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Abstract

Background: Metagenomic datasets provide an opportunity to study horizontal gene transfer (HGT) on the level of
a microbial community. However, current HGT detection methods cannot be applied to community-level datasets
or require reference genomes. Here, we present MetaCHIP, a pipeline for reference-independent HGT identification
at the community level.

Results: Assessment of MetaCHIP’s performance on simulated datasets revealed that it can predict HGTs with
various degrees of genetic divergence from metagenomic datasets. The results also indicated that the detection of
very recent gene transfers (i.e. those with low levels of genetic divergence) from metagenomics datasets is largely
affected by the read assembly step. Comparison of MetaCHIP with a previous analysis on soil bacteria showed a
high level of consistency for the prediction of recent HGTs and revealed a large number of additional non-recent
gene transfers, which can provide new biological and ecological insight. Assessment of MetaCHIP’s performance on
real metagenomic datasets confirmed the role of HGT in the spread of genes related to antibiotic resistance in the
human gut microbiome. Further testing also showed that functions related to energy production and conversion as
well as carbohydrate transport and metabolism are frequently transferred among free-living microorganisms.

Conclusion: MetaCHIP provides an opportunity to study HGTs among members of a microbial community and
therefore has several applications in the field of microbial ecology and evolution. MetaCHIP is implemented in
Python and freely available at https://github.com/songweizhi/MetaCHIP.
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Background
Genome reconstruction (binning) of uncultured micro-
organisms has recently become feasible due to the com-
prehensive sequencing of microbial community DNA
(metagenomic DNA) and novel computational ap-
proaches [1–3]. The reconstructed genome bins have
provided new insights into the biochemistry, physiology
and adaptation of previously uncharacterized microbial
groups [4–8]. Moreover, they offer the opportunity to

study horizontal gene transfer (HGT) within communi-
ties of uncultured microorganisms.
HGT, the transmission of genetic information between

organisms, is thought to be an important driver of mi-
crobial evolution and adaptation, including the develop-
ment of antibiotic resistance and virulence [9, 10].
Several bioinformatics tools have been developed using a
range of algorithms and features to identify HGTs. For
example, GIST [11] and IslandViewer [12] utilize the
compositional features of genome sequences to predict
HGT events, while DarkHorse [13] and HGTector [14]
use the sequence similarities (best matches) for HGT
prediction. Explicit phylogenetic approaches are
employed by Ranger-DTL [15] and AnGST [16], which
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predict HGTs through the reconciliation of gene trees
with corresponding species trees.
However, current HGT detection methods cannot be

applied to the entire communities or require reference
genomes. For example, HGTector [14] can only detect
HGTs from members in a defined distal group to de-
fined self-group members, which limits its application to
predict HGTs among all members within a microbial
community, while DarkHorse [13] requires suitable ref-
erence genomes to predict HGTs, which are often not
available for uncultured microorganisms.
We therefore developed here MetaCHIP (“Meta” for

“metagenomics”, “CHIP” for “Community-level HGT
Identification Pipeline”), a pipeline for the reference-in-
dependent and community-level identification of HGTs.
Our analysis of simulated and real data showed that
MetaCHIP can detect HGTs from communities with a
high degree of confidence and to give new biological and
ecological insights.

Methods
The workflow of MetaCHIP is presented in Fig. 1. Meta-
CHIP uses both best-match and phylogenetic ap-
proaches for HGT detection (see above). Its inputs are
the sequence files of a set of genomes or genome bins
derived from metagenomic data as well as their taxo-
nomic classifications. The recently developed GTDB-Tk
tool [17], which is based on the phylogenetically cali-
brated Genome Taxonomy Database (GTDB) [18], is
recommended for the taxonomic classification of input
genomes. Input genomes are initially grouped by Meta-
CHIP according to their taxonomic classifications at
user-specified rank (e.g. class, order, family or genus).

Best-match approach
Open reading frames (ORFs) are predicted from input
genomes with Prodigal v2.6.3 [19], and an all-against-all
BLASTN [20] search is performed among all predicted
ORFs. The BLASTN results are first filtered with
user-defined alignment length (e.g. 200 bp) and coverage
cut-offs (e.g. 75%). The filtered matches are then com-
pared between groups of genomes using the following
steps. Here, we suppose all input genomes are divided
into three groups (A, B and C), with individual genomes
referred to as Ax, By and Cz, respectively (Fig. 1). Genes
from each genome are represented as Ax_N, By_N and
Cz_N. Take gene A1_01 as an example, the number of
its BLASTN matches from groups A, B and C is m, n
and o, respectively, with their corresponding identities
being IAx, IBy and ICz. The average identities of the
matches from each group are IAA, IAB and IAC, respect-
ively (Fig. 1). The following analyses are then performed
for each gene (here as an example with A1_01):

1. If IAA is the maximum, which means all its best
matches are coming from the self-group, then gene
A1_01 is not a candidate for HGT.

2. If IAA = 0 (that is, only the self-match was found
from group A), then all BLASTN matches from
other groups will be ignored. This is because, if
the non-self-group subject with maximum iden-
tity was considered a HGT candidate, then it is
very likely to be a false positive due to the lack
of self-group matches.

3. If IAA ≠ 0 and IAA is not the maximum, then the
non-self-group with maximum average identity (e.g.
IAB or IAC) will be considered as a putative candi-
date group for HGT.

4. The BLASTN match with maximum identity in the
candidate group will be considered the putative
HGT candidate.

5. Identity distribution of all genes between the self-
group and the putative candidate group is sum-
marized. The identity cut-off corresponding to
pre-defined percentile (e.g. the highest 10%) is
calculated. Only putative HGT candidates which
have identities higher than this cut-off will be
further considered.

Analysis of regions flanking putative HGTs
Assembly algorithm based on DeBruijn graphs (e.g.
SOAP [21], Velvet [22], SPAdes [23], IDBA [24]) will
produce “bubbles” for sequence regions with sequencing
error, but high similarity [25]. The resolution of such
bubbles may produce two contigs with overlapping se-
quences at the end of the contigs. This duplication could
be falsely considered in the HGT analysis, and to avoid
this, putative HGT candidates located at contigs’ end
with high similarity (> 95%) are disregarded. In addition,
putative HGT candidates located on contigs, which had
95% of their full-length matching with a longer contig,
were disregarded, as these contigs are likely artificial du-
plicates of the assembly process.
To further corroborate the predicted HGT candidates,

their flanking sequences within user-defined length (e.g.
10 kbp) are extracted from the annotation files. A pair-
wise BLASTN is performed between each pair of flank-
ing regions. Plots for the genomic regions are generated
with GenomeDiagram [26] and provided for visual in-
spection (Fig. 2).

Phylogenetic approach
A phylogenetic approach is used to further corroborate
the results given by the best-match approach and to pro-
vide information on the direction of gene flow. For each
pair of genes, which were identified as putative HGT by
the best-match approach, a protein tree is generated
using the genes used for the HGT analysis in the
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best-match approach and all orthologs from the two
groups, from which the paired genes came from. Amino
acid sequences are aligned with MAFFT v7.310 [27] and
followed by the removal of columns represented by <
50% of proteins and/or with an amino acid consensus of
< 50%. A protein tree is then constructed using FastTree
v2.1.10 [28] with default parameters.
A “species” tree is then generated to compare to the

gene tree. As the 16S rRNA gene, which is the most
commonly used phylogenetic and taxonomic marker of
bacterial and archaeal organisms, is often missing in
genome bins [29–31], we build a phylogenetic tree for
all input genomes using the protein sequences of 43

universal single-copy genes (SCGs) used by CheckM
[32]. Predicted protein sequences for the input genomes
are searched for the PFAM v31.0 [33] and TIGRFAM
v14.0 [34] hmm profiles of these SCG proteins using
HMMER v3.1b2 [35]. Protein sequences for each hmm
profile are then individually aligned using HMMER and
concatenated into a multiple sequence alignment (MSA).
Columns represented by < 50% of genomes and/or with
an amino acid consensus < 25% are removed, and a phylo-
genetic tree is built using FastTree [28]. A subtree, which
includes only the genomes relevant to the particular genes
analysed is extracted with preserved branch length using
ETE v3.1.1 [36]. The reconciliation between each pair of

Fig. 1 Workflow of MetaCHIP
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protein tree and “species” subtree is performed using
Ranger-DTL v2.0 with dated mode. Briefly, Ranger-DTL
predicts HGTs by performing a duplication-transfer-loss
(DTL) reconciliation between a protein family phylogeny
and its corresponding organismal phylogeny [15].
To assess how reliable SCG protein trees are to recon-

struct organismal phylogenies from partial genome bins,
we selected 20 alpha- and beta-proteobacterial genomes
(see below) and divided each of them into 100 contigs
with equal length. Next, 20, 40, 60 and 80 contigs were
randomly selected to represent genome bins with 20, 40,
60 and 80% completeness, respectively. The similarities
between the SCG protein trees with these different levels
of completeness and the tree based on 16S rRNA gene
sequences were then assessed by Mantel tests [37].

Assessment of MetaCHIP on simulated datasets
MetaCHIP’s performance was first assessed on simulated
datasets at different taxonomic levels. To assess its per-
formance at a low taxonomic level, ten genomes from
species of the genus Sphingobium (donor group) and
Sphingomonas (recipient group) within the family Sphin-
gomonadaceae were selected (see Additional file 1: Table
S1), while for class level transfers, ten alphaproteobacter-
ial (donor group) and betaproteobacterial (recipient
group) genomes were chosen (see Additional file 1:
Table S2). Ten genes (with at least two orthologs in the
recipient group) from each of the ten donor genomes
were selected and randomly transferred into the ten re-
cipient genomes with different levels of genetic diver-
gence (0, 5, 10, 15, 20, 25 and 30%) using HgtSIM [38].
The six-frame stop codon sequence “TAGATGAGT

GATTAGTTAGTTA” was added to the two ends of
transferred genes to facilitate correct gene prediction.
This process was bootstrapped ten times, and donor and
mutated recipient genomes from each bootstrap were
used directly as inputs into MetaCHIP to assess its per-
formance at class and genus levels.
Sequencing reads were also simulated from the ten

alphaproteobacterial and ten mutated betaproteobacter-
ial genomes for each level of genetic divergence from
one of the ten bootstraps. Sequencing reads for each
level of genetic divergence were simulated three times
with different abundance profiles (Additional file 1:
Table S3) using GemSIM [39].
As the reconstruction of genes involved in HGT are

highly affected by sequencing depth or the assembler
used [38], 3, 6, 9 and 12 million reads, corresponding
to an average coverage of approximately 6, 11, 17 and
23×, were simulated for each level of genetic diver-
gence. The paired-end reads were quality filtered using
Trimmomatic v0.36 [40] with a quality cut-off of 20
and a sliding window of 6 bp. Reads from the 3
replicates were combined and then assembled with
IDBA_UD v1.1.1 [24] or metaSPAdes v3.9.0 [23], and
contigs were filtered with a length cut-off of 2500 bp. A
gene transfer was considered to be reconstructed dur-
ing the assembly process, if at least 1 of the gene’s 2
flanking regions was > 1 kbp and the flanking region
matched the recipient genome [38]. The existence of
gene transfers in the filtered contigs was analysed by
performing a pairwise BLASTN between the trans-
ferred genes and the contigs for each level of genetic
divergence. The BLASTN results were then filtered
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with an identity cut-off of > 98% and a coverage cut-off
of > 98% for the transferred genes.
Metagenome binning was performed with MetaBAT

v0.32.5 [1] and MyCC v2017 [2], and the results were re-
fined with Binning_refiner v1.2 [41]. Bin completeness
and contamination were assessed with CheckM v0.9.7
[32]. The correlations between the genome bins and the
reference genomes were obtained by running pairwise
BLASTN searches. The correlations between MetaCHIP-
predicted HGTs and the known simulated gene transfers
were determined by running pairwise BLASTN searches
with identity and coverage cut-off of > 98%.

Assessment of MetaCHIP on a dataset with previously
described HGTs
MetaCHIP’s performance was also assessed on 2094 full
bacterial genomes, which were previously analysed for
HGTs using blocks of nearly identical DNA (> 99% iden-
tity, over 500 bp) in distantly related genomes (16S
rRNA gene similarity less than 97%) [42]. The 2094 bac-
terial genomes were downloaded from the NCBI RefSeq
database, and their taxonomy was determined using
GTDB-Tk v0.1.6 [17]. HGT events were then analysed
with MetaCHIP at the genus level. BLASTN search with
a 100% identity and coverage cut-off were used to com-
pare MetaCHIP-predicted HGTs with previously identi-
fied, transferred DNA blocks. COG annotation of
predicted HGTs was performed by running RPS-BLAST
[20] against the COG database [43].

Assessment of MetaCHIP on real metagenomic dataset
Genome bins derived from metagenomic datasets for
microbiomes from human guts [1, 44] and seawater
samples taken in the North Sea [45] were used to assess
the performance of MetaCHIP on real metagenomic
datasets. For the human gut dataset, genome bins previ-
ously produced by MetaBAT [1] were used directly here
after removing the contigs shorter than 2000 bp. For the
North Sea dataset, all sequencing reads were quality fil-
tered with Trimmomatic as previously described [45]
and assembled using metaSPAdes v3.9.1. Binning was
performed as described above. CheckM v0.9.7 was sub-
sequently used to assess the quality of genome bins. The
SCG protein tree of these bins and COG annotation of
predicted HGTs were performed as described above, and
antibiotic resistance-related COGs were retrieved from
the Antibiotic Resistance Genes Database (ARDB; April
2018) [46].

Results and discussion
Performance on simulated datasets
MetaCHIP requires a SCG protein tree of all input ge-
nomes for the phylogenetic approach. We therefore first
assessed how reliable the reconstruction of a SCG-based

phylogeny is for incomplete genome bins. The results
showed a high degree of congruence between the SCG
protein trees and the tree based on 16S rRNA gene se-
quences for genome bins with completeness higher than
40% (Fig. 3). This value is thus suggested for the com-
pleteness cut-off for genome bins used as input for
MetaCHIP.
MetaCHIP’s performance was first assessed by intro-

ducing defined HGTs in genomes at genus and class
levels. MetaCHIP had a high recovery rate of artificially
introduced HGTs up to the levels of genetic divergence
of 10% at both taxonomic levels (Fig. 4). A steady de-
cline in recovery was observed with higher levels of gen-
etic divergence. Detection of between-class HGTs
became unsuccessful at 30% divergence, while at the
genus level, the detection threshold was reached at
around 20% divergence. This performance is consistent
with previous findings and algorithms that showed the
difficulties of detecting HGT between closely related
taxa (e.g. genera of the same family) [47, 48]. Neverthe-
less, no less than 40% of between-genera HGTs with
genetic divergence less than 15% can be detected by
MetaCHIP. The phylogenetic analysis predicted the cor-
rect directions of gene flow in more than 81% of cases
for transfers between classes at all divergence levels and
in more than 86% of cases between genera with genetic
divergence less than 15% (Fig. 4).
We next evaluated how different assemblers and se-

quencing depths influence the recovery of class-level
HGTs with different levels of genetic divergence. We
also introduced realistic sequencing errors into the read
dataset before assembly. When no mutation was intro-
duced to the transferred genes, more transferred genes
were recovered by metaSPAdes than with IDBA_UD.
For 5% genetic divergence, both assemblers performed
overall quite poorly in terms of the recovery rate of in-
troduced gene transfers, but IDBA_UD had generally a
better recovery rate than metaSPAdes. IDBA_UD
showed also better recovery for HGTs with divergence
levels between 10 and 30% (Fig. 5). MetaSPAdes was
therefore used for the assembly of metagenomic reads
with no genetic divergence, while IDBA_UD was se-
lected for datasets with the other levels of genetic diver-
gence. For gene transfers with no genetic divergence, the
recovery rate for metaSPAdes assemblies was the highest
with a sequencing depth of 11.33×, beyond which it de-
clined. For the 5% genetic divergence, the best recovery
from the IDBA_UD assemblies was at sequencing depths
of 11.3× or greater (Fig. 5). As a compromise for the
non-linear behaviour of recovery rates, a sequencing
depth of 17× (9 million reads) was selected for all subse-
quent simulations.
Based on these choices of coverage and assembler, we

next binned the genomes from the simulated datasets.
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The precision (defined as how pure a bin is) and recall
(defined as how complete a bin is) of the genome bins
for all divergence groups were calculated with evalua-
te.py from the MyCC package [2]. The results showed
that their overall precision and recall were not lower
than 99.73% and 89.49%, respectively (Table 1).
We next investigated the presence of introduced gene

transfers in these genome bins. For 0% genetic diver-
gence, 30% of introduced gene transfers were identified
in the genome bins and all of them were found in the re-
cipient genomes. For the levels of genetic divergence
greater than 5%, no less than 73.7% of transferred gene
copies were found in both the donor and recipient gen-
ome bins (Fig. 6).
By applying MetaCHIP to the genome bins, 26% of the

100 introduced gene transfers were recovered by the
best-match approach for the 0% genetic divergence and
nine of them were validated by the phylogenetic ap-
proach (Fig. 7), which accounts for 86.7% and 30%,

respectively, of the gene transfers that actually exist in
the genome bins. For a 5% genetic divergence, 93.8% of
introduced gene transfers that were found in the bins
were also identified by the best-match approach and
81.3% of them were validated by the phylogenetic ap-
proach. The best recovery rates were obtained when the
genetic divergence is 10%, where at least 74% of intro-
duced gene transfers were recovered by the best-match
approach and 69% of them were validated by the phylo-
genetic approach, which accounted for 91.4% and 85.2%
of all binned gene transfers, respectively. A steady de-
cline in the ability of MetaCHIP to detect HGT was also
observed with higher genetic divergence (Fig. 7).

Performance on dataset with previously described HGTs
We next benchmarked MetaCHIP’s performance against
a previous large-scale study that analysed HGT in 2235
bacterial genomes [42]. Only 2094 of the genome from
[42] were available for download from the NCBI RefSeq

Fig. 3 The similarity between the tree based on 16S rRNA gene sequences and the SCG protein trees with different level of genome
completeness. Similarities were assessed by Mantel tests
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database (Additional file 2), and they were subsequently
grouped by MetaCHIP into 664 genera. MetaCHIP iden-
tified 10,255 HGTs (Additional files 3 and 4), of which
2694 (26.3%) showed a genetic divergence less than 1%,
i.e. represent recent transfers (Fig. 8). We compared
MetaCHIP’s prediction with previously described HGTs
only for the soil isolates, as metadata for the other iso-
late types were missing or incomplete (see Supplemen-
tary Table S5 from [42]). Four hundred thirty-three of
the 2694 recent gene transfers fulfil the criteria that they
were between genomes with 16S rRNA gene similarity
less than 97% (a filter implemented in [42]). The previ-
ous analysis identified 368 HGTs with no more than 1%

genetic divergence involving soil isolates, and 248
(77.2%) of them overlap with MetaCHIP’s predictions,
which showed relatively high consistency between the
two approaches.
Besides the 433 recent HGTs, MetaCHIP also identi-

fied 2414 gene transfers with genetic divergence higher
than 1% involving the genome of soil isolates (Fig. 8).
Recent (i.e. genetic divergence ≤ 1%) and non-recent (i.e.
genetic divergence > 1%) HGTs predicted by MetaCHIP
and all genes for the 368 soil genomes were then anno-
tated using the COG system. COG categories were con-
sidered to be enriched in the HGT dataset if their
proportion was above the 75% percentile of the relative
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abundance across all input genomes. The results re-
vealed that COG categories enriched for recent HGTs
are different to those enriched in the non-recent
HGTs. For example, COG categories C (energy pro-
duction and conversion), E (amino acid transport and
metabolism), I (lipid transport and metabolism) and L
(replication, recombination and repair) were only
enriched in the non-recent HGTs, while categories K
(transcription), P (inorganic ion transport and metab-
olism) and U (intracellular trafficking, secretion and
vesicular transport) were enriched in recent HGTs
(Fig. 9). This observation was missed by the previous
analysis [42] and shows that MetaCHIP can provide
new biological and ecological insights into the HGT
of microbial communities.

Performance on real metagenomic datasets
Finally, we assessed MetaCHIP’s performance on two
real metagenomic datasets: one for free-living seawater
microorganisms in the North Sea [49] and the other for
the human gut microbiome [44]. For the metagenomic
dataset of seawater microorganisms, sequence assem-
bly with metaSPAdes generated 315.33 Mbp of con-
tiguous sequences ≥ 2500 bp (35,190 contigs) and 69
genome bins were obtained, of which 37 had no con-
tamination as detected with CheckM and complete-
nesses higher than 40%. For the 1634 genome bins
obtained from the human gut dataset described in

[44], 138 were estimated to be contamination-free
and more than 40% complete. The taxonomy of quali-
fied genome bins was determined with GTDB-Tk
(Additional file 5). The human gut and the seawater
bins were taxonomically grouped into 29 and 16 or-
ders, respectively (Additional file 1: Figure S1). The
best-match approach detected 560 gene transfers for
the human gut genome bins, and of which 113 were
also found by the phylogenetic approach. For the sea-
water dataset, 121 and 32 gene transfers were de-
tected by the two approaches, respectively. The
direction of predicted gene flows within the two com-
munities was shown in Fig. 10. Not surprisingly, the
number of HGT detected in any given group is pro-
portional to the number of genome bins it contained
(Additional file 1: Figure S1 and Fig. 10). One excep-
tion however is the order Bacteroidales from the hu-
man gut dataset, where only four HGTs were
detected in its 30 genome bins. High rates of HGT
within the order Bacteroidales have been previously
described [50], but our results indicate that this does
not apply to HGTs of this order with other taxo-
nomic groups. A genome bin of the Chitinophagales
from the North Sea dataset was also found to have
all its 10 HGTs with genomes from the order Flavo-
bacteriales (Fig. 10), which is consistent with previous
observation that HGT is more likely to occur between
those two closely related taxa [51].

Table 1 The quality of refined genome bins reconstructed from simulated metagenomic datasets at different level of genetic
divergence of introduced HGTs

Genetic divergence (%) 0 5 10 15 20 25 30

Precision (%) 99.73 99.96 99.95 99.97 99.93 99.97 100.00

Recall (%) 89.49 93.20 95.92 96.46 95.41 96.45 96.35
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We next performed a functional annotation of the
genes identified in the HGT analysis based on the COG
system as described above. The results for the human
gut dataset showed that genes subject to HGT were
enriched for the COG categories of defence mechanisms
(V); energy production and conversion (C); translation,
ribosomal structure and biogenesis (J); and nucleotide
transport and metabolism (F) (Fig. 11). The enrichment
of defence mechanisms (V) was mainly due to 15 HGTs
involving genes with functions related to ABC-type mul-
tidrug (COG1131) and antimicrobial peptide (COG1136)
transport systems. This observation is consistent with
previous observations and proposals that HGT is a dom-
inant factor for the spread of AR in the human gut
microbiota [52–54]. For example, a variety of genes for
ABC-type multidrug transport systems have been previ-
ously found to be often associated with transposable ele-
ments in the gut microbiomes, and this was postulated
to facilitate their horizontal transfer [55]. COG categor-
ies preferentially subject to HGT between the free-living

microorganisms in the North Sea include energy pro-
duction and conversion (C), carbohydrate transport and
metabolism (G) and translation, ribosomal structure and
biogenesis (J) (Fig. 11). This observation is similar to a
recent study on HGTs among all available complete ge-
nomes for free-living Archaea and Bacteria, where
transferred genes most frequently also belonged to COG
categories C and G [56].
More than 40% of identified HGTs for the human gut

and the seawater bins had a genetic divergence of 25 ±
2.5% (Table 2). The best-match and phylogenetic ap-
proaches only detected 19% and 4%, respectively, of in-
troduced gene transfers with this level of genetic
divergence in the simulated datasets (Fig. 7), and hence,
we predict that the actual numbers of HGTs that oc-
curred in the community are likely to be underestimated
here. Interestingly, only one transfer with genetic diver-
gence at less than 15% divergence was detected, for
which we generally found a high recovery rate in our
simulations (Fig. 7). This may indicate that HGT in
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Fig. 7 The percentage of recovered gene transfers by MetaCHIP after assembly of simulated reads and binning of genomes (simulation). For
comparison, the results from original genomes (no reads simulation) are also shown and are the same as in Fig. 4

Fig. 8 Genetic divergence of MetaCHIP identified HGTs from the 368 genomes of soil isolates

Song et al. Microbiome            (2019) 7:36 Page 9 of 14



these microbial communities does not involve a large
number of recent transfers or that the actual donors
were not recovered in the genome bins due to assembler
limitations [38] or the removal of low-quality genome
bins.

Conclusion
Our development and tests of MetaCHIP showed
that the tool can detect HGTs with various degree of
genetic divergence from microbial community data,
but that prediction efficiency is affected by several
factors. First, as transferred genes will undergo mu-
tations in their new genomic contexts, their detec-
tions will become difficult when the similarities
between the donor and the recipient genes fall below
certain levels (Fig. 3) [57]. Second, the detection of
recent gene transfers (i.e. those with very little vari-
ation between donor and recipient) is largely affected
by technical limitations of metagenomic analyses. As
current sequencing technologies and assemblers
often failed to assemble long regions with high se-
quence similarity [38, 58], recent HGTs will not be
captured effectively in the genomic context of the

donor and recipient (Fig. 5). This problem might be
addressed in the near future by long-read sequencing
technologies, such as PacBio’s sequencing platform [59],
when applied to metagenomic samples. Third, the suc-
cessful detection of HGT from metagenomic dataset re-
quires the reliable reconstruction of the organismal
genomes, in particular, through genome binning, as
mis-binned sequences (contamination) may introduce
false positives in the HGTanalysis, and reliable organismal
tree for phylogeny-based prediction of HGTs requires a
certain degree of genome completeness (e.g. 40%) (Fig. 3).
Improvement of genome binning accuracy can be
achieved either by incorporating more biological samples
[1] or by combining the binning results from multiple bin-
ning programmes [41], while the completeness of genome
bins can be improved with higher sequencing depth. Des-
pite these limitations, our analysis of simulated and real
data with MetaCHIP shows that HGTs can be detected
from microbial community data with a high degree of
confidence to give new biological and ecological insights.
However, the absolute numbers of HGTs that occur in the
community might be underestimated given the limitations
outlined above.

Fig. 9 Relative proportion of COG functional categories for the 2094 genomes as well as MetaCHIP predicted recent (with genetic divergence ≤ 1%)
and non-recent (with genetic divergence > 1%) HGTs. The boxes in the plot are bound by the 25% to 75% quartile proportions with the thick line
being the median value. Q1, Q3 and IQR refer to the 25%, 75% and interquartile range, respectively. The upper whisker refers to the largest
observation less than or equal to upper Q3 + 1.5 × IQR, while the lower whisker refers to the smallest observation greater than or equal
to Q1 − 1.5 × IQR. The letters on the x-axis indicate COG categories: C (energy production and conversion), D (cell cycle control, cell
division and chromosome partitioning), E (amino acid transport and metabolism), F (nucleotide transport and metabolism), G
(carbohydrate transport and metabolism), H (coenzyme transport and metabolism), I (lipid transport and metabolism), J (translation,
ribosomal structure and biogenesis), K (transcription), L (replication, recombination and repair), M (cell wall/membrane/envelope
biogenesis), N (cell motility), O (posttranslational modification, protein turnover and chaperones), P (inorganic ion transport and
metabolism), Q (secondary metabolites biosynthesis, transport and catabolism), R (general function prediction only), S (function unknown),
T (signal transduction mechanisms), U (intracellular trafficking, secretion and vesicular transport) and V (defence mechanisms)
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Fig. 10 Predicted gene flow within the human gut and North Sea microbial communities. Bands connect donors and recipients, with the width
of the band correlating to the number of HGTs and the colour corresponding to the donors

Fig. 11 Relative proportion of COG functional categories for the input genome bins and predicted HGTs from human gut bins. The boxes in the
plot are bound by the 25% to 75% quartile proportions with the thick line being the median value. Q1, Q3 and IQR refer to the 25%, 75% and
interquartile range, respectively. The upper whisker refers to the largest observation less than or equal to upper Q3 + 1.5 × IQR, while the lower
whisker refers to the smallest observation greater than or equal to Q1 − 1.5 × IQR. COG categories indicated by letters on the x-axis are the same
as in Fig. 9

Song et al. Microbiome            (2019) 7:36 Page 11 of 14



Additional files

Additional file 1: Supplementary information. (DOCX 448 kb)

Additional file 2: Metadata of downloaded 2094 genomes. (TXT 157 kb)

Additional file 3: MetaCHIP identified 10,255 HGTs from the 2094
genomes. (TXT 805 kb)

Additional file 4: Nucleic acid sequences MetaCHIP identified 10,255
HGTs. (FASTA 16796 kb)

Additional file 5: Taxonomic classification of the human gut and North
Sea genome bins. (XLSX 17 kb)

Abbreviations
AR: Antibiotic resistance; ARDB: Antibiotic Resistance Genes Database;
COG: Clusters of Orthologous Groups; GTDB: Genome Taxonomy Database;
HGT: Horizontal gene transfer; NCBI: National Center for Biotechnology
Information; SCG: Single-copy gene

Acknowledgements
Not applicable

Funding
This research is funded by the Australian Research Council. Weizhi Song and
Shan Zhang are funded by the China Scholarship Council.

Availability of data and materials
https://github.com/songweizhi/MetaCHIP

Authors’ contributions
WS, BW and TT developed the method. WS and BW designed and wrote the
software components. WS, SZ and KS performed the analysis. WS and TT
wrote the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Centre for Marine Bio-Innovation, University of New South Wales, Sydney,
NSW 2052, Australia. 2School of Biotechnology and Biomolecular Sciences,
University of New South Wales, Sydney, NSW 2052, Australia. 3School of
Biological, Earth and Environmental Sciences, University of New South Wales,
Sydney, NSW 2052, Australia. 4Department of Genomic and Applied
Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, 37077
Göttingen, Germany.

Received: 15 May 2018 Accepted: 19 February 2019

References
1. Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately

reconstructing single genomes from complex microbial communities. Peerj.
2015;3:e1165.

2. Lin H-H, Liao Y-C. Accurate binning of metagenomic contigs via automated
clustering sequences using information of genomic signatures and marker
genes. Sci Rep. 2016;6:24175.

3. Sangwan N, Xia F, Gilbert JA. Recovering complete and draft population
genomes from metagenome datasets. Microbiome. 2016;4:8.

4. Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW,
Nielsen PH. Genome sequences of rare, uncultured bacteria obtained
by differential coverage binning of multiple metagenomes. Nat
Biotechnol. 2013;31:533.

5. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF,
Dodsworth JA. Insights into the phylogeny and coding potential of
microbial dark matter. Nature. 2013;499:431–7.

6. Probst AJ, Ladd B, Jarett JK, Geller-McGrath DE, Sieber CM, Emerson JB,
Anantharaman K, Thomas BC, Malmstrom RR, Stieglmeier M. Differential
depth distribution of microbial function and putative symbionts through
sediment-hosted aquifers in the deep terrestrial subsurface. Nat Microbiol.
2018;3:328.

7. Moitinho-Silva L, Díez-Vives C, Batani G, Esteves AI, Jahn MT, Thomas T.
Integrated metabolism in sponge–microbe symbiosis revealed by genome-
centered metatranscriptomics. ISME J. 2017;11:1651.

8. Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA,
Montgomery K, Lines T, Beardall J, van Dorst J. Atmospheric trace gases
support primary production in Antarctic desert surface soil. Nature. 2017;
552:400.

9. Dagan T, Artzy-Randrup Y, Martin W. Modular networks and cumulative
impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad
Sci. 2008;105:10039–44.

10. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature
of bacterial innovation. Nature. 2000;405:299–304.

11. Hasan MS, Liu Q, Wang H, Fazekas J, Chen B, Che D. GIST: genomic island
suite of tools for predicting genomic islands in genomic sequences.
Bioinformation. 2012;8:203–5.

12. Langille MG, Brinkman FS. IslandViewer: an integrated interface for
computational identification and visualization of genomic islands.
Bioinformatics. 2009;25:664–5.

13. Podell S, Gaasterland T. DarkHorse: a method for genome-wide prediction
of horizontal gene transfer. Genome Biol. 2007;8:1–18.

14. Zhu Q, Kosoy M, Dittmar K. HGTector: an automated method facilitating
genome-wide discovery of putative horizontal gene transfers. BMC
Genomics. 2014;15:717.

15. Bansal MS, Alm EJ, Kellis M. Efficient algorithms for the reconciliation
problem with gene duplication, horizontal transfer and loss. Bioinformatics.
2012;28:i283–91.

16. David LA, Alm EJ. Rapid evolutionary innovation during an Archaean
genetic expansion. Nature. 2011;469:93–6.

17. Gtdb-Tk v0.1.6 [https://github.com/Ecogenomics/GtdbTk ]. (Accessed 12
Aug 2018).

18. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil
P-A, Hugenholtz P. A standardized bacterial taxonomy based on
genome phylogeny substantially revises the tree of life. Nat Biotechnol.
2018;36:996–1004.

19. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal:
prokaryotic gene recognition and translation initiation site identification.
BMC Bioinformatics. 2010;11:119.

20. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. J Mol Biol. 1990;215:403–10.

21. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y.
SOAPdenovo2: an empirically improved memory-efficient short-read de
novo assembler. Gigascience. 2012;1:18.

22. Zerbino D, Birney E. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res. 2008;18:821–9.

23. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new
versatile metagenomic assembler. Genome Res. 2017;27(5):824–34.

Table 2 Genetic divergence of HGT identified by MetaCHIP
from the human gut and North Sea datasets

Dataset Approach Genetic divergence (± 2.5%)

0 5 10 15 20 25 30

Human gut Best-match 0 0 0 1 79 406 74

Phylogenetic 0 0 0 0 18 78 17

North Sea Best-match 0 0 0 0 8 78 35

Phylogenetic 0 0 0 0 4 14 14

Song et al. Microbiome            (2019) 7:36 Page 12 of 14

https://doi.org/10.1186/s40168-019-0649-y
https://doi.org/10.1186/s40168-019-0649-y
https://doi.org/10.1186/s40168-019-0649-y
https://doi.org/10.1186/s40168-019-0649-y
https://doi.org/10.1186/s40168-019-0649-y
https://github.com/songweizhi/MetaCHIP
https://github.com/Ecogenomics/GtdbTk


24. Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for
single-cell and metagenomic sequencing data with highly uneven depth.
Bioinformatics. 2012;28:1420–8.

25. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly
and genotyping of variants using colored de Bruijn graphs. Nat Genet.
2012;44:226–32.

26. Pritchard L, White JA, Birch PR, Toth IK. GenomeDiagram: a python
package for the visualization of large-scale genomic data.
Bioinformatics. 2006;22:616–7.

27. Katoh K, Standley DM. MAFFT multiple sequence alignment software
version 7: improvements in performance and usability. Mol Biol Evol. 2013;
30:772–80.

28. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum
evolution trees with profiles instead of a distance matrix. Mol Biol Evol.
2009;26:1641–50.

29. Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, Banfield JF.
Unusual biology across a group comprising more than 15% of domain
Bacteria. Nature. 2015;523:208–11.

30. Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN,
Tyson GW. Recovery of nearly 8,000 metagenome-assembled genomes
substantially expands the tree of life. Nat Microbiol. 2017;2(11):1533–42.

31. Yuan C, Lei J, Cole JR, Sun Y. Reconstructing 16S rRNA genes in
metagenomic data. Solid-state Circuits Conference. 2015;51:1–3.

32. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM:
assessing the quality of microbial genomes recovered from isolates, single
cells, and metagenomes. Genome Res. 2015;25:1043–55.

33. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A,
Hetherington K, Holm L, Mistry J. Pfam: the protein families database.
Nucleic Acids Res. 2013;42:D222–30.

34. Haft DH, Selengut JD, White O. The TIGRFAMs database of protein families.
Nucleic Acids Res. 2003;31:371–3.

35. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:
e1002195.

36. Huerta-Cepas J, Dopazo J, Gabaldón T. ETE: a python environment for tree
exploration. BMC bioinformatics. 2010;11:24.

37. Mantel N. The detection of disease clustering and a generalized regression
approach. Cancer Res. 1967;27:209–20.

38. Song W, Steensen K, Thomas T. HgtSIM: a simulator for horizontal gene
transfer (HGT) in microbial communities. PeerJ. 2017;5:e4015.

39. McElroy KE, Luciani F, Thomas T. GemSIM: general, error-model based
simulator of next-generation sequencing data. BMC Genomics. 2012;13:1–9.

40. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics. 2014;30:2114–20.

41. Song W, Thomas T. Binning_refiner: improving genome bins through the
combination of different binning programs. Bioinformatics. 2017;33:1873–5.

42. Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. Ecology
drives a global network of gene exchange connecting the human
microbiome. Nature. 2011;480:241.

43. Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein
families. Science. 1997;278:631–7.

44. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons
N, Levenez F, Yamada T. A human gut microbial gene catalogue established
by metagenomic sequencing. nature. 2010;464:59.

45. Wemheuer B, Wemheuer F, Hollensteiner J, Meyer F-D, Voget S, Daniel
R. The green impact: bacterioplankton response toward a
phytoplankton spring bloom in the southern North Sea assessed by
comparative metagenomic and metatranscriptomic approaches. Front
Microbiol. 2015;6:805.

46. Liu B, Pop M. ARDB—antibiotic resistance genes database. Nucleic Acids
Res. 2008;37:D443–7.

47. Adato O, Ninyo N, Gophna U, Snir S. Detecting horizontal gene transfer
between closely related taxa. PLoS Comput Biol. 2015;11:e1004408.

48. Langille MG, Brinkman FS. Bioinformatic detection of horizontally transferred
DNA in bacterial genomes. F1000 Biol Rep. 2009;1:25.

49. Wemheuer B, Wemheuer F, Hollensteiner J, Meyer FD, Voget S, Daniel R.
The green impact: bacterioplankton response toward a phytoplankton
spring bloom in the southern North Sea assessed by comparative
metagenomic and metatranscriptomic approaches. Front Microbiol. 2015;
805:6 SRC - BaiduScholar.

50. Coyne MJ, Zitomersky NL, McGuire AM, Earl AM, Comstock LE. Evidence of
extensive DNA transfer between bacteroidales species within the human
gut. MBio. 2014;5:e01305–14.

51. Bolotin E, Hershberg R. Horizontally acquired genes are often shared
between closely related bacterial species. Front Microbiol. 2017;8:1536.

52. von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S, van
Alphen LB, Savelkoul PH, Wolffs PF. Dissemination of antimicrobial
resistance in microbial ecosystems through horizontal gene transfer. Front
Microbiol. 2016;7:173.

53. Duranti S, Lugli GA, Mancabelli L, Turroni F, Milani C, Mangifesta M, Ventura
M. Prevalence of antibiotic resistance genes among human gut-derived
bifidobacteria. Appl Environ Microbiol. 2017;83:e02894–16.

54. Reyes A, Semenkovich NP, Whiteson K, Rohwer F, Gordon JI. Going viral:
next-generation sequencing applied to phage populations in the human
gut. Nat Rev Microbiol. 2012;10:607.

55. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H,
Morita H, Sharma VK, Srivastava TP. Comparative metagenomics revealed
commonly enriched gene sets in human gut microbiomes. DNA Res. 2007;
14:169–81.

56. Caro-Quintero A, Konstantinidis KT. Inter-phylum HGT has shaped the
metabolism of many mesophilic and anaerobic bacteria. ISME J. 2015;9:958.

57. Boto L, London B. Horizontal gene transfer in evolution: facts and
challenges. Proc Biol Sci. 2010;277:819–27.

58. Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing:
computational challenges and solutions. Nat Rev Genet. 2012;13:36–46.

59. Rhoads A, Au KF. PacBio sequencing and its applications. Genomics
Proteomics Bioinformatics. 2015;13:278–89.

Song et al. Microbiome            (2019) 7:36 Page 13 of 14



Song et al. Microbiome            (2019) 7:36 Page 14 of 14


	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Best-match approach
	Analysis of regions flanking putative HGTs
	Phylogenetic approach
	Assessment of MetaCHIP on simulated datasets
	Assessment of MetaCHIP on a dataset with previously described HGTs
	Assessment of MetaCHIP on real metagenomic dataset

	Results and discussion
	Performance on simulated datasets
	Performance on dataset with previously described HGTs
	Performance on real metagenomic datasets

	Conclusion
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

