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Abstract

Humans have dopamine D5 receptors (hD5R) with single-nucleotide polymorphisms and a 

diminished function. We generated hD5F173L cDNA that has a decreased response to D5R agonist-

mediated increase in cAMP production and increased production of reactive oxygen species, 

relative to wild-type hD5R (hD5WT) cDNA expressed in Chinese hamster ovary cells. To 

investigate the role of hD5F173L in the pathogenesis of salt-sensitive hypertension, we generated 

transgenic mice overexpressing hD5F173L or hD5WT and fed them normal (0.8% NaCl) or high 

(4% NaCl) salt diet. On normal salt diet, the blood pressure, and renal NADPH oxidase activity 

and angiotensin type 1 receptor (AT1R) expression were higher in hD5F173L than hD5WT 

transgenic mice. After 2 weeks on high salt diet, the blood pressure and renal NADPH oxidase 

activity, but not AT1R expression, were increased in hD5F173L but not in hD5WT transgenic mice. 

Candesartan, an AT1R antagonist, decreased the blood pressure and NADPH oxidase activity in 

hD5F173L but not in hD5WT transgenic mice. We suggest that the ability of the hD5R to negatively 

regulate the renal NADPH oxidase activity and AT1R function may have important implications in 

the pathogenesis of salt-sensitive blood pressure. However, the mechanisms involved in regulating 

the balance of renal D5R and AT1R function in the oxidative stress-mediated salt-sensitive blood 

pressure remain to be determined.
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INTRODUCTION

Hypertension is a multifactorial disorder resulting from the interactions between 

environmental and genetic factors.1,2 Epidemiological and interventional studies have 

demonstrated a clear relationship between salt intake and hypertension.3 Reactive oxygen 

species (ROS) are also known to be involved in the development of salt-sensitive 

hypertension and renal disease.4,5 A major source of ROS in the kidney is nicotinamide 

adenine dinucleotide 2′-phosphate reduced tetrasodium salt (NAD(P)H) oxidase, which is 

an enzyme complex consisting of six subunits: membrane subunits p22phox and gp91phox, 

cytosolic components p40phox, p47phox and p67phox and a low-molecular weight G protein 

rac1 or rac2. Several homologues of gp91phox in mammalian non-phagocytic cells have been 

reported, including Nox 1, Nox 2, Nox 3, Nox 4 and Nox 5; Nox 5 is present in humans but 

not rodents. The rodent kidney mainly expresses Nox 1, Nox2 and Nox 4, that act as O2
−-

producing NAD(P)H oxidases.6,7

Abnormalities in dopamine production and receptor function have been described in human 

essential hypertension and rodent models of genetic hypertension.2,8–11 The effects of 

dopamine are exerted by two families of cell surface receptors that belong to the superfamily 

of G protein-coupled receptors; D1-like receptors (D1R and D5R) stimulate adenylyl 

cyclases, whereas D2-like receptors (D2R, D3R and D4R) inhibit adenylyl cyclases.2,8–11 

Compared with D1R, the D5R has a higher affinity for dopamine, and exhibits constitutive 

activity.10,11 The locus of the human D5R (hD5R), 4p15.1–16.1, and its pseudogenes, 

2p11.1-p11.2, 1q21.1, have been linked to human essential hypertension.12–14 Moreover, 

humans have D5R gene single-nucleotide polymorphisms with a diminished function.15

We have reported that the disruption of the D5R gene (Drd5) in mice increases blood 

pressure. The elevated blood pressure in Drd5−/− mice was suggested to be caused, in part, 

by an increased ROS production via an increased renal NADPH oxidase and phospholipase 

D activities.10,11 Dopamine, via its receptors, including the D5R, decreases renal tubular 

sodium transport. Decreasing the renal dopamine production or dopamine receptor 

expression or function results in sodium retention, contributing to the development of 

hypertension.2,8–11,16–21 However, the regulation of sodium transport by dopamine and its 

receptors also involves interaction with other G protein-coupled receptors.16 Indeed, the 

negative interaction between D5R and angiotensin type 1 receptor (AT1R) is involved in the 

regulation of renal sodium transport and pathogenesis of hypertension.16,22,23 We 

hypothesize that hD5R negatively regulates renal NADPH oxidase and AT1R function that 

may be important in the normal regulation of blood pressure. Moreover, impaired hD5R 

function may result in salt-sensitive hypertension.

To investigate the role and mechanism of D5R-mediated regulation of blood pressure and 

salt sensitivity, we generated mutant D5R with a single-nucleotide polymorphism, hD5F173L. 

We transfected the hD5F173L, and hD5 wild-type (hD5WT) cDNAs into Chinese hamster 

ovary (CHO) cells and tested their ability to regulate cyclic adenosine monophosphate 

(cAMP) and ROS production, in response to a D1R/D5R agonist, fenoldopam, which in the 

absence of D1R is a selective D5R agonist and vice versa. After establishing that hD5F173L, 

relative to hD5WT, has a decreased ability to increase cAMP production and negatively 
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regulates ROS production, hD5F173L and hD5WT transgenic mice were generated that were 

studied for the effect of high salt intake on renal oxidative stress, AT1R expression and 

blood pressure.

METHODS

Materials

Cytochrome C, diphenyleneiodonium, fenoldopam, SCH23390, superoxide dismutase and 

candesartan were purchased from Sigma-Aldrich, St. Louis, MO, USA. NADPH was from 

ICN Biomedicals, Aliso Viejo, CA, USA. Lucigenin was from Molecular Probes (Grand 

Island, NY, USA), Invitrogen (Carlsbad, CA, USA), Eugene (Shanghai, China). Polyclonal 

AT1 antibody (N-10) and monoclonal anti-Nox 2 and Nox 4 antibodies were from Santa 

Cruz Biotechnology, Santa Cruz, CA, USA.

hD5WT and hD5F173L cell transfections

The full-length hD5WT and hD5F173L cDNAs, subcloned into a pcDNA6/V5-His vector 

between the EcoRI and Xbal sites, respectively, were transfected into CHO cells using LT1 

transfection reagents.10 The successful transfection of hD5 cDNA was verified by 

immunoblotting for His/V5 expression. Empty vector-transfected CHO cells served as 

negative controls.

Cyclic AMP accumulation assay

The CHO cells, heterologously expressing hD5WT, hD5F173L or empty vector were grown to 

70% confluence in six-well plates and pre-treated with 1 μM phorbol 12-myristate 13-

acetate for 5 min in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-

methylxanthine (1 μM) before the D1R/D5R agonist fenoldopam (10 nM, 100 nM, 1 μM) 

treatment for 0 and 30 mins; in the absence of D1R, fendoldopam is a specific D5R agonist. 

Cell lysates were prepared to determine protein concentration by using the BCA protein 

assay kit (Thermo-Scientific, Rockford, IL, USA) and cAMP concentration by using the 

Direct Cyclic AMP Enzyme immunoassay kit (Arbor Assays, Ann Arbor, MI, USA), 

following the manufacturer’s procedures. All assays were performed in duplicates.

Detection of ROS

The oxidation of 2’,7’-dichlorodihydrofluorescein diacetate was used to measure ROS in the 

CHO cells heterologously expressing hD5WT, hD5F173L or empty vector. To test the effect 

of cellular NADPH oxidase inhibition on ROS production, cells were pre-treated with an 

inhibitor of NADPH oxidase (diphenyleneiodonium (DPI), 10 mM per 30 min) (Sigma), and 

then treated with H2O2 (50 μM per 2 h, ThermoScientific) or vehicle. The cells were 

incubated with fresh 2’,7’- dichlorodihydrofluorescein diacetate (10 mM per 30 mins) at 

37 °C. 2’,7’-Dichlorodihydrofluorescein diacetate fluorescence was measured using a 

microplate reader in 96-well plates at an excitation wave length of 485nm and an emission 

wave length of 530nm. ROS production was expressed in arbitrary units corrected for the 

protein concentration (AU mg−1 protein). All assays were performed in duplicate.
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Transgenic mice and blood pressure measurement

The full-length hD5WT and hD5F173L cDNAs were each subcloned into an expression 

plasmid under the CMV promoter. The transgenic mice were generated by the 

microinjection method in oocytes. The genotype of the transgenic mice was verified by 

polymerase chain reaction using the primers, 5′-GGACCGCTACTGGGCCATCT-3′ and 

5′-GGGTCTTGAGAACCTTGGTC-3′, and the sequence of the amplified 488 bp fragment 

of hD5R was analyzed.

The mice (C57Bl/6) were fed a normal NaCl diet (0.8%) for 14 days that was subsequently 

changed to a high NaCl diet (4%) for 15 days, and then injected intraperitoneally with 

candesartan (AT1R antagonist, 1 mg kg−1 body weight per day) or vehicle (saline, control) 

daily for 10 days. Thereafter, blood pressures were measured from the aorta via the femoral 

artery under pentobarbital anesthesia.10,11 The kidneys were harvested, immunoblotted for 

AT1R, Nox2 and Nox4 and assayed for NADPH oxidase activity.

NADPH oxidase activity assay

NADPH oxidase activity (light units per g protein per minute) of membrane proteins from 

mouse kidney tissues was measured by NADPH-induced chemiluminescence with 5 μmol l
−1 lucigenin and 100 μmol l−1 NADPH.11 The specificity of the NADPH-dependent O2

− 

production was verified by treatment with the flavoprotein inhibitor diphenyleneiodonium.

Immunoblotting

Mouse kidney homogenates were prepared for immunoblotting as previously reported.11 

The samples were immunoblotted with well characterized anti-Nox2, anti-Nox4 and anti-

AT1R antibodies. Uniformity of protein loading and membrane transfer was determined by 

immunoblotting for glyceraldehyde-3-phosphate dehydrogenase (GADPH).

Statistical analysis

Data are expressed as mean±s.e.m. Comparison of more than two groups was made by one-

way or two-way factorial analysis of variance, Holm–Sidak test and a comparison between 

two groups utilized the t-test. A value of P <0.05 was considered statistically significant.

RESULTS

cAMP and ROS production in CHO cells

Basal cAMP levels in plasmid-transfected CHO cells (0.54±0.02 pmol mg−1 protein per 

min) were similar to CHO cells expressing hD5F173L (0.52±0.03), but less than that noted in 

CHO cells expressing hD5WT (0.84±0.03) (P <0.05, one-way analysis of variance, Holm–

Sidak test). The higher basal cAMP levels in the hD5WT indicate that the D5R receptor is 

constitutively active, in agreement with previous reports,10 Fenoldopam (10−8 −10−6 M, 30 

min) significantly increased cAMP production in hD5WT and but not in D5F173L or vector-

transfected cells (Figure 1).

We next determined the ability of hD5R to regulate ROS production. In the basal state, ROS 

production was similar in plasmid-transfected CHO cells (39300±200 arbitrary units/mg 
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protein), CHO cells expressing hD5F173L (38500±120) and CHO cells expressing hD5WT 

(39300±200). The ability of 50 mM H2O2 to increase ROS production was greater in CHO 

cells transfected with plasmid (44900±200) or hD5F173L (44500±300) than CHO cells 

transfected with hD5WT (41200±80) (Figure 2).

Blood pressures in hD5R transgenic mice

On normal salt diet (0.8% NaCl×14 days), the systolic, diastolic and mean arterial blood 

pressures, measured under pentobarbital anesthesia, were higher in 3-month-old hD5F173L 

than hD5WT transgenic mice (Figure 3a). A high salt diet (4% NaCl×15 days), increased 

further the blood pressures in hD5F173L but had no effect in hD5WT mice. The high blood 

pressures of hD5F173L transgenic mice on high salt diet were normalized after 10 days of 

candesartan, an AT1R antagonist, which had no effect in hD5WT transgenic mice (Figure 

3b).

Expression of NADPH oxidase and AT1R proteins in hD5R transgenic mice

On normal salt diet, the renal expression of Nox4 but not Nox2 (data not shown) was higher 

in hD5F173L than D5WT transgenic mice (Figure 4a). On high salt diet the renal expression 

of Nox4 (but not Nox 2, data not shown) was also higher in hD5F173L (Figure 4b) than 

hD5WT transgenic mice (data not shown). In addition, renal AT1R expression was greater in 

hD5F173L than hD5WT transgenic mice on a normal salt diet (Figure 4c). However, AT1R 

protein expression was not affected by high salt diet in either strain (data not shown).

NADPH oxidase activity in hD5R transgenic mice

Consistent with the increased renal Nox4 expression in hD5F173L mice (Figure 4a), renal 

NADPH oxidase activity was also increased in hD5F173L relative to hD5WT mice on a 

normal salt diet (Figure 5). High salt intake increased renal NADPH oxidase activity in both 

hD5F173L and hD5WT mice but it remained greater in hD5F173L than hD5WT transgenic mice 

(Figure 5). The dietary salt-induced increase in renal NADPH oxidase activity was 

decreased by candesartan treatment in hD5F173L transgenic mice but was not affected in 

hD5WT transgenic mice (Figure 5).

DISCUSSION

Dopamine, via its receptors, including the D5R, has been shown as an important regulator of 

blood pressure.2,8–11,16,17,23,24 In this study, we found that the blood pressures were 

increased in transgenic mice with the hD5R mutant, hD5F173L, which had almost no ability 

to increase cAMP production in response to agonist stimulation. The hD5F173L mice shows 

markly increased Na/K ATPase levels and activities (Supplementary Data 1) and similar 

water and energy intake (Supplementary Data 2) compared with in hD5WT mice on normal 

salt diet. A high salt intake increased further the blood pressure in hD5F173L but had no 

effect in hD5WT transgenic mice, which demonstrated the disorders of sodium excreation 

and salt sensitivity in hD5F173L mice. We have reported that the blood pressures of 

transgenic mice expressing the D5R mutant hD5S390G, which had an increase in cAMP 

production in response to agonist stimulation, were similar to those measured in hD5WT 
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transgenic mice (data not shown). The current study reconfirmed the importance of D5R in 

the regulation of blood pressure and salt sensitivity.10,11,23

It has been reported that oxidative stress is involved in the development of salt-sensitive 

hypertension.25–27 In vivo animal studies have demonstrated that increased ROS production 

in the renal cortex28 and medulla27 has an important role in the pathogenesis of salt-sensitive 

hypertension. In both human and experimental salt-sensitive hypertension, ROS production 

is increased and antioxidant capacity is decreased.26,27 ROS can inactivate the renal and 

vascular NO pathway, resulting in increased renal sodium transport28 and afferent arteriolar 

resistance,29 caused by impaired endothelium-dependent and -independent vasorelaxation.30 

ROS have also been shown to directly upregulate ion channels, transporters and pumps.31 

These effects could lead to a decrease in sodium excretion, resulting in volume expansion 

and subsequently, hypertension.

We had reported that the renal expression and activity of NADPH oxidase were increased in 

D5−/− mice relative to with D5WT mice, and that the D5R agonist (in the absence of D1R) 

fenoldopam inhibited the superoxide production in HEK-293 cells transfected with hD5WT.
11 In this study, in CHO cells transfected with the mutant hD5F173L, superoxide production 

was increased and cAMP production was decreased relative to CHO cells transfected with 

hD5WT. Nox4 expression and NADPH oxidase activity were greater in hD5F173L mice than 

hD5WT transgenic mice on normal salt diet. High salt diet increased the Nox4 expression in 

hD5F173L but not in hD5WT transgenic mice. High salt diet also increased NADPH oxidase 

activity in both hD5F173L and hD5WT transgenic mice but blood pressure was increased 

further in hD5F173L but not in hD5WT transgenic mice. High salt intake has been reported to 

increase ROS generation accompanied by enhanced renal NADPH oxidase expression and 

activity32,33 and blood pressure in predisposed animals, for example, salt-sensitive rats.25–27 

In the current study, the increased NADPH oxidase activity (which presumably increased 

ROS production) 11 induced by high salt intake was unable to increase blood pressure in 

hD5WT transgenic mice. This could be taken to indicate that the D5R may mitigate the 

production of ROS by increasing the activity of anti-oxidants, including heme-oxygenase 

1,34 paraoxonase 235 and superoxide dismutase,36 among others. Moreover, the D5R can 

interact with other dopamine receptor subtypes to limit the production of ROS.36

The renin–angiotensin system is paramount in the regulation of blood pressure.37,38 In vitro 
and in vivo studies have demonstrated that angiotensin II, via AT1R, stimulated the activity 

and expression of NADPH oxidase to increase the production of ROS.38–41 Candesartan, an 

AT1R antagonist, decreased renal NADPH oxidase activity in hD5F173L mice fed a high salt 

diet but the effect that was not observed in hD5WT mice. Thus hD5F173L may interact with 

renin–angiotensin system to increase ROS production. Renal D5R and AT1R not only 

counter regulate each other’s effect on sodium excretion but also their expression.16,22,23 In 

the current study, the renal AT1R expression was higher in hD5F173L than hD5WT 

transgenic mice fed normal salt diet. Although renal AT1R expression was no longer 

different between hD5F173L than D5WT mice, AT1R blockade normalized blood pressure in 

hD5F173L mice on high salt diet, but had no effect on the normal blood pressure of hD5WT 

transgenic mice. This could be taken to indicate that on high salt diet AT1R function is 

increased even though renal AT1R expression was not increased in D5F173L mice. Dopamine 
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and its receptors and angiotensin II, via AT1R, have been shown to counter regulate each 

other in the regulation of renal tubule signaling, sodium transport, blood pressure and renal 

injury kidney.22,23,42–45 Thus a proper balance between dopamine and the renin–angiotensin 

systems in the kidney is needed to maintain normal renal sodium excretion and their 

abnormal interaction leads to sodium retention and ultimately an increase in blood pressure.

In conclusion, we have shown that the hD5R mutant, hD5F173L increases ROS production 

and blood pressure that is, in part, related to an impaired ability to negatively regulate AT1R 

function. The expression of the hD5R variant, hD5F173L in mice results in salt-sensitive 

hypertension and increased renal expression of AT1R similar to the germline deletion of 

D5R in mice.23 However, the mechanisms involved in regulating the balance of renal D5R 

and AT1R in the oxidative stress-mediated salt-sensitive blood pressure remain to be 

determined.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
cAMP accumulation in CHO cells. cAMP accumulation was determined in the presence of 1 

mM 3-isobutyl-1-methylxanthine in hD5F173L−, hD5WT− and empty vector-transfected CHO 

cells treated with a D1-like receptor agonist, fenoldopam (10−6 M, 30 min) (n=3/group, 

mean±s.e., in some, error bars are smaller than the symbols, *P<0.05, one-way analysis of 

variance, Holm–Sidak test). In the absence of D1R, fenoldopam is a D5R agonist.
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Figure 2. 
ROS production in CHO cells. The ROS production in hD5F173L−, hD5WT− and empty 

vector-transfected CHO cells treated with or without H2O2 (50 μM per 2 h) was measured 

by 2′,7′- dichlorodihydrofluorescein diacetate (n=3/group, mean±SE, *P<0.05, one-way 

analysis of variance, Holm–Sidak test).
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Figure 3. 
Arterial blood pressure in hD5WT and hD5F173L transgenic mice. (a) Systolic, diastolic and 

mean arterial blood pressures (measured under pentobarbital anesthesia) in hD5WT and 

hD5F173L transgenic mice on normal salt diet (0.8% NaCl). (n=6, *P<0.05 vs. hD5WT, t-
test). (b) Mean arterial blood pressure in hD5WT and hD5F173L mice fed normal salt (0.8% 

NaCl) or high salt diet (4% NaCl) for 14 and 15 days, respectively, and then treated with 

candesartan (1 mg kg−1 body weight per day × 10 days) (n=6, *P<0.05 vs. hD5WT, t-test; 
#P<0.05 vs. others, two-way analysis of variance; ‡P<0.05 vs. hD5F173L-normal salt diet and 

hD5F173L-high salt diet, two-way analysis of variance, Holm–Sidak test).
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Figure 4. 
Renal NOX4 and AT1R protein expression in hD5WT and hD5F173L transgenic mice. (a) 

Renal NOX4 protein expression (67 kDa) determined by immunoblotting in hD5WT and 

hD5F173L transgenic mice fed normal salt diet (n=6, *P<0.05 vs. hD5WT, t-test). (b) Renal 

NOX4 protein expression (67 kDa) determined by immunoblotting in hD5F173L transgenic 

mice on normal or high salt diet (n=6, *P<0.05 vs. normal salt, t-test). (c) AT1R expression 

(43 kDa) determined by immunoblotting in hD5WT and hD5F173L mice on normal salt diet 
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(n=6, *P<0.05 vs. hD5WT, t-test). All immunoblotting results are expressed as relative DUs. 

Immunoblots of NOX4, AT1R, and GAPDH are depicted in the inset. DU, density unit.
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Figure 5. 
Renal NADPH oxidase activity in hD5WT and hD5F173L transgenic mice. NADPH oxidase 

activity, measured by lucigenin chemiluminescence, in kidney membranes from hD5WT and 

hD5F173L mice on a normal NaCl (0.8% NaCl) and high NaCl (4% NaCl) diets for 14 and 

15 days, respectively, and treated with candesartan (1 mg kg−1 body weight per day) for 10 

days. Results are expressed as light units (U) per μg protein per min (n=6, *P<0.05 vs. 

normal salt; #P<0.05 vs. hD5WT normal salt; ‡P<0.05 vs. hD5F173L high salt, t-test).
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