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Abstract

Two-dimensional spectroscopy is a powerful tool for extracting structural and dynamic 

information from a wide range of chemical systems. We provide a brief overview of the ways in 

which two-dimensional visible and infrared spectroscopies are being applied to elucidate 

fundamental details of important processes in biological and materials science. The topics covered 

include amyloid proteins, photosynthetic complexes, ion channels, photovoltaics, batteries, as well 

as a variety of promising new methods in two-dimensional spectroscopy.

Graphical Abstract

INTRODUCTION

When answering scientific questions, chemists look for answers based on a molecular 

understanding. We want to learn how different ligands impact the efficiency of a catalyst, 

how a hydrogen bond stabilizes protein structure, or how different ion packing in crystal 

lattices influences the properties of a material. In essence, we want to know about how 

changes at a molecular level impact a system in terms of its structure and dynamics, and thus 

ultimately its function.
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There are many tools to investigate these changes, but over the past 20 years, two-

dimensional (2D) spectroscopy has emerged as an optimal way to collect both structural and 

dynamic information. Briefly, 2D spectroscopy measures the nonlinear third order response 

function and can be considered as a frequency-resolved pump−probe experiment. Figure 1 

depicts a pulse sequence used to obtain a two-dimensional spectrum. The time delay 

(population time, t2) between the pump and probe pulses can be changed to monitor the 

dynamics of the system. 2D spectra can be obtained in the frequency or time domain. 

Differences in 2D spectroscopies include the wavelength of light used, phase-matching 

geometry, and phase control.1−3

No matter the details of the experimental setup, 2D spectroscopy’s main advantages are its 

structural sensitivity and intrinsic time resolution. 2D spectroscopy provides structural 

sensitivity due to the coupling between characteristic modes and cross-peaks.4,5 The 

nonlinear scaling of the intensity with transition dipole strength provides better resolution of 

neighboring peaks than conventional linear methods.6,7 The dynamics of structures and the 

chemical environment can be obtained by analyzing the 2D line shapes of diagonal peaks 

and cross-peak dynamics.1−5 2D spectroscopy can also be used to probe nonequilibrium 

processes (transient 2D spectroscopy) and structures by triggering a chemical change.4 Most 

importantly, 2D spectroscopy has the time resolution to resolve structures on a variety of 

disparate time scales.

Beyond the chemical information that can be obtained from 2D spectra, the technique can be 

applied to a variety of systems. From transmembrane proteins to photovoltaic materials, both 

2D infrared spectroscopy (2D IR) and 2D electronic spectroscopy (2D ES) have been used. 

This Mini-Review Article provides a brief overview of some biological and materials 

systems that 2D spectroscopy has investigated in recent years to answer fundamental 

questions about the structure and dynamics of these systems.

STRUCTURAL INFORMATION AND AGGREGATION KINETICS OF AMYLOID 

FIBRILS

More than 20 human diseases, including Alzheimer’s, Parkinson’s, and type II diabetes, are 

associated with the misfolding of proteins into β-sheet-rich amyloid fibrils. The formation 

mechanism and final structure of the amyloid fibrils are of importance for understanding 

these diseases and how to prevent them. 2D IR is especially equipped to monitor the 

spectroscopic changes of amyloid proteins during the aggregation process due to its intrinsic 

fast time resolution and nonlinear scaling of intensity with transition dipole strength, 

allowing for structural and mechanistic information to be obtained.

Most amyloid fibrils have multiple proposed structures determined from solid state NMR, 

X-ray crystallography, or electron crystallography. To gain residue-specific information, 

isotope labeling has been used as a probe of structure with linear IR techniques as well as 

2D IR. Isotope labeling can shift the frequency of an individual residue, providing a site-

specific probe of secondary structure.8 While isotope labeling is used in linear IR, it is most 

advantageous in 2D IR studies of excitonically delocalized systems due to the nonlinear 

scaling of the intensity with transition dipole strength. For 2D IR, the intensity is 
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proportional to μ4 as compared to linear IR intensities that are proportional to μ2. This 

allows for easier detection of the site-specific probe. Simulations of 2D IR spectra have also 

been used to determine the spectroscopic features of parallel and antiparallel β-sheets to aid 

in peak assignment of experimental spectra.9,10

2D IR has helped to inform the final fibril structure of amyloid proteins by using isotope 

labeling to elucidate residue-specific information.8 Such a technique was used by Wang et 

al.11 to confirm a fibril structure of human islet amyloid polypeptide (hIAPP),12 a peptide 

that is found in plaques on the islet cells of type II diabetes patients.13,14 Line width analysis 

of the 2D IR spectrum of hIAPP provided evidence of structural heterogeneity within the 

fibrils.15 Effects of post-translational modifications on hIAPP have also been studied by 2D 

IR. Deamidation of asparagine and glutamine was shown to disrupt both the N-terminal and 

C-terminal β-sheets of the final hIAPP fibril.16 2D IR has not only been used to examine the 

final fibril state of hIAPP but has also provided insight on the aggregation mechanism by 

investigating the kinetics. In the past, ThT and linear IR have been used to monitor the 

kinetics of amyloid fibrils. Studying kinetics with 2D IR was made possible with pulse 

shaping and has been shown to be equivalent to ThT kinetics and better than linear IR.17 By 

isotope labeling specific residues and monitoring the amide I transition of hIAPP over the 

course of aggregation, a mechanism was determined that involves a transient β-sheet 

forming during the lag phase of hIAPP aggregation.18−20 Figure 2 is an example of 2D IR 

spectra taken at different times in the hIAPP aggregation process. As the peptides change 

from a monomeric to fibril form, the diagonal peaks in the 2D IR spectra change from a 

characteristic random-coil peak (1645 cm−1) to amyloid β-sheet (1620 cm−1). The isotope 

labeled frequency is red-shifted from the amyloid β-sheet, providing site-specific 

information.

Besides hIAPP, 2D IR has been used to provide structural information on other amyloid 

proteins associated with neurological diseases. A combination of 2D IR and isotope labeling 

provided evidence that the fibril structure of amyloid-β1−40 (Aβ1−40) contains parallel in-

register sheets, as predicted by Petkova et al.21,22 The same techniques were used to 

determine that, within the Aβ1−40 fibrils, channels of water can form between the two 

parallel sheets.23 Simulations of 2D IR spectra have been used to show that chirality-

sensitive pulse configurations can be used to detect differences in Aβ1−42 monomers.24 

These calculations determined that chirality-induced 2D IR has the resolution to discern a 

small difference in structure that cannot be obtained from other techniques, such as NMR.

α-Synuclein (αS) aggregation is hypothesized to lead to neuronal cell death associated with 

Parkinson’s disease. A combination of 2D IR and AFM has provided evidence that αS forms 

antiparallel β-sheets in its fibril form, and that this final fibril structure is dependent on the 

ionic strength of the environment.25 αS is known to have an acetylated N-terminus in its 

physiological state that is proposed to influence the function and aggregation of the peptide 

into amyloid fibrils. Recently, it has been shown that the acetylated N-terminus has little 

effect on the binding of αS to membranes but that it does affect the aggregation. 2D IR was 

used to show that N-terminal acetylation αS causes changes to the secondary structure of the 

final fibril as compared to wild-type αS.26 Amyloid fibrils of a model polyglutamine 

(polyQ) sequence (associated with Huntington’s disease) have also been studied by 2D IR, 
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suggesting a structure in which each monomer within the fibril forms an antiparallel hairpin 

in which two strands contribute to a single β-sheet, creating an overall β-turn structure.27 2D 

IR has also been used to identify amyloid β-sheet structure in cataracts of porcine lens.28

QUANTUM COHERENCE OF ENERGY TRANSFER IN PHOTOSYNTHETIC 

SYSTEMS

2D spectroscopy has provided insight into electron transfer processes in photosynthetic 

systems by obtaining direct evidence for quantum coherence. Usually, the energy transfer 

mechanism associated with photosynthetic complexes is described in a semiclassical regime, 

where excited state populations “hop” along discrete energy levels.29,30 However, these 

dynamics have also been theorized to involve oscillatory populations of donors and 

acceptors.31 Quantum coherence is defined as a superposition of states that introduces 

correlations between the wave function amplitudes at different sites, which is important in 

photosynthetic complexes. The coherence accounts for the quantum-mechanical influences 

between states that affect how the dynamics of the energy transfer process evolves with time.

2D ES can probe this coherence by looking at the cross-peaks of two coupled states as a 

function of the population time. If there is coherence between two coupled states, the cross-

peak will oscillate as a function of population time. The amplitude and shapes of these 

cross-peaks will contain beating signals at a frequency corresponding to the difference in 

energy of the two states.32 When applied to photosynthetic systems, this coherence is 

evidence of delocalization of the excitation between antenna and receptor complexes due to 

the strong electronic coupling in these systems.33−35 Delocalizing the excitation allows for 

effective energy transfer to span multiple molecules.33−35 Quantum coherence has been 

observed using 2D ES in different photosynthetic systems including the Fenna−Matthew

−Olson bacteriochlorophyll a protein,36,37 bacteriopheophytin and its accessory 

bacteriochlorophyll in the purple bacteria reaction center,38 bacteriophytochromes RpBphP2 

and PaBphP,39 and the photosynthetic centers associated with oxygen-evolving complex 

photosystem II.40 However, the importance of long-lived coherence in photo-synthetic 

systems is still disputed.41

More recently, the focus has turned to mapping the energy transfer in photosystems to better 

understand the influence of quantum coherence. By using 2D ES, the excitation-energy flow 

of the entire photosynthetic system of green sulfur bacteria was mapped.42 Simulations of 

how the laser bandwidth convolutes these coherence energy mappings have also been made 

to better identify quantum coherence.43 Further modeling and simulation has been done to 

explain observed long-lived coherence44 and how quantum coherence influences the 

quantum yield of light harvesting complexes.45 Besides photosynthetic systems, 2D ES has 

also been used to observe quantum coherence in single walled carbon nanotubes46 and other 

photovoltaic materials.47 This work has inspired the design of photovoltaics and other solar 

light harvesting devices to capitalize on the effective energy transfer that photosynthetic 

systems perform due to quantum coherence.29,48−50 Quantum coherence is not only 

prevalent in electronic systems, but it can be observed in vibrational modes with 2D IR as 

well.5 At a more fundamental level, the challenge for 2D spectroscopists and theorists in this 
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field is to relate the observed quantum coherence to function of the photosynthetic system 

itself. Overall, 2D ES has opened the door for a deeper understanding of energy transfer in 

nature to be applied to synthetic systems for more effective and efficient solar light 

harvesting.

TRANSPORT MECHANISMS IN ION CHANNELS

Ion channels are multimeric proteins responsible for initiating action potentials in neurons, 

muscle fibers, and other excitable cells through selective permeation of ions across the cell 

membrane.51−54 The mechanism of ion permeation and functional properties of ion channels 

have been thoroughly investigated with electrophysiological55,56 and spectro-scopic57−59 

techniques as well as molecular dynamics (MD) simulations.60−62 One of the most 

extensively studied are potassium (K+) channels, which are the most diversely distributed, 

multifunctional ion channels found in nearly all living organisms. The KcsA potassium K+ 

channel from Streptomyces lividans has often been used as a model system due to its small 

size and the fact that the sequence of its selectivity filter (75TVGYG79) is highly conserved 

among species.63 The structure of KcsA and other channels has been resolved with X-ray 

crystallography,64−67 but the mechanism of ion conduction through the hydrophobic 

membrane has long been a matter of contention.60,68−73

Two distinct mechanisms of ion conduction, commonly referred to as “knock-on” and “hard-

knock” models, have been proposed. The structure of the KcsA ion channel and the two 

models are presented in Figure 3. In the “hard-knock” model, the conduction occurs solely 

due to strong repulsive interactions between K+ ions that are found adjacent to one another 

in the selectivity filter.69 In the “knock-on” model, the filter is occupied by two ions 

alternating with water molecules in a single file. As the third K+ ion approaches the filter, 

the file shifts and one K+ ion and one water molecule translocates across the membrane.

The critical evidence for the permeation mechanism had not been possible to obtain until 

recent advances in 2D optical spectroscopy. Kratochvil et al. used 2D IR spectroscopy on an 

isotope labeled semisynthetic KcsA channel to probe ion configurations, site-specific 

structure, and dynamics of the selectivity filter.74 The isotope labels were introduced into 

three sites (Val,76 Gly,77 and Gly79) to increase the sensitivity of 2D spectra to different ion 

configurations.74,75 The experimental 2D spectra and the spectra obtained from MD 

simulations are presented in parts A and B of Figure 3, respectively. The results show that 

the “knock-on” configurations are unquestionably more prevalent. Moreover, 2D line shape 

analysis indicates the presence of water molecules inside the filter, which is not consistent 

with the “hard-knock” model. Interestingly, 2D IR spectra showed the presence of a 

previously unresolved flipped state in which carbonyl groups on one of the monomeric units 

point outside of the filter. Such a flipped state had only been observed in MD simulations, 

and its biological function is not fully understood.

The same isotope labeling approach was used to study the structure of constricted states of 

KcsA with 2D IR spectroscopy.76 At low K+ concentration and at low pH, the selectivity 

filter collapses and no longer conducts ions. Moreover, at low pH, the helix bundle that 

comprises the intracellular gate undergoes a transition into an open state. It was found that, 
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despite the nearly identical structure of the selectivity filter, the ion occupancy differs 

between closed and open states, indicating a very complex conformational landscape of the 

KcsA channel.

2D IR spectroscopy of 13C18O isotope labels was also applied to studying pH-dependent 

solvation dynamics of the M2 proton channel from influenza A virus.77,78 At pH 6.2, when 

the M2 channel is in the open state, the isotopically labeled Gly34 senses bulk-like water 

molecules around its carbonyl group, as evidenced by fast spectral diffusion dynamics. In 

the closed state, at pH 8, water molecules become immobilized and are no longer able to 

form and break hydrogen bonds on a picosecond time scale. The study demonstrates the 

ability of 2D IR to probe water dynamics in complex protein environments.

Multidimensional spectroscopic techniques, including 2D IR, have only recently been 

applied to large biomolecular systems. Nonetheless, the 2D IR studies on KcsA show great 

promise that future studies will allow us to fully understand the mechanisms that govern the 

structure and functional properties of a variety of different ion channels.

CHEMICAL EXCHANGE DYNAMICS AND PERFORMANCE OF LITHIUM ION 

BATTERIES

Development of high energy density lithium ion batteries has been extensively researched 

due to their broad application in portable electronic devices, electric vehicles, and grid-scale 

energy storage.79−82 The primary components of lithium ion batteries are positive and 

negative electrodes and a liquid electrolyte. The electrolyte contains lithium salt such as 

lithium hexafluorophosphate (LiPF6) dissolved in organic solvent.83 Liquid carbonates are 

often used in a solvent mixture;84 however, room temperature ionic liquids (RTILs) have 

been proposed as a safer alternative.85,86

The electrochemical performance of Li ion batteries is strongly dependent on the type of 

electrolyte used, since intermolecular interactions between solvent and ions determine Li+ 

ion mobility.83 Thus, to design an efficient high energy density Li ion battery, one needs to 

understand both the solvation structure and solvation dynamics of the electrolyte mixture. 

2D IR spectroscopy shows great promise for studying such phenomena because of its ability 

to observe chemical exchange dynamics87,88 between different solvation structures that 

occur on time scales as fast as picoseconds.

Recently, Lee and co-workers have studied exchange dynamics with 2D IR on electrolyte 

solution of lithium ions dissolved in diethyl carbonate (DEC).89 In their study, the carbonyl 

stretch of DEC is used as a vibrational probe that senses the presence of Li+ ion in its 

vicinity, giving rise to two separate peaks corresponding to free and Li-bound carbonate. It 

was found that Li+···DEC complex forms within 17 ps and breaks with a time constant of 

only 2.2 ps at 1.0 M LiPF6 concentration. The results imply that the mechanism of ion 

transport during the charging and discharging process in Li ion batteries might be strongly 

related to ultrafast solvent fluctuations and the time scales at which Li+ forms a complex 

with the surrounding solvent molecules. It also suggests that existing theories on ion 
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diffusion in Li ion batteries may need to be reformulated with the aid of experimental data 

obtained from various 2D IR experiments.

Since the use of volatile and flammable solvents, such as DEC, can pose great safety 

concerns,80 researchers have shown interest in room temperature ionic liquids (RTILs) as the 

solvent in liquid electrolytes.90,91 The Fayer group has introduced a number of chemically 

modified ionic liquids which incorporate vibrationally active probes.92−95 Those RTILs are 

used in conjunction with 2D IR spectroscopy and optical Kerr effect measurements to study 

orientational and spectral diffusion dynamics of ionic liquids in complex mixtures. The 

results provide a microscopic description of dynamics and intermolecular interactions in 

ionic liquid systems that may potentially find its use in the development of novel RTILs for 

Li ion batteries and other energy sources.

CHARGE TRANSFER EFFICIENCY IN PHOTOVOLTAIC MATERIALS

Across the globe, a major focus in research is to achieve an abundant, low cost energy 

solution. Significant efforts are aimed at improving and better understanding the factors 

governing photovoltaic efficiency.96,97 Electronic processes occurring on ultrafast time 

scales are at the heart of this topic. While transient absorption has provided many important 

insights into the underlying photophysics,98−101 2D spectroscopy offers the unique 

advantage of spectrally resolving the excitation frequency, allowing for the responses of 

different excitation pathways to be separated.

2D ES shows great promise for understanding energetic delocalization, charge generation, 

and charge transfer processes in photovoltaics. Song and Scholes used 2D ES to map charge 

transfer pathways and demonstrate the role of hot electron transfer in poly(3-

hexylthiophene) (P3HT) blends.50 Vibrational coherence was shown to play a role in the 

process, transferring from the P3HT exciton to the P3HT polaron. 2D IR spectroscopy has 

been used to probe vibrational dynamics as a function of temperature in phenyl-C61-butyric 

acid methyl ester (PCBM), finding temperature independent dynamics,102 consistent with 

previous findings of temperature-independent rates of charge separation that suggested an 

activationless pathway.103,104 2D photocurrent spectroscopy, which has been gaining 

popularity in the past few years,105 has also recently been used to probe the ultrafast 

dynamics of photoexcitons into charge-producing states.106

Singlet fission is currently a topic of immense interest with regard to the development of 

solar cells that can exceed the Shockley−Queissar efficiency limit.107,108 It occurs when a 

spin-singlet exciton converts to a pair of spin-triplet excitons localized on neighboring 

molecules. In principle, this process can increase the efficiency limit of a solar cell, but the 

underlying mechanism is not well understood. There has been significant debate in the 

literature concerning whether a direct coupling or charge transfer state-mediated mechanism 

is at work. Pentacene and its derivatives are among the most popular model systems for 

investigating singlet fission, as its triplet state lies at nearly half the energy of the lowest 

lying excited singlet state, resulting in some of the highest external quantum efficiencies 

reported to date.109 Egorva and Rao used coherent 2D ES to explore the origin of the states 

involved in singlet fission of pentacene derivatives.110 Their work showed that vibrational 
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degrees of freedom couple the singlet and multiexciton state, which is optically dark and 

thus can only be populated via the singlet state, and mediate singlet fission.

Carbon nanotubes represent another promising material for harvesting light in solar cells. 2D 

ES has recently made significant advances in understanding their mechanisms of 

photoexcitation, energy redistribution, energy transfer, and exciton hopping.111−116 For 

example, Mehlenbacher and coworkers were able to map the pathways for energy flow in 

thin films of highly purified semiconducting nanotubes. Figure 4 summarizes some of these 

results for the S1 states.114 While the S2 exciton pathways depended on bandgap (not 

shown), the S1 excitations relaxed independent of bandgap (Figure 4). These experiments 

have advanced our fundamental understanding of the photophysics and energy flow in 

carbon nanotubes, which will inform future attempts at designing carbon-nanotube-based 

solar cells.

UP AND COMING METHODS IN 2D SPECTROSCOPY

In the past two decades, 2D spectroscopy has clearly enabled important scientific discoveries 

in a broad range of scientific areas. To continue advancing our knowledge of structure and 

dynamics, new approaches and improvements to 2D methods are constantly in development.

Bredenbeck, Hamm, and Kraack have recently pioneered 2D IR spectroelectrochemistry in 

both solution117 and a surface-sensitive ATR geometry,118 which enables 2D IR spectra to 

be collected under controlled redox potentials. FTIR spectroelectrochemistry has a rich 

history studying electrode surface processes and redox chemistry, making the 2D 

implementation an exciting direction with great promise for better understanding structures 

and ultrafast dynamics of a variety of species, including interfacial solvent−electrode 

chemistry and redox proteins.

The Fayer lab recently reported a method for collecting 2D IR spectra in a “near-Brewster’s 

angle” reflective pump−probe geometry.31 This approach involves orienting the probe pulse, 

which serves as the local oscillator, close to the Brewster’s angle with respect to the sample 

surface, such that the local oscillator is strongly attenuated relative to the emitted signal. 

This results in large signal-to-noise enhancement, relative to the transmission geometry, 

enabling studies of thin films and monolayers that would otherwise be difficult to study.

2D IR microscopy has also recently been developed, providing spatially resolved 2D 

vibrational spectra in heterogeneous samples. Both point mapping119 and wide-field120 

implementations have been demonstrated. These methods hold great promise for studying a 

wide range of heterogeneous systems such as amyloid diseases in tissue, protein folding, 

and/or aggregation in heterogeneous environments, and material devices containing mid-IR 

vibrational reporters.

New laser technology also continues to expand the horizons of the field. Diode-pumped 

ytterbium (Yb) oscillators and amplifiers that operate at higher repetition rates show great 

promise for cost-effective ultrafast sources, which, when coupled with high efficiency OPAs 

and OPOs, can generate the wavelengths necessary for 2D ES and IR spectroscopies. The 

higher repetition rates allow for increased data acquisition rates and significantly improved 
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signal-to-noise. 100 kHz Yb laser systems are now in use for 2D spectroscopy at both 

visible121 and IR122,123 wavelengths.

A natural extension of 2D ES and 2D IR are 2D methods that bridge the two wavelength 

regimes. Khalil and co-workers have reported 2D experiments that combine the visible and 

IR wavelengths, allowing for vibrational−electronic couplings and vibronic processes, such 

as how vibrational motions mediate charge transfer and couple electronic states, to be 

monitored. Both IR-pump vis-probe124−126 and vis-pump IR-probe127 have been reported. 

Though we have not focused on Raman spectroscopy here, 2D Raman-THz and128,129 2D 

IR-Raman126 spectroscopies have also been developed.

CONCLUSION

2D spectroscopy has the capability to measure biological, materials, and chemical systems 

in solid and solutions states, as well as at interfaces. The work presented here shows 

examples of the versatility of the technique for investigating the structure and dynamics of a 

variety of different chemical systems. 2D IR has provided insight on the mechanism of 

amyloid formation and ion-channel dynamics, and 2D ES has been used to monitor charge 

transfer in photosynthetic systems, carbon nanotubes, and other photovoltaics. While these 

are specific examples of how 2D spectroscopy can be used to probe structural and dynamic 

scientific questions, it is by no means an exhaustive list. As 2D spectroscopy becomes more 

accessible and ubiquitous, the number and types of systems studied can only increase. In the 

future, we believe 2D spectroscopy will continue to answer difficult core scientific questions 

in the fields of biology, materials science, and chemistry.
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Figure 1. 
Pulse sequence used in a four-wave mixing experiment to obtain a two-dimensional infrared 

or electronic spectrum. Three field interactions with the sample produce an emitted signal 

that is heterodyned with either a local oscillator or the third laser pulse, depending on the 

experimental geometry.
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Figure 2. 
Top: Schematic free energy diagram of the multistep hIAPP aggregation process. The 

FGAIL region that participates in the formation of a transient β-sheet intermediate is 

highlighted in red. Introduction of a proline mutation into the FGAIL sequence inhibits 

aggregation by destabilizing the intermediate (dashed line). Bottom: 2D IR spectra of 

isotopically labeled (V17) hIAPP measured at different aggregation times are presented 

below. Dashed arrows show pump frequencies of 2D IR peaks originating from monomers, 

β-sheet aggregates, and site-specific isotope labels. Adapted with permission from ref 18.
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Figure 3. 
Left: The KcsA potassium ion channel and a schematic of the knock-on (top) and hard-

knock (bottom) ion transport mechanisms. Right:(a) The experimental IR spectrum in the 

isotope labeled region and (b) the simulated 2D IR spectrum of the knock-on model. 

Reproduced with permission from refs 4 and 74. Copyright 2017 American Chemical 

Society and 2016 American Association for the Advancement of Science, respectively.
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Figure 4. 
(a) 2D electronic spectra for the indicated pump−probe delays in the S1/S1 quadrant. The 

simultaneous growth of round cross-peaks indicates energy transfer is uncorrelated and 

independent of bandgap for S1 excitons. (b) The kinetics of cross-peaks provide rates of 

energy transfer. Dashed lines are exponential fits to the data, and the measured time 

constants are all equal to within 1 ps. (c) An energy level diagram showing the energy 

transfer pathway for each peak in the 2D spectrum. Black arrows denote pumped transitions, 

while blue, green, and red arrows correspond to excitons initially excited on (7, 5), (7, 6), 

and (8, 6) nanotubes, respectively. Dashed arrows represent excited state absorption, solid 

arrows represent ground state bleaches/stimulated emission, and curved arrows denote 

energy transfer. Reproduced with permission from ref 114.
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