppressor genes by altering their expression levels. CpG 
islands are located in or near promoter regions of the 
genome, aberrant methylation genes in CpG islands are 
often hypermethylated and may cause silencing of tumor 
suppressor genes [7]. Variations of DNA methylation 
exist at CpG islands, including gene hypermethylation-
low regulation and hypomethylation-high regulation.

Several studies that have done to investigate DNA 
methylation in gene body has positively correlated with 
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gene expression by increasing transcription activity 
[8]. This may be caused by blocking the intragenic pro-
moter activity or affecting the methylation status of 
repetitive sequence within the transcription unit [9]. 
So DNA methylation in gene body may be an interest-
ing additional therapy target for cancer diagnosing and 
treatment.

Prostate cancer (PCa) is the second most frequently 
diagnosed male-specific malignancy tumor in western 
countries. According to the World Health Organization’s 
International Agency for Research on Cancer, 1.1 million 
men were diagnosed with prostate cancer worldwide in 
2012, accounting for 15% of all cancer diagnosed in men 
[6]. PCa is considered as a heterogeneous disease [10]. 
Accumulating evidence has also demonstrated that mul-
tiple genes and cellular pathways participate together in 
the occurrence and development of PCa. Tumor led by 
epigenetic mutation through cells may grow and repro-
duce uncontrollably [11]. Hypomethylation of CpG can 
cause chromosome instability [12]. Illumina Infinium 
450  k microarray and DNA microarray have utilized to 
investigate DNA methylation and gene expression in 
molecular mechanism, biological process, molecular 
diagnosis, tumor molecular, biomarker and drug targets 
discovery [13–15].

Many gene expression profiling analysis and aberrant 
methylation analysis were introduced for differentially 
expressed genes (DEGs) and differentially methylated 
genes (DMGs) [16]. However, separated analysis of DEGs 
and DMGs are limited [17, 18]. So it is necessary to make 
jointly analyze for both gene expression profiling micro-
array and gene methylation profiling microarray in PCa. 
In this study, gene methylation profiling datasets and 
gene expression profiling datasets were analyzed by bio-
informatics tools for screening the DMGs and DEGs. 
Later, the overlapping of hypermethylation genes, down-
regulated genes and tumor suppressor genes were used 
to identify the candidate tumor suppressor genes. For 
validating these candidate tumor suppressor genes, 
TCGA database was used to identify the CpG islands and 
Oncomine database was used to validate the analyzing 
result. At last, the biological functions and pathways ana-
lyzing were discussed for the molecular mechanism.

Methods
Datasets
In this study, the gene methylation profiling datasets and 
gene expression profiling datasets were downloaded from 
Gene Expression Omnibus (https​://www.ncbi.nlm.nih.
gov/geo) database. All these gene methylation profiling 
datasets were based on GPL13534 platform (Illumina 
HumanMethylation450 BeadChip). For the gene expres-
sion profiling datasets were based on GPL570 platform 

(Affymetrix Human Genome U133 Plus 2.0 Array). For 
each dataset, only the samples associated with PCa were 
selected (Table 1).

Data preprocessing and analyzing
R package affy was used to explore oligonucleotide array 
analysis by the robust multiarray average (RMA) algo-
rithm [19]. While R package methylumiIlluminaHuman-
Methylation450kmanifest, limma, minfi, watermelon 
and IlluminaHumanMethylation450kanno.ilmn12.hg19 
were used to analyze the gene methylation profiling data 
and gene expression profiling data in order to identify 
DMGs and DEGs. And the R package limma in RStudio 
1.1.453 was installed to identify genes that were differen-
tially expressed between normal and tumor samples. The 
Benjamini and Hochberg (BH) procedure were obtained 
to control the False Discovery Rate (FDR) [20]. Then the 
log2-fold change (log2FC) was calculated. The adjusted 
P value < 0.05 and |log2FC| > 2.0 were considered as the 
cutoff value for DMGs and DEGs screening.

Functional and pathway enrichment analysis of DMGs 
and DEGs
In order to analyze the DMGs and DEGs for the func-
tional enrichment, GO enrichment and KEGG path-
way analysis were performed using DAVID (https​://
david​.ncifc​rf.gov). In this paper, DMGs and DEGs were 
uploaded to online analysis tool to systematically inves-
tigate biological meanings behind these genes [21]. Gene 
ontology analysis (GO) is a common useful method 
for annotating genes for identifying biological process 
(BP), cellular component (CC) and molecular function 
(MF) [22, 23]. At the same time, Kyoto Encyclopedia of 
Genomes (http://www.genom​e.jp) pathway enrichment 

Table 1  Datasets for gene methylation profiling and gene 
expression profiling associated with PCa

Dataset Platform Tumor tissue 
samples

Normal 
tissue 
samples

Gene methylation profiles

 GSE52955 GPL13534 25 5

 GSE73549 GPL13534 57 15

 GSE76938 GPL13534 73 63

 GSE84749 GPL13534 20 4

Gene expression profiles

 GSE26910 GPL570 6 6

 GSE30174 GPL570 70 10

 GSE46602 GPL570 36 14

 GSE55945 GPL570 13 8

 GSE69223 GPL570 15 15

https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://david.ncifcrf.gov
https://david.ncifcrf.gov
http://www.genome.jp
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analysis was conducted for candidate genes and prostate 
specific antigen (PSA) [24].

Protein–protein interaction (PPI) network construction 
and module analysis
STRING database (https​://strin​g-db.org) was used for 
protein–protein interaction (PPI) analysis in order to 
investigate the molecular mechanisms. STRING data-
base (version 10.5) covers 9,643,763 proteins from 2031 
organisms. While network analysis is a useful method 
for uncovering all kinds of protein–protein interactions 
networks. It can measure networks by nodes, edges, 
degrees and network structures, so it can help us to 
identify hub genes and key protein community. Then, 
PPI networks were constructed by Cytoscape software 
(http://www.cytos​cape.org). Cytoscape is an open source 
software platform for visualizing molecular interaction 
networks, biological pathways and integrating these net-
works with annotations, gene expression profiles and 
other state data. A plugin named cytoHubba was intro-
duced to screen hub genes of PPI network in Cytoscape. 
CytoHubba can provide 12 topological analysis methods 
including Betweenness, BottleNeck, Closeness, Clus-
tering Coefficient, Degree, DMNC, EcCentricity, EPC, 
MCC, MNC, Radiality and Stress based on shortest paths 
[25].

Results
Normalization of gene methylation profiling and gene 
expression profiling
In this study, the five gene expression profiling data-
set (Fig.  1) and four gene methylation profiling dataset 
(Fig.  2) were separately analyzed by R package affy and 
online GEO2R (https​://www.ncbi.nlm.nih.gov/geo/geo2r​
/) for screening DEGs and DMGs. All the gene expres-
sion profiling microarray chips were based on affym-
etrix GPL 570 platform. On affymetrix arrays, genes are 
represented by one or more probe sets, which are short 
oligonucleotides covering distinct sections of the gene 
synthesised in place through photolithography [26].

While on Illumina BeadChips arrays, 50 base pairs 
Infinium methylation probes synthesised by bisulfite con-
version of unmethylated cytosines, which are randomly 
dispersed over the array [27]. This random allocation 
means that each probes was represented a random num-
ber of times on each array.

Microarrays and bead chips technologies depend on 
a complicated set of reagents and hardware, along with 
highly trained personnel, to produce accurate measure-
ments. Both biological and non-biological factors will 
affect the results during the experiment when a series 
of complicated set of reagents and hardware varied [28]. 
So batch effects in different microarrays and bead chips 

should be focused after high-throughput experiments. 
Batch effects may occur at different laboratories, seasons 
and days. In order to eliminate batch effect problem, the 
surrogate variable analysis was conducted to reduce the 
batch effects depend on R package sva (Fig.  3). The sva 
package contains functions for removing batch effects 
and other unwanted variation in high-throughput experi-
ment. The value distribution of methylation profiling data 
and the normalization of gene methylation profiling data 
were shown in Fig. 4.

Identification of DEGs and DMGs in PCa
After data normalizing and removing batch effects, total 
of 1331 DEGs were identified, using P < 0.05 and log2-fold 
change |log2FC| > 2.0 criteria, of which, 938 up-regulated 
genes and 393 down-regulated genes (Fig. 5). For DMGs, 
total of 3261 DMGs were identified according P < 0.05, 
log2-fold change |log2FC| > 2.0 and fwer < 0.5 criteria, of 
which, 2699 hypermethylation genes and 562 hypometh-
ylation genes. The result has been shown as the volcano 
plot in Fig. 6.

Aberrantly methylated‑differentially expressed genes 
in PCa
Then, totally 62 hypermethylation-low genes were 
obtained by overlapping 2699 hypermethylation genes 
and 393 down-regulated genes in Fig.  7. And 41 hypo-
methylation-high genes were obtained by overlapping 
362 hypomethylation genes and 938 up-regulated genes 
in Fig. 7.

Integrating dataset for screening candidate tumor 
suppressor genes
Then, totally 9 candidate tumor suppressor genes were 
obtained by overlapping 2699 hypermethylation genes, 
393 down-regulated genes and 1217 human tumor sup-
pressor genes [30] in Fig. 8.

The heat map of nine candidate tumor suppressor 
genes (IKZF1, PPM1A, FBP1, SMCHD1, ALPL, CASP5, 
PYHIN1, DAPK1 and CASP8) was shown as Fig.  9. 
Although these tumor suppressor genes were hyper-
methylation-low genes, these genes were not significant 
in some samples for TCGA database.

Validation of candidate tumor suppressor genes in TCGA 
database
To further investigate the candidate tumor suppres-
sor genes, TCGA database was used to validate these 
results. The outcome was shown as Fig. 10. The candi-
date tumor suppressor genes were separately signifi-
cant in tumor group and normal group except IKZF1, 
CASP5 and CASP8, which significantly indicate that 
PPM1A, DAPK1 and FBP1 were hypermethylation in 

https://string-db.org
http://www.cytoscape.org
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
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tumor samples, at the same time, PYH1N1, ALPL and 
SMCHD1 were hypermethylation in normal samples. 
And then, in order to further confirm these candi-
date tumor suppressor genes the MethPrimer [31] and 

cpgplot software were used to predict the CpG islands 
in Figs. 11 and 12. At the same time, pan-cancer analysis 
also shows that PPM1A, DAPK1, FBP1, PYHIN1, ALPL 
and SMCHD1 have significant amplification in PCa.

Fig. 1  Data distribution of gene expression profiling data (a GSE26910; b GSE69223; c GSE55945; d GSE46602; e GSE30174)
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Integrated Oncomine database and survival analysis 
for candidate tumor suppressor genes
To confirm the candidate tumor suppressor genes expres-
sion between tumor and normal tissues in multiple can-
cers, the Oncomine database was performed to analyze 
the different expression. Using P < 0.01 and |log2FC| > 1.5 
criteria, a total of 455, 455, 444, 398, 341, 407, 342, 453 

and 398 unique analyses for IKZF1, PPM1A, FBP1, 
SMCHD1, ALPL, CASP5, PYHIN1, DAPK1 and CASP8 
were shown in Fig. 13. In 80 studies, FBP1 was ranked by 
the top 10% of gene rank indicating significant statistical 
differences, 6 of which revealed higher expression level 
in tumor than normal tissues. For higher expression of 
CASP5, there was only one dataset listed. Up-regulated 

Fig. 2  Data distribution of methylation profiling data (a GSE52955; b GSE73549; c GSE84749; d GSE76938)
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KAPK1 was founded in cancers based on sixty-one sig-
nificant analyses.

To further confirm the candidate tumor suppressor 
genes, Kaplan–Meier analysis was performed in Fig. 14. 
All the low expression values of tumor suppressor genes 
are all significantly associated with poor prognosis while 
a high expression of tumor suppressor genes are associ-
ated with good prognosis.

The Gleason Score (GS) system for grading PCa is a 
standard evaluation method that has different stratifica-
tion: GS ≤ 6, 3 + 4, 4 + 3, 8, 4 + 5, 5 + 4, 10, respectively to 
Gleason Grading Group 1, 2, 3, 4, and 5 [33]. Expression 
of candidate tumor suppressor genes according Gleason 
Score system is shown in Fig.  15. A low Gleason score 
(≤ 6) indicates good prognosis without risk of lymphatic 
metastasis whereas a high Gleason score (> 8) is associ-
ated with distal metastasis.

The expression of IKZF1, PPM1A, FBP1, SMCHD1, 
ALPL, CASP5, PYHIN1, DAPK1 and CASP8 candidate 
tumor suppressor genes was significantly deregulated in 
PCa by Gleason Score (Table  2). The significant genes 
observed were PYHIN1, IKZF1, CASP8, DAPK1 and 
SMCHD1 expression in tumor samples. Furthermore, 
FBP1 was deregulated at Gleason Score 6–9.

Gene ontology enrichment analysis and KEGG pathway 
analysis
In order to uncover these genes affected by altered DNA 
methylation status, all hypermethylation-low expression 
genes and hypomethylation-high expression genes were 
uploaded to DAVID database to identify overrepresented 
BP categories and KEGG pathways. The top 10 signifi-
cant GO enrichments of biological processes were illus-
trated in Table 3.

KEGG pathways analysis were also significantly 
enriched in PCa genes in Table 4. And the relationships 
between these pathways were shown in Fig. 16. Further-
more, GSEA (Gene Set Enrichment Analysis) was con-
ducted to verify KEGG enrichment analysis in Fig. 16. All 
of these pathways were significantly enriched in Pathway 
in cancer, Wnt signaling pathway, Pancreatic cancer and 
Melanoma (Fig.  17). And most of these genes were up-
regulated, which show a credible knowledge of PCa.

PPI network construction and module analysis
All hypermethylation-low expressed genes and hypo-
methylation-high expressed genes were uploaded to 
the STRING database for constructing PPI network. 
Moreover, all these nodes and edges were analyzed using 
Cytoscape plug-ins called cytoHubba. For hypermeth-
ylation-low expressed genes, PPI network was shown in 
Fig. 18a and top modules were displayed in Fig. 18b. Hub 
genes were CASP1, STAT4 and IRF7.

For hypomethylation-high expressed genes, PPI net-
work was shown in Fig.  19a and top modules were dis-
played in Fig.  19b. Hub genes were FGFR1, FGF13 and 
CCND1. Biological process of significant hub genes were 
demonstrated in Table 5.

Interlink between candidate genes with prostate specific 
antigen (PSA)
Prostate specific antigen (PAS) as a biomarker was dis-
covered for diagnosing being and malignant prostate 
disease in 1960 [34]. Later, cumulative research has 
uncovered the antigens in the prostate and semen [35–
43]. Prostate specific antigen is a protein expressed by 
multiple non-prostatic tissues in men and women. To 
obtain the relationship between candidate genes with 

Fig. 3  Reject batch effects for gene expression profiling data
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PSA, a combined bioinformatics tools were utilized. 
Firstly, the Universal Protein Resource (UniProt) was 
used to get the PAS amino acid sequence (Additional 
file 1). Secondly, the PAS amino acid sequence and can-
didate genes were uploaded to BlastKOALA (https​://
www.kegg.jp/blast​koala​/) for genome annotation. Finally, 
all the annotated genes were uploaded to KEGG PATH-
WAY Database (https​://www.kegg.jp/kegg/pathw​ay.html) 

for mapping pathway in Fig. 20. CASP8, CCND1, DAPK1 
and PSA are involved in pathways in cancer. CASP8 (Cas-
pase-8) paly essential role in apoptosis [44]. Apoptosis is 
regulated by CASP8 [45]. Some clinical study has con-
firmed that overexpression of CCND1 (Cyclin D1) is a 
common biomarker for treatment [46] and being ignored 
to cisplatin resistance in prostate cancer [47, 48]. Death 
associated protein kinase 1 (DAPK1) plays a critical role 

Fig. 4  Normalization of gene methylation profiling (a1 GSE76938 gene methylation profiling data value distribution; a2 normalization of GSE76938 
gene methylation profiling data; b1 GSE73549 gene methylation profiling data value distribution; b2 normalization of GSE73549 gene methylation 
profiling data; c1 GSE84749 gene methylation profiling data value distribution; c2 normalization of GSE84749 gene methylation profiling data; d1 
GSE52955 gene methylation profiling data value distribution; d2 normalization of GSE52955 gene methylation profiling data)

https://www.kegg.jp/blastkoala/
https://www.kegg.jp/blastkoala/
https://www.kegg.jp/kegg/pathway.html
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Fig. 5  Volcano plot of DEGs in gene expression datasets

Fig. 6  Volcano plot of DMGs in gene methylation datasets (a GSE52955; b GSE73549; c GSE76938; d GSE84749)
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in apoptosis. The methylation of DAPK1 has interlink 
with cancer.

Discussion
Since microarray and high-throughput sequencing can 
provide expression levels of thousands of genes in human 
genome simultaneously, it has been widely used to pre-
dict the potential therapeutic targets for PCa. In this 
study, we conducted a combined analysis of two types of 
microarray chips (DNA methylation and gene expression 
profile datasets) of PCa for uncovering the epigenetic and 
genetic mechanisms in PCa using bioinformatics analy-
sis tools. By overlapping DEGs, DMGs and TSGs (tumor 
suppressor genes), we identified some candidate tumor 
suppressor genes that can provide new ideas for diag-
nosis, therapy and biomarker studies in PCa. In order to 
better understand the molecular mechanism of candidate 
tumor suppressor genes and hub genes, GO, KEGG path-
way and PPI analysis were further performed.

The results demonstrated that these hypermethylation-
low expressed genes were enriched in cytokine-medi-
ated signaling pathway, benzene-containing compound 

Fig. 7  Venn diagram [29] for aberrantly methylated-differentially expressed genes by overlapping gene expression datasets and gene methylation 
datasets (a hypermethylation and down-regulated genes; b hypomethylation and up-regulated genes)

Fig. 8  Venn diagram [29] for candidate tumor suppressor genes by 
overlapping hypermethylation genes, down-regulated genes and 
tumor suppressor genes
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metabolic process, kynurenine metabolic process, posi-
tive regulation of cysteine-type endopeptidase activ-
ity involved in apoptotic process, indolalkylamine 
catabolic process, response to vitamin, cellular response 
to mechanical stimulus, tryptophan catabolic process, 
tryptophan metabolic process and positive regulation of 
transcription, DNA-templated.

This indicated that cytokines is associated with pros-
tate cancer. Some evidence shows the role of cytokines 
in prostate carcinogenesis. Cytokines are widely recog-
nized as crucial factors in cancer development. In the 
progress of cancer development, cytokines were released 
by other immune cells. And cytokines enhance thera-
peutic resistances through EMT activation in tumor 
microenvironment [49]. Kynurenine has relationship 
with immune escape of tumor cells [50]. Srekumar et al. 
found that Kynurenine was associated with prostate can-
cer (PCa) progression [51]. More and more experimental 
researches have indicated that vitamin D has the effects 
of anti-prostate tumor [52, 53]. Like vitamin D, vitamin C 
was also natural product that has the property of antioxi-
dant [54]. So vitamin C also plays an important role for 
antitumor due to characterize of antioxidant [55].

Furthermore, the enriched KEGG pathways of hyper-
methylation-low expressed genes have significant 
enrichment in NOD-like receptor signaling pathway, 
Pentose phosphate pathway, Viral carcinogenesis, Tryp-
tophan metabolism, Measles_Homo sapiens, Hepatitis B, 
Legionellosis, Cytosolic DNA-sensing pathway and Influ-
enza A and Inflammatory bowel disease (IBD). Cumu-
lative evidence revealed that the pentose phosphate 
pathway (PPP) is a metabolic pathway, parallel to glycoly-
sis that generates NADPH, nucleotides and nucleic acids 
[56]. Heritable factors and environmental factors may 
cause prostate cancer together. Recent research focus 
on the role of viral infections in prostate cancer [57]. 
Cytosolic DNA sensing is associated to the secretion of 
cytokines [58]. Cytosolic DNA sensing mediates robust 
antimicrobial. Cancer cells often acquire genetic or epi-
genetic alterations [59, 60]. Cytosolic DNA sensing is 
important for tumor control. In cytosolic DNA sensing, 
transcriptional and post-translational signaling modules 
enable the release of immunomodulatory cytokines [58].

After constructing PPI network for hypomethyla-
tion-high expression genes, a novel Cytoscape plugin 
called cytoHubba was introduced for ranking nodes in a 

Fig. 9  Nine candidate tumor suppressor genes
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Fig. 10  PCa-related candidate tumor suppressor genes expression in TCGA database
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network by the network. CytoHubba provides 12 topo-
logical analysis methods including Betweenness, Bottle-
Neck Closeness, Clustering Coefficient, Degree, DMNC, 
EcCentricity, EPC, MCC, MNC, Radiality and Stress 
[23]. The hub genes appeared to be FGFR1, FGF13 AND 
CCND1.

Type 1 fibroblast growth factor receptor binding 
(FGFR1) was an important factor in tumor initiation and 
progression in prostate cancer. The activation of FGFR1 
regulate the EMT in cancer progression [61]. Amplifica-
tion of FGFR1 has been well studied [62, 63]. And epi-
thelial mesenchymal-transition (EMT) may play a crucial 

Fig. 11  Pan-cancer analysis of PCa-related candidate tumor suppressor genes in normal samples
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role during in tumor metastasis and progression [64]. 
Recent studies have indicated that inducing EMT can 
affect tumor microenvironment [65].

Fibroblast growth factor 13 (FGF13) is overexpressed 
in several types of cancer [66, 67]. FGF13 inhibit ribo-
somal RNA synthesis, and may be an interplay with p53 

Fig. 12  Pan-cancer analysis of PCa-related candidate tumor suppressor genes in tumor samples
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involving a nucleolus-dependent mechanism [68]. It is 
possible that FGF13 may similarly signal to p53 by the 
same underlying molecular mechanism. FGF13 expres-
sion would activate p53, whereas the up-regulation of 
miR-504 would antagonize such an effect. It will be 
important to explore this issue directly in future stud-
ies [69]. Although the augmented FGF13 expression in 
tumors is unlikely to be a cancer driver, it is not merely a 
passenger, because it allows the cancer cells to cope with 
undesirable side effects of oncogene activation [68]. So 
FGF 13 may be reviewed as a cancer switch [70]. Cycline 
D1 (CCND1) plays a significant role in cell cycle. The 
over-expression of CCND1 in human tumors has been 
indicated as proto-oncogenes [71–77].

For tumor suppressor genes, IKAROS family zinc fin-
ger 1 (IKZF1) is a key regulator factor that enhanced 

immune infiltrate recruitment and tumor sensitiv-
ity in several tumors. Overexpression of IKZF1 can 
activate autoimmune susceptibility via infiltrating 
NKG2D+, CD8+ T cells [78].  Protein phosphatase, 
Mg2+/Mn2+ dependent 1A (PPM1A) is a phos-
phatase that has been the function of dephosphorylat-
ing TGF-β–activated P-Smad2/3, p38 and regulating 
several tumor-related signaling pathways [79, 80]. As a 
phosphatase PPM1A plays a significant role in cell cycle 
progression, cell proliferation, and apoptosis [81–83]. 
Previous study indicated that metastatic prostate can-
cer had lower PPM1A expression compared with pri-
mary tumor [84]. Overexpression of PPM1A has been 
reported to activate the expression of tumor suppressor 
gene TP53 [82] and increased PPM1A expression inhib-
ited the activity of NF-kB in promoting prostate cancer 

Analysis Type by Cancer Cancer Cases

Bladder Cancer 288 1 1 2 1 1
Brain and CNS Cancer 1,531 1 1 6 1 6 2 3

Breast Cancer 1,602 3 1 2 10 8 1 1 10 2 1 3
Cervical Cancer 200 1 3 3 1

Colorectal Cancer 881 1 7 2 14 2 17 4 2 5 7
Esophageal Cancer 132 1 5 1 2 3

Gastric Cancer 637 3 4 1 2 1
Head and Neck Cancer 628 2 1 1 1 1 3 1 1 1

Leukemia 392 1 2 1 4 2 6 2 3 1 1 1 1 2 3 3 2
Liver Cancer 212 1 1 2 4 3 1 2 1 1
Lung Cancer 1,537 1 1 1 12 1 8 1 12 2

Melanoma 630 1
Ovarian Cancer 1,168 1 2
Prostate Cancer 380 6 1 7

Sarcoma 107 2 10 5 1 1 1 1
16 27 16 49 32 48 38 31 5 23 6 7 5 16 31 30 19 4

1 5 10 10 5 1

%

Significant Unique Analyses
Total Unique Analyses 453 398444455 455

Cancer
vs.

Normal

PYHIN1

Cancer
vs.

Normal

DAPK1

Cancer
vs.

Normal

CASP8

398 341 407 342

Cancer
vs.

Normal

CASP5

Cancer
vs.

Normal

IKZF1

Cancer
vs.

Normal

PPM1A

Cancer
vs.

Normal

FBP1

Cancer
vs.

Normal

SMCHD1

Cancer
vs.

Normal
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Fig. 13  The landscape of the candidate tumor suppressor genes in human cancers (the more intense red indicates over-expression; the more 
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invasion and metastasis [85]. Fructose-bisphosphatase 
1 (FBP1) palys negative regulation roles in glycolysis 
and affects some process of survival, proliferation and 
metastasis in tumor cells [86, 87]. Some studies also 
showed that overexpressed FBP1 in prostate cancers 
can be as a tumor biomarker [88, 89]. Structural main-
tenance of chromosomes flexible hinge domain con-
taining 1 (SMCHD1) is a chromatin protein associated 
with epigenetic modifier [90]. Alkaline phosphatase 

(ALPL) is a non-specific hydrolase and plays crucial 
role in regulating phosphate metabolism involved in 
cell cycle, growth, apoptosis and signal transduction 
pathways [91]. The abnormal expression of ALP can 
be a biomarker for prostate cancer [92]. The expres-
sion of caspase-5 (CACP5) is very low in many normal 
tissues, while its expression plays an important role in 
cell apoptosis [93]. Pyrin and HIN domain family mem-
ber 1 (PYHIN1) has the function of tumor suppression 

Fig. 14  Kaplan-Meier survival analysis of candidate tumor suppressor genes associated with PCa [32]
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[94]. Death associated protein kinase 1 (DAPK1) is a 
kinase regulated neuronal apoptosis by calcium-calm-
odulin. So far, a large number of studies have demon-
strated that DAPK1 acts as a positive mediator interact 
with several proteins, such as DAPK1-p53 signaling, 
DAPK1-tau signaling, and DAPK1-DANGER signaling 
[95–98]. Caspase-8 (CASP8) acts as an environment 
sensor in the control of cell death. CASP8 induced a 
wide range of biological process, such as the control of 
apoptosis and necroptosis [99].

All the genes and pathways in this investigation are 
all based on bioinformatics methods. So no clinical 
samples were used to validate the data. But a shot lit-
erature review was introduced to confirm out findings.

Fig. 15  Expression of candidate tumor suppressor genes according Gleason Score system

Table 2  Expression of  candidate tumor suppressor genes 
in different PCa stage

Up: up-regulated; down: down-regulated; no sig: no significant

Candidate tumor 
suppressor gene

Gleason Score (GS)

GS = 6 GS = 7 GS = 8 GS = 9 GS = 10

IKZF1 No sig No sig No sig No sig Up

PPM1A No sig No sig No sig Down Down

FBP1 Up Up Up Up Down

SMCHD1 No sig Down No sig No sig Up

ALPL Down Down Down Down Down

CASP5 Down Down No sig Down No sig

PYHIN1 No sig No sig No sig No sig Up

DAPK1 Up Up Up Up Up

CASP8 No sig Up Up Up Up
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Table 3  GO terms analysis of aberrantly methylated-differentially expressed genes in PCa

Category Term P-value

Hypermethylation-low expression Cytokine-mediated signaling pathway 1.38E−04

Benzene-containing compound metabolic process
Kynurenine metabolic process

3.36E−04

Positive regulation of cysteine-type endopeptidase activity involved in apoptotic 
process

3.36E−04

Indolalkylamine catabolic process 3.78E−04

Response to vitamin 4.19E−04

Cellular response to mechanical stimulus 4.19E−04

Tryptophan catabolic process 4.72E−04

Tryptophan metabolic process 5.11E−04

Positive regulation of transcription, DNA-templated 5.11E−04

Hypomethylation-high expression Regulation of transforming growth factor beta2 production 1.43E−02

Regulation of receptor recycling 6.14E−04

Membrane raft assembly 1.43E−02

Telencephalon cell migration 1.43E−02

Regulation of endothelial cell chemotaxis to fibroblast growth factor 1.63E−02

Positive regulation of vesicle fusion 1.43E−02

Negative regulation of protein depolymerization 8.40E−04

Positive regulation of receptor binding 1.43E−02

Nodal signaling pathway 1.83E−02

Positive regulation of vascular endothelial cell proliferation 2.03E−02

Table 4  KEGG pathway analysis of aberrantly methylated-differentially expressed genes in PCa

Category Pathway P-value

Hypermethylation-low expression NOD-like receptor signaling pathway 7.37E−04

Pentose phosphate pathway 3.64E−03

Viral carcinogenesis 3.76E−03

Tryptophan metabolism 6.84E−03

Measles 8.68E−03

Hepatitis B 1.05E−02

Legionellosis 1.26E−02

Cytosolic DNA-sensing pathway 1.69E−02

Influenza A 1.71E−02

Inflammatory bowel disease (IBD) 1.74E−02

Hypomethylation-high expression Pathways in cancer 1.47E−04

MAPK signaling pathway 1.67E−04

Wnt signaling pathway 2.01E−04

Colorectal cancer 2.78E−04

Pancreatic cancer 3.35E−04

Melanoma 4.15E−04

AGE-RAGE signaling pathway in diabetic complications 1.16E−03

Insulin resistance 1.44E−03

FoxO signaling pathway 2.55E−03

Hepatitis B 3.32E−03
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Fig. 16  KEGG pathway analysis of aberrantly methylated-differentially expressed genes in PCa

Fig. 17  Pathway enrichment identified by GSEA of aberrantly methylated-differentially expressed genes in PCa
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Conclusions
In this study, a joint bioinformatics analysis method 
was used for indicating candidate tumor suppressor 
genes and pathways in PCa by combined gene meth-
ylation microarrays and gene expression microar-
ray, this may provide a set of useful targets for future 

investigation into the molecular mechanisms and 
biomarkers. Candidate tumor suppressor genes were 
IKZF1, PPM1A, FBP1, SMCHD1, ALPL, CASP5, 
PYHIN1, DAPK1 and CASP8. Hub genes were FGFR1, 
FGF13 and CCND1 that may contribute to the finding 
of molecular mechanisms underlying the initiation and 

Fig. 18  PPI network and hypermethylation-low expression genes (a PPI network; b top module; c hub genes)
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Fig. 19  PPI network and hypomethylation-high expression genes (a PPI network; b top module; c hub genes)

Table 5  GO terms analysis of hub genes in PCa

Category Term P-value

Hypermethylation-low expression Negative regulation of myeloid cell apoptotic process 1.05E−03

Positive regulation of tumor necrosis factor-mediated signaling pathway 1.20E−03

Regulation of macrophage apoptotic process 1.05E−03

Regulation of myd88-independent toll-like receptor signaling pathway 1.35E−03

Protein autoprocessing 1.50E−03

Establishment of viral latency 1.50E−03

Interleukin-23-mediated signaling pathway 1.50E−03

Cellular response to interferon-gamma 1.01E−04

Interleukin-21-mediated signaling pathway 1.35E−03

Regulation of myeloid leukocyte differentiation 1.65E−03

Hypomethylation-high expression Telencephalon cell migration 1.05E−03

Regulation of endothelial cell chemotaxis to fibroblast growth factor 1.20E−03

Positive regulation of vascular endothelial cell proliferation 1.50E−03

Response to UV-A 1.05E−03

Cerebral cortex cell migration 1.05E−03

Regulation of collateral sprouting 1.20E−03

Neuron migration 1.23E−05

Positive regulation of protein serine/threonine kinase activity 1.05E−04

Mitotic G1 DNA damage checkpoint 1.65E−03

Regulation of cardiac muscle cell action potential involved in regulation of contraction 1.35E−03
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development of PCa. Meanwhile, there were some lim-
itations should be declared in this work. The clinical 
gene methylation profiling and gene expression profil-
ing datasets were not analyzed in this study. Besides, 
the hub genes on gene expression were only validated 
in TCGA database.
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