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Abstract

MicroRNA (miRNA) expression is frequently deregulated in human disease, in contrast, disease-

associated miRNA mutations are understudied. We developed Annotative Database of miRNA 

Elements, ADmiRE that combines multiple existing and new biological annotations to aid 

prioritization of causal miRNA variation. We annotated 10,206 mature (3,257 within seed region) 

miRNA variants from multiple large sequencing datasets including gnomAD (15,496 genomes; 

123,136 exomes). The pattern of miRNA variation closely resembles protein-coding exonic 

regions, with no difference between intragenic and intergenic miRNAs (p=0.56), and high 

confidence miRNAs demonstrate higher sequence constraint (p<0.001). Conservation analysis 

across 100 vertebrates identified 765 highly conserved miRNAs that also have limited genetic 

variation in gnomAD. We applied ADmiRE to the TCGA PanCancerAtlas WES datasets from 

over 10,000 individuals across 33 adult cancers and annotated 1,267 germline (rare in gnomAD) 

and 1,492 somatic miRNA variants. Several miRNA families with deregulated gene expression in 

cancer have low levels of both somatic and germline variants, e.g. let-7, miR-10. In addition to 

known somatic miR-142 mutations in hematologic cancers, we describe novel somatic miR-21 

mutations in esophageal cancers impacting downstream miRNA targets. Through the development 

of ADmiRE, we present a framework for annotation and prioritization of miRNA variation in 

disease datasets.

*To whom correspondence should be addressed. Tel: +1-832-824-4251; Fax: 832-825-4276; splon@bcm.edu. 

Supplementary Data
Supplementary Data are available online (Supplementary_Figures.pdf, Supplementary_Data.zip).

Conflict of Interest
SEP is a member of the Baylor Genetics laboratory scientific advisory panel.

HHS Public Access
Author manuscript
Hum Mutat. Author manuscript; available in PMC 2020 January 01.

Published in final edited form as:
Hum Mutat. 2019 January ; 40(1): 73–89. doi:10.1002/humu.23668.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

microRNA; variant annotation; conservation; cancer; genomics

Introduction

MicroRNAs (miRNAs) are small non-coding RNAs, 18–25 nucleotides in length, that 

regulate the expression of greater than 60% of genes by complementarily binding target 

messenger RNAs (mRNAs) (Bartel, 2009; Friedman, Farh, Burge, & Bartel, 2009). 

Dysregulation of miRNAs leads to altered expression of their downstream target genes as 

seen in a wide variety of human diseases such as cancer, cardiovascular and developmental 

diseases (Lee & Dutta, 2009; Lu et al., 2008; Lujambio & Lowe, 2012; Spizzo, Nicoloso, 

Croce, & Calin, 2009). Primary miRNA transcripts are sequentially processed by DROSHA 

and DICER1 into precursor and mature miRNAs, respectively (Friedman et al., 2009). 

Ablation of the miRNA repertoire in Dicer1−/− mutant zebrafish and mice leads to lethality 

in model organisms and heterozygous loss leads to cancer predisposition in humans (De 

Kock et al., 2014; Harfe, 2005; Kumar et al., 2009; Lin & Gregory, 2015). Loss of individual 

miRNAs also leads to disease-related phenotypes in model systems as shown by the 

knockout mouse model of miR-155 alters mammalian differentiation processes (Thai et al., 

2007) while overexpression of miR-21 leads to oncogenic phenotypes in mice (Medina, 

Nolde, & Slack, 2010). In addition to transcriptional regulation, several mechanisms for the 

dysregulation of miRNAs have been proposed such as single nucleotide variation (SNV), 

genomic amplifications or deletions, and transcriptional regulation (Chan, Prado, & 

Weidhaas, 2011). Mature miRNAs complementarily bind the recognition site in target genes, 

and the highly conserved seed domains of mature miRNAs are vital for this function. As a 

result, mutations in mature miRNAs can drastically change their targeting ability (Hill, 

Jabbari, Matyunina, & McDonald, 2014; Roden et al., 2017; Zeng & Cullen, 2003). Seed or 

mature miRNA variants are relatively rare and some of them have been shown to have 

highly deleterious effects. Three out of the four known Mendelian disorders shown to be 

caused by mutations in miRNAs (OMIM (McKusick-Nathans Institute of Genetic Medicine, 

Johns Hopkins University (Baltimore, 2018)) are due to seed domain mutations: miR-96 in 

hearing loss (Mencía et al., 2009), miR-184 in familial keratoconus (Hughes et al., 2011; 

Iliff, Riazuddin, & Gottsch, 2012), and miR-204 in inherited retinal dystrophy (Conte et al., 

2015). In comparison, miRNA processing machinery recognizes several well-defined 

structural and primary sequence features such as CNNC, basal-UG, apical UGU/UGUG, and 

GHG motifs that enhance processing of primary miRNA transcripts (Auyeung, Ulitsky, 

McGeary, & Bartel, 2013; Bartel, 2018; Fang & Bartel, 2015; Nguyen et al., 2015; Roden et 

al., 2017). Expectedly, SNVs affecting these motifs can interfere with miRNA processing 

and affect the expression of mature miRNA (Fang & Bartel, 2015; Roden et al., 2017). 

Germline or somatic mutations in miRNA transcripts have been found in patients with 

several cancers (Ryan, Robles, & Harris, 2010; Tuna, Machado, & Calin, 2016) such as 

breast (W. Li et al., 2009; Shen, Ambrosone, & Zhao, 2009; Shen, DiCioccio, Odunsi, Lele, 

& Zhao, 2010), leukemia (Calin et al., 2005; Calin & Croce, 2006; Kotani et al., 2010) and 

pancreatic (Zhu, Gao, Qian, & Miao, 2009) cancers. Most of these variants ascribed to 

cancer predisposition or somatic mechanisms are primary or precursor miRNA transcript 
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variants and alter the expression levels of mature miRNAs by interfering with the miRNA 

processing. Despite the potential significance of miRNA SNVs in disease, there have been 

limited reports of miRNA sequence variation across human diseases and population datasets.

An early study describing miRNA variation in human reference population identified a total 

of 527 miRNA variants by analyzing 720 miRNA sequences in the 1000 Genomes Project, 

Phase I dataset (Carbonell et al., 2012). Other databases such as miRNASNP and 

polymiRTS report approximately 500 SNVs in miRNA regions using the dbSNP137 

database (Bhattacharya, Ziebarth, & Cui, 2014; Gong et al., 2012). However, there has been 

a significant increase in the number of recognized miRNA genes (miRBase v21: 1,881 

precursor, 2,815 mature miRNAs) and in the availability of large whole genome sequencing 

(WGS) and whole exome sequencing (WES) datasets (Kozomara & Griffiths-Jones, 2011) 

since those earlier studies.

Annotation of variants within protein-coding genes utilize several criteria including but not 

limited to, predicted protein truncations, change in the amino acid code, evolutionary 

conservation and/or on sequence constraint metrics such as those developed using large 

human population datasets of protein-coding sequences like ExAC (Lek et al., 2016; 

Samocha et al., 2014). However, a similar framework for interpretation of miRNA variation 

is not readily available. Many commonly used variant annotation tools such as Variant Effect 

Predictor (VEP) (McLaren et al., 2016), ANNOVAR (K. Wang et al., 2010) or SnpEff 

(Cingolani et al., 2012) prioritize the effect of sequence changes in protein-coding regions 

over the changes in miRNAs (Lek et al., 2016). For example, one scheme for prioritizing 

variant deleteriousness ranks miRNA annotation at the 32nd position out of 44 annotations 

(Cingolani, Cunningham, McLaren, & Wang, 2018). Currently, the only dedicated miRNA 

variant annotation tool, miRVaS (Cammaerts, Strazisar, Dierckx, Del Favero, & De Rijk, 

2015), does not include sequence constraint metrics or highly-relevant biological and 

functional annotations such as expression, downstream targets and disease associations. 

Thus, there is a need to determine the landscape of miRNA variation through the analysis of 

large human population datasets, determine evolutionary conservation and then combine this 

data with existing annotations to provide a comprehensive miRNA annotation focused tool.

In this study, we describe a novel miRNA variation module entitled Annotative Database for 

miRNA Elements, ADmiRE (https://github.com/nroak/ADmiRE), to annotate human 

miRNA variants. ADmiRE can be easily integrated into established variant annotation 

workflows. The ADmiRE annotations include existing biological annotations for 

downstream targets and upstream transcription factors combined with new data described 

herein from the analyses of miRNA sequence constraint derived from publicly large 

available datasets, sequence conservation across 100 vertebrates and per basepair 

annotations of the domain and conserved motifs. In particular, we analyzed gnomAD 

containing 123,136 WES and 15,496 WGS samples to define domain level and miRNA level 

sequence constraints for miRNA variation, similar to previous work done on protein-coding 

genes (Lek et al., 2016). Finally, we applied ADmiRE annotations to The Cancer Genome 

Atlas (TCGA) PanCancerAtlas adult cancer dataset comprising of WES data from over 

10,000 samples across 33 cancer types to provide the patterns of germline and somatic 

miRNA variation in cancer. In sum, development, and deployment of a dedicated human 

Oak et al. Page 3

Hum Mutat. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/nroak/ADmiRE


miRNA variant annotation tool, ADmiRE, which includes variant frequency and 

conservation information in combination with existing miRBase annotations can facilitate 

the prioritization and identification of biologically relevant miRNA variation in control and 

disease datasets.

Methods

MicroRNA Annotation Resources

We obtained the precursor stem-loop (1,881) and mature (2,815) miRNA sequences 

(assembly GRCh38) for all human miRNAs from miRBase v21 (Kozomara & Griffiths-

Jones, 2011). As most variation datasets are based on reference genome build GRCh37, we 

used UCSC LiftOver tool to convert miRBase genomic coordinates to this reference 

resulting in the final list of 1,878 precursors and 2,574 mature miRNAs (Kuhn, Haussler, & 

James Kent, 2013).

We defined the miRNA sequence domains (Figure 1) as primary (top, defined by the 100bp 

sequence flanking the precursor -- Primary-Up and Primary-Down (in brown), 5’ and 3’ 

precursor arms (yellow, “End”), 5’ and 3’ mature (green), seed region (purple, 2–8bp of 

mature miRNA), and precursor loop (yellow, between mature miRNA).

We utilized the previously curated list of miRNAs that pass the following criteria for miRNA 

gene annotation from high-throughput sequencing pipelines across different tissues, defined 

as ‘high confidence’ miRNAs by miRBase v21, (i) At least 10 reads must map with no 

mismatches to each of the two possible mature microRNAs derived from the hairpin 

precursor, (ii) The most abundant reads from each arm of the precursor must pair in the 

mature microRNA duplex with 0–4 nt overhang at their 3′ ends, (iii) At least 50% of reads 

mapping to each arm of the hairpin precursor must have the same 5′ end, (iv) The predicted 

hairpin structure must have a folding free energy of <−0.2 kcal/mol/nt, and (v) At least 60% 

of the bases in the mature sequences must be paired in the predicted hairpin structure 

(Kozomara & Griffiths-Jones, 2014). Furthermore, we also utilize a more recent set of 

miRNAs that satisfy at least four out of these five criteria, defined as FANTOM5 ‘robust’ set 

of miRNAs resulting in two sets of well-characterized miRNAs: a) 295 ‘high confidence’ 

miRNAs from miRBase v21 (Kozomara & Griffiths-Jones, 2014), and b) 795 ‘robust’ 

miRNAs from FANTOM5 project (Rie et al., 2017). Furthermore, we incorporated sequence 

motif information for precursor miRNAs such as CNNC, basalUG, and apical UGU/UGUG 

motifs (Roden et al., 2017). Lastly, annotations from the following databases were 

incorporated for functionally validated miRNA-target genes, literature-curated transcription 

factors, and human disease associations: Human microRNA Disease Database (HMDD) (Y. 

Li et al., 2014), PhenomiR (Ruepp et al., 2010), miRTarBase (Chou et al., 2016), TransmiR 

(J. Wang, Lu, Qiu, & Cui, 2010), and TarBase 7.0 (Vlachos et al., 2015). Additionally, 

measures of miRNA sequence variation and conservation described in this study were 

subsequently added (Supp. Table S1). These biologically relevant set of annotations were 

compiled into a tab-separated file containing each of these annotations for every base of 

primary miRNA transcript across all miRNAs called Annotative Database of miRNA 

Elements, ADmiRE (see Availability) (Figure 2). ADmiRE file and a Perl-script are made 
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available on GitHub which can be utilized to annotate a user-supplied variant file for miRNA 

variant annotations (see section: Data Access).

Genomic Datasets

High-quality single nucleotide variants (SNVs) and small insertions and deletions (InDels) 

were downloaded from the following publicly available whole genome (WGS) and whole 

exome sequencing (WES) datasets a) genome aggregation database (gnomAD) consisting of 

15,496 WGS and 123,136 WES samples (date accessed 2/28/2017) (Lek et al., 2016), b) 
annotated variants across 60,706 WES samples in the tab-separated format from the Exome 

Aggregation Dataset (ExAC; date accessed 6/23/2017) (Lek et al., 2016), c) UK10K project 

(date accessed 2/21/2017) (Walter et al., 2015), d) 1000 Genomes project phase 3 across 

2,504 low-coverage WGS samples (date accessed 1/3/2016) (Auton et al., 2015), and e) 
National Heart, Lung and Blood Institute’s (NHLBI) Trans-Omics for Precision Medicine 

(TOPMed) dataset accessed from University of Michigan’s Bravo browser, consisting of 

variants from 62,784 WGS samples (date accessed 1/11/2018).

We obtained comprehensive germline variant calls (10,389 individuals) (Huang et al., 2018) 

and somatic mutation calls (10,000 individuals) (Ellrott et al., 2018) across 33 cancer types 

from TCGA PanCancerAtlas samples (mc3.v0.2.8.PUBLIC.maf). The data consisted of 

whole exome sequencing, miRNAseq, and RNAseq sequencing samples of 10,389 

individuals across 33 cancer types.

Cross-species miRNA conservation heatmap

We retrieved per base conservation scores for all miRNAs using UCSC table browser utility 

for the following cross-species comparisons: Algorithms used were phyloP and phastCons 

across 100 vertebrates, 46 vertebrates, 46 placental mammals and 46 primates (Pollard, 

Hubisz, Rosenbloom, & Siepel, 2010; Siepel et al., 2005; Yang, 1995). For each 

conservation scoring system, phyloP and phastCons, scores were averaged across each 

mature miRNA. Each of these scoring systems generates a genome-wide conservation score 

distribution, phyloP (−13 to 10) and phastCons (0–1). Thus, we used a Z-score 

normalization for generating a heatmap by implementing ‘aheatmap’ function in the NMF 

package in R for hierarchical clustering and heatmap generation (Gaujoux & Seoighe, 

2010).

Analysis of PanCancerAtlas Dataset: ≥10,000 Adult Cancers

We used BEDTools (Quinlan, 2014) intersect tool to subset the whole exome germline 

variant calls to the miRNA regions that corresponded to the mature and precursor miRNA 

sequences (miRBase v21). We annotated these germline variants using ADmiRE and filtered 

for rare germline miRNA variation using ExAC-nonTCGA subset (excluding 7,601 germline 

Availability
ADmiRE workflow for annotation of user-supplied variant files available in the GitHub repository: https://github.com/nroak/admire 
GitHub page contains a stand-alone program for annotation using ADmiRE or a database file (BED format) that can be used as a ‘--
custom’ database to VEP annotation tool. ADmiRE is also available as a ‘User-contributed dataset’ on ANNOVAR website for ease of 
integration into existing workflows, ADmiRE has also been dockerized as an app on CAVATICA cloud based platform (https://
cavatica.sbgenomics.com).
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TCGA samples from the original ExAC dataset) with allele frequency threshold of <0.1%. 

Additionally, we retained variants with ‘PASS’ filter, variant allele fraction >30%, and 

variants with ExAC sub-population allele count of <10. Somatic mutation calls were also 

restricted to the mature miRNA regions, annotated using ADmiRE, and filtered for PASS-

variants with variant allele fractions of >20%. Only the precursor miRNAs with >6X read-

depth across at least 75% TCGA samples were retained for the analysis. We additionally 

filtered out any variants found in the gnomAD dataset that were reported as non-PASS 

variants using the online gnomAD browser.

Statistical Analysis

All statistical analyses described in the study were performed using R statistical software 

(R-3.4.3). To control for largely variable target size across different genomic and miRNA 

regions, we used the distribution of allele frequency (AF) as a variable. We found that the 

AF distribution did not follow a normal distribution and thus utilized non-parametric tests 

for statistical analyses. We used both Mann-Whitney test and Kruskal-Wallis tests, with a 

Bonferroni adjusted p-value (as implemented in R in functions pairwise.wilcox.test and 

dunn.test, respectively) for computing the significance of differences between the AF 

distribution of the following comparisons: a) the protein-coding exonic, intronic, and 

intergenic variation, b) the mature, precursor, and primary miRNA domain variation, c) 
variation within ‘high confidence’ or ‘robust’ miRNAs and the remainder of miRNAs. To 

determine the variability of each miRNA with respect to all other miRNAs, we calculated 

mean allele frequency for each mature miRNA, followed by computing a mean AF 

percentile for all the miRNAs using the empirical cumulative distribution function (ecdf), as 

implemented in R. We calculated whether ‘high confidence’ or ‘robust’ miRNAs are 

enriched within the cluster of conserved miRNAs using contingency table chi-square test. To 

test whether gnomAD AF distribution correlates with evolutionary conservation, we 

calculated Spearman’s correlation coefficient between gnomAD AF and PhyloP or 

PhastCons conservation scores using function ‘rcorr’ as implemented in R package Hmisc 

v4.1. Expression quantiles for each of the 20,501 genes and 1,072 miRNAs were computed 

using the ecdf function in R for each cancer type using RNAseq and miRNAseq expression 

data, respectively. To compare the expression quantiles of candidate genes between mutated 

and non-mutated samples, we used non-parametric Wilcoxon signed rank test as 

implemented in R function wilcox.test.

Results

Genomic Distribution of miRNAs and Coverage Analysis for WES and WGS datasets

Genomic locations of 1,020 miRNAs (1,020/1,878, 54%) overlap with RefSeq gene regions 

(RefSeq v78) and the remaining 858 miRNAs are intergenic in nature. We analyzed publicly 

available target-interval files for five commonly used whole exome target capture methods, 

Roche SeqCap EZ HGSC VCRome 2.1, Roche SeqCap EZ Exome v3, Agilent SureSelect 

v6, and Illumina TruSeq Exome for the inclusion of miRNAs in their target capture design. 

On average, 55% of all miRNAs listed in miRBase v21 (>90% precursor bases in capture 

bed file) were targeted either directly, as per the miRBase release at the time of capture 

design, or indirectly as a result of miRNAs overlapping the protein-coding exons. Exome 
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capture of miRNA displayed substantial range with Agilent SureSelect v6 targeting over 

78% miRNAs and Roche VCRome2.1 targeting only ~30% of miRNAs (using miRBase v16 

but may have been improved since).

However, the inclusion of miRNAs on targeted capture does not fully represent the final 

coverage of miRNAs from the sequencing data. Our analysis of gnomAD whole exome 

sequencing dataset (n=123,136), which contains aggregated data across different WES 

capture methods, showed that only 774 precursor miRNAs (41%) and 1224 mature miRNAs 

(48%) have a read depth >10X across at least 75% of samples. In contrast, for gnomAD 

whole genome dataset (n=15,496), 1,804 (96%) precursor and 2,534 (99%) mature miRNAs 

passed the above coverage criteria. Out of the 39 miRNAs that fail the above-mentioned 

coverage criteria, 25 miRNAs were sequenced at 1–10X median read-depth across the 

majority of samples while the remainder have median read depth of less than one (Supp. 

Table S2). Only the miRNAs passing 10X coverage threshold were used in all the analyses 

described below. To further characterize miRNA coverage, we analyzed 20 samples from 

1000 genomes project that have been sequenced by 3 longitudinal sequencing methods: high 

coverage WES (mean read depth =65X), high coverage WGS (mean read depth >30X), and 

low coverage WGS (mean read depth =7.4X) across four different sequencing centers 

(Figure 3). Overall, although high coverage WGS (mean read depth >30X) is optimal for 

capturing all known miRNAs (~99%), more commonly used WES methods capture ~50% of 

all miRNAs at a read depth of >10X.

ADmiRE Comprehensively Annotates miRNA Variation

To assess variant annotation across miRNA regions, we used the set of pre-annotated 

variants from the ExAC dataset (n=60,706, 10 million variants) which had been annotated 

using the standard parameters in Variant Effect Predictor (VEP) tool prioritized for the most 

damaging variant consequences (Lek et al., 2016). Reannotation of this same set of variants 

with ADmiRE allows us to compare the sensitivity of both tools to annotate variants found 

within mature miRNA gene regions for their potential impact on miRNAs. Across the VEP 

annotated variants in the entire ExAC dataset, 2,764 variants were annotated as ‘mature 

miRNA’. In comparison, annotation of this variant set using ADmiRE annotations, which 

prioritizes miRNA variation, identified a total of 6,639 mature miRNA variants. (Figure 4 

A). Thus, ADmiRE annotates an additional 3,875 variants as occurring within mature 

miRNA in comparison to VEP, which instead annotated these variants as 

‘non_coding_transcript_exon_variant’ (50%) which is a generic category describing many 

non-coding RNAs, and ‘intron_variant’ (29%) (Figure 4 B). The 177 of 200 variants 

annotated as “miRNA” by VEP but not ADmiRE did not correspond to miRNA regions 

when validated using UCSC Genome Browser.

We further compared other commonly used variant annotation tools, ANNOVAR and 

snpEFF, to ADmiRE for their ability to annotate miRNA variation from the above set of 

ExAC variants. None of the ANNOVAR annotation consequence included mature miRNA 

annotations, so we used -regionanno wgRNA option in ANNOVAR. There were a total of 

10,615 precursor miRNA variants (63%) as compared to 16,657 precursor miRNA variants 

annotated by ADmiRE. Similarly, snpEFF annotations for mature miRNA variants are 
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annotated as snpEFF gene biotype ‘miRNA’ for non_coding_transcript_exon category. We 

identified a total of 1,725 mature miRNA variants (26% of those by ADmiRE). Overall, 

ADmiRE accurately annotates substantially more mature miRNA variants from WES 

datasets compared to many other variant annotation platforms.

To improve annotation and prioritization of miRNA variation we provide a bed-formatted 

ADmiRE file that can be incorporated as a custom database to improve VEP’s annotation of 

miRNA variants (--custom flag, see Availability). We have also submitted ADmiRE to 

ANNOVAR to be included under ‘User-contributed datasets’ for easy integration.

To comprehensively identify and annotate human miRNA sequence variation, we performed 

ADmiRE annotations of the gnomAD dataset, which contains 15,496 WGS samples and 

more than twice the number of WES samples (n= 123,136) compared to the ExAC dataset. 

ADmiRE annotations identified 3,257 seed, 10,206 mature, 14,699 precursor, and 52,705 

primary miRNA variants across 1,878 miRNAs (Table 1). In addition to the mature miRNA 

domains, certain sequence motifs in the precursor stem-loop region are known to affect 

miRNA processing efficiency (Roden et al., 2017). We annotated 997 variants within CNNC 

motif, 79 in basalUG, and 67 variants in apical UGU/UGUG motifs (Table 1). An additional 

3,857 variants were in the stem-loop of the precursor miRNA transcript. This collection of 

70,007 miRNA variants largely surpasses previously described miRNA sequence variation 

as reported in miRNASNP (Gong et al., 2012) (2,257 precursor, 706 mature variants) and 

Cui et al (Bhattacharya & Cui, 2015) (611 seed variants) datasets. In addition to the far more 

complete list of annotated miRNA variants for the gnomAD dataset, we also provide 

miRNA variation data from the ExAC, 1000 Genomes, UK10K, and NHLBI’s TOPMed 

datasets in the Supplementary Data, although some of these datasets are contained within the 

gnomAD dataset.

A previous study that analyzed miRNA variation from ~1000 individuals (1000 Genomes 

project phase I) had noted that level of variability for miRNAs is comparable to coding 

genes (Carbonell et al., 2012). We compared the allele frequency distribution from the 1878 

precursor miRNA variants in the much larger gnomAD dataset to protein-coding exonic, 

intronic, and intergenic regions. We find the allele frequency distribution of miRNA variants 

resembles that of the protein-coding exonic variants and is significantly depleted compared 

to that of intronic and intergenic variants (Mann-Whitney adjusted p-value <0.001) (Figure 5 

A). Not surprisingly, functionally important miRNA domains, mature and seed, have a 

significantly lower allele frequency distribution compared to the precursor domains 

(p<0.001) and the flanking 100bp primary domains (p<0.01) across the entire gnomAD 

dataset (Figure 5 B). We then compared the impact of the genomic context of miRNAs, i.e. 

intragenic or intergenic location on variation. We found no significant difference in the allele 

frequency (AF) distribution of miRNA variants across precursor domains (p=0.56, t-test) 

(Figure 5 C). The majority of mature miRNAs contain 0–2 variants in the entire gnomAD 

WGS dataset, with a few outlier miRNAs accumulating relatively high sequence variation 

(Figure 5 D).

We analyzed variation in two sets of curated miRNAs, ‘high-confidence’ miRNAs from 

miRBase and ‘robust’ miRNAs from FANTOM5 studies, which both use miRNA expression 
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data across several datasets to exclude false positive miRNAs (Kozomara & Griffiths-Jones, 

2014; Rie et al., 2017) (see Methods). For both high confidence and robust (Figure 6) 

miRNAs, the allele frequency distribution is significantly lower across mature miRNAs and 

20–40 bases flanking the precursor transcripts compared to the remainder of miRNAs. 

Whereas the high confidence and FANTOM5 robust miRNAs that pass the high confidence 

criteria of expression tend to harbor more rare variation (gnomAD AF < 0.01; Mann-

Whitney test p-value <0.001 for both datasets).

Notably, we found that 667 mature miRNAs (of the 2534 mature miRNAs that passed the 

10X coverage threshold) did not harbor any germline variants across gnomAD-WGS subset 

(n=15,496). We next analyzed the 375 of these 667 miRNAs with adequate coverage in the 

gnomAD-WES subset, which contains ~8X as many samples (n=123,136). This analysis 

identifies 60 miRNAs with no variants and 298 miRNAs with less than 13 variant alleles per 

miRNA across the gnomAD reference dataset. Although this relative lack of variation may 

indicate constraint, the conclusions are limited by the short length of mature miRNAs, lack 

of larger WGS datasets, and a lack of comparable well-defined deleteriousness mechanisms 

for miRNAs to carry out any further statistical analyses to define a constraint “score”. As an 

alternative, to provide a measure of miRNA sequence variation using the gnomAD reference 

dataset, we computed variant allele frequency percentiles across all miRNAs and added this 

annotation to ADmiRE. The allele frequency percentile gives a reference for the variability 

of each mature miRNA with respect to all other miRNAs. There are 557 miRNAs within the 

lower quartile (25th percentile) of allele frequency in gnomAD including 334 miRNAs 

without any variants in gnomAD WGS. Many top published miRNA families (reported by 

web-tool mirPub) that play critical roles in development or disease states (generally defined 

by studies of miRNA expression) are in this set of miRNAs depleted for variation, including 

most miRNAs from hsa-let-7, hsa-mir-21, hsa-mir-155, hsa-mir-15, hsa-mir-221, hsa-

mir-145, and hsa-mir-29 families, and of the miR-17–92 cluster (Vergoulis et al., 2015).

Analysis of miRNA sequence conservation across 100 vertebrates

Analysis of evolutionary sequence conservation is a powerful approach to identify 

functionally important coding and regulatory non-coding genomic regions (Pennacchio & 

Rubin, 2001; Siepel et al., 2005). We examined human miRNAs using conservation scores 

from phyloP and phastCons algorithms across 100 vertebrates (Pollard et al., 2010; Siepel et 

al., 2005; Siepel, Pollard, & Haussler, 2006). Hierarchical clustering of z-normalized 

conservation scores across 2,571 mature miRNAs identified 765 (30%) highly conserved 

miRNAs (Figure 7). We also identified a similar proportion of conserved precursor miRNA 

transcripts (n=434/1,878, 23%) (Supp. Figure S1). Similar to the analysis of sequence 

variation (Figure 5 C), we observed no significant effect of the genomic context of miRNAs 

(intragenic and intergenic) on the conservation of miRNAs (Mann-Whitney U test, p-value = 

0.23) (Supp. Figure S2). In comparison, gnomAD allele frequency distribution is negatively 

correlated with PhyloP (Spearman correlation r=−0.29) and PhastCons (Spearman 

correlation r=−0.26) conservation scores across all mature miRNAs.

We also observed significant enrichment of the high-confidence and robust miRNA subsets 

(these subsets annotated based on robust miRNA expression data) within the cluster of 
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conserved miRNAs (Chi-square p<0.001); with 77% of conserved miRNAs annotated as 

robust miRNAs (Supp. Figure S3). The miRNAs depleted for variation in the gnomAD 

dataset (bottom 25th AF percentile) are also enriched within the clusters of conserved 

miRNAs (Chi-square p<0.05) and 90% of these are robust and/or high confidence. In 

contrast, ~50% of miRNAs annotated as robust are poorly conserved and also vary in the 

degree of variation, suggesting that further study is needed to assess their function.

Overall, our analysis of miRNA variation, sequence context, and evolutionary conservation 

provides critical information for the study of miRNA variation in population and disease 

datasets. We incorporated into the ADmiRE database the allele frequency percentiles from 

gnomAD dataset and conservation analysis for each mature miRNA. We next demonstrate 

the application of ADmiRE annotations to the TCGA PanCancerAtlas dataset to identify and 

prioritize causal miRNA variation.

Discovery of miRNA variation across 33 cancer types

We analyzed The Cancer Genome Atlas (TCGA) PanCancerAtlas dataset containing whole 

exome sequencing data from over 10,000 individuals (both germline and tumor samples) 

across 33 cancer types (Huang et al., 2018). We assessed germline and somatic miRNA 

variation (see Methods) in 1,317 mature (47%) and 844 precursor (44%) miRNAs that pass 

the coverage threshold (>6X read depth across >75% of samples) for this WES dataset 

resulting in a total miRNA target region of 70kb. Among the mature miRNA variants, 1,267 

were rare germline variants (as defined by ExAC nonTCGA AF <0.1%) found in 

approximately 11% of all PanCancerAtlas samples and 1,492 were somatic mutations in 8% 

of all samples (Table 2). There were an additional 3,771 rare germline and somatic variants 

when including the entire precursor miRNAs of which 1,165 variants targeted sequence 

motifs such as CNNC (223 variants), basal UG (16 variants), apical UGU (18 variants) 

motifs that are important for pre-miRNA processing (Table 2, Supp. Figure S4). The 

complete list of rare germline and somatic variation across mature and precursor miRNAs in 

the TCGA PanCancerAtlas dataset is available in the Supplementary Data (Tables 3–6).

We first analyzed those variants found in miRNAs in the KEGG pathway ‘MicroRNAs in 

Cancer’ that catalogues differentially expressed miRNAs across 10 cancer types (Lee & 

Dutta, 2009). We found rare germline and/or somatic variation within the same miRNA-

cancer pairs in 1.2% of samples. We further combined these miRNAs according to their 

miRNA families and found that a subset of miRNA families e.g. miR-10, let-7, miR-17, 

miR-30, and miR-15 harbor frequent somatic and rare germline variants in the above 

mentioned 10 cancer types as well as some other cancer types in the PanCancerAtlas dataset, 

(Figure 8). For the top 2 frequently deregulated miRNA families, mir-10 and let-7, the 

spread of variation in PanCancerAtlas dataset is distinct from that in the large population 

dataset of ExAC (nonTCGA subset). (Supp. Figures S6 and S7).

We further assessed miRNA germline sequence variation in the entire dataset and within 

each of the 33 cancers. There were 1,267 rare germline variants spread among 631 miRNAs, 

however, variation within many miRNAs did not significantly cluster within one tumor type 

(Supplementary Data). To filter out miRNAs that accumulate rare germline variation in 

control human population and thus indicate low sequence constraint, we removed miRNAs 

Oak et al. Page 10

Hum Mutat. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with >50th AF percentile for variation in gnomAD. We further prioritized miRNAs with >1 

variant in a cancer type, resulting in a set of 179 mature miRNAs containing 267 rare 

germline variants. For each miRNA, we quantified the number of samples with rare 

germline variation normalized by the total number of samples in the entire dataset and for 

each cancer type. Most of these miRNAs harbored only ~1–2 rare germline variants for each 

cancer type, at a similar frequency to that observed in the gnomAD dataset. Analysis of rare 

germline variation across the entire precursor miRNA transcripts yielded similar results. 

Overall, our analysis of rare germline miRNA variants in the TCGA PanCancerAtlas Dataset 

compared with gnomAD suggests that rare germline variation plays little to no role in 

predisposition to the most common histologic types of adult cancers, however, this does not 

preclude smaller effects of common variants, or miRNA variation in other tumors types or 

histopathologic subtypes.

We then assessed the landscape of somatic miRNA mutation in the entire TCGA 

PanCancerAtlas dataset. Overall, the distribution per sample of somatic mutations resembles 

that previously described for protein-coding variants across respective adult cancer types, as 

samples with higher somatic mutation rate had more somatic miRNA variants (Supp. Figure 

S5A) (Kandoth et al., 2013). We identified the 10 most frequently mutated miRNAs within 

each cancer type (Figure 9 A). We found that the majority of miRNAs were mutated in <1% 

of samples in the respective cancer type. In addition, the cancer types known to have high 

mutation burdens such as lung squamous cell carcinoma (LUSC), skin cutaneous melanomas 

(SKCM), and endometrial (UCEC) cancers have multiple mutated miRNAs each in <1% of 

samples. The tumor types with at least 1% somatic mutation in a specific miRNA (Figure 9 

A) included diffuse large B-cell lymphoma (DLBC) and acute myeloid leukemia (LAML) 

with miR-142 mutations, 6.2%, and 1.3% respectively. This miRNA was mutated among 

<1% samples (majority singleton variants) in all other cancer types. This result is consistent 

with the previously reported association of somatic mutations of miR-142 (miR142) 

mutations in hematologic malignancies, lymphoma (20% DLBC) and leukemia (2% LAML) 

(Kwanhian et al., 2012; Silva et al., 2013; Yao et al., 2016) (Figure 9 B). In addition, we 

found somatic mutations in miR-21 (miR21) among 1% (2/184) of esophageal cancer 

(ESCA) samples (Figure 9 B). Multiple prior studies have described miR-21 deregulation in 

esophageal cancer (Chu, Zhu, Lv, Zhou, & Huo, 2013; Kan & Meltzer, 2009; Smith, 

Watson, Michael, & Hussey, 2010; Song & Meltzer, 2012), however, to our knowledge 

somatic mutations in this miRNA have not been previously reported. Using the 

experimentally validated targets of miR-21–5p annotated in ADmiRE (miRTarBase (Chou et 

al., 2016)), we further assessed whether the two mature miR-21–5p variants, at +9 (C>T) 

and +15 (G>T) bp, alter target regulation using the RNAseq data provided by the TCGA 

project. Indeed, expression of 5 miR-21 target genes, APAF1, BASP1, PDCD4, RASA1, and 

RASGRP1, show significantly altered expression in mutated samples as compared to the rest 

of the samples in this cancer type (Wilcoxon test p<0.05) suggesting the miRNA variants 

impact miR-21 function (Figure 9 C). It is more challenging to analyze the importance of 

somatic variation in the cases of highly mutated cancer types such as UCEC, SKCM, and 

LUSC, with several miRNAs each having a few somatic mutations. Overall, somatic 

mutations in miRNAs appear to play an important role in a small number of the most 
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common forms of adult cancers. In those samples, mutations may contribute to the loss of 

miRNA-mediated gene regulation.

Discussion

Through the development of the Annotative Database of miRNA Elements, ADmiRE, we 

present a dedicated miRNA variant annotation tool that substantially adds to our knowledge 

of variation in miRNA genes across human datasets. Not surprisingly, our analyses 

demonstrate that high coverage WGS comprehensively captures >99% of miRNAs at mean 

read-depth >30X. The remaining 1% of mature miRNAs (n=39) largely fall into two 

categories, there are 25 miRNAs with sequence data across the majority of samples at the 

median read depth of 1–10X. Knowledge of variation in these miRNAs will be better 

captured by deeper WGS. However, the remaining 14 miRNAs are completely missed by the 

current WGS sequencing platforms and consist of more recently discovered as well as non-

conserved miRNAs. Moreover, given a large number of research and clinical WES efforts, 

we demonstrate that current exome capture platforms capture approximately 50% of 

miRNAs in miRBase v.21 and these capture designs could be further updated to improve 

evaluation of miRNA variation through WES analysis.

We compared the performance of existing variant annotation tools for miRNA variation in 

comparison to ADmiRE. Variant annotation is comprised of two different processes. First, 

accurate annotation of variants in the region of interest, miRNAs in this case. Second, the 

breadth of useful information provided to aid variant interpretation. In comparison to 

ADmiRE many of the existing variant annotation tools, e.g. Variant Effect Predictor (VEP), 

ANNOVAR, and snpEFF either fail to accurately annotate mature miRNA variants or 

deprioritize them over potentially benign protein-coding variation. For protein-coding 

regions, Many tools provide a variety of annotations such as deleteriousness predictions 

from algorithms focused on changes in protein function (Polyphen, Sift), conservation 

scores (phyloP, GERP), population frequency, and other information about protein-function 

or structure and disease associations. However, these same tools provide limited information 

for the interpretation of miRNA variation and often only annotate these variants for their 

potential role in the nearby protein-coding gene. In comparison, ADmiRE provides 

extensive biological and functional annotations for every basepair within miRNA genes by 

combining miRNA sequence information such as miRNA domains and sequence motifs 

evolutionary conservation with variation constraint in the human population (gnomAD allele 

frequency percentile), high confidence of expression, miRNA-disease associations, and 

experimentally validated target genes. The goal of developing this tool is to facilitate the 

detection and downstream prioritization of candidate variation within miRNA sequences 

from disease discovery and clinical pipelines as described here for the TCGA dataset.

Analysis of miRNA variation from the large human population sequencing dataset 

(gnomAD) also provided new insights into the landscape of miRNA variation. Nearly 50% 

of miRNAs are expressed from protein-coding exonic or intronic regions (within RefSeq v78 

transcripts), and the remainder are in the intergenic regions. Despite this difference in the 

genomic environment, we found comparable variant AF distribution of intragenic and 

intergenic miRNA genes and similar conservation profiles of the mature miRNA sequence. 
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For both intergenic and intragenic miRNAs, the pattern of sequence variation in miRNAs 

(SNP density and domain-level constraints) is similar to that reported for protein-coding 

exons with less variation in functionally important miRNA sequences. Most existing 

methods that predict the biological impact of protein-coding variants utilize domain level 

information (exons, introns, UTRs, etc.) or AF distribution (z-scores, pLI scores, etc.); 

however, such prior efforts for non-coding RNAs have been challenging (Worth, Gong, & 

Blundell, 2009). We corroborated an earlier study of a smaller set of 729 miRNAs from 

1000 Genomes Phase I dataset (Carbonell et al., 2012) and found that seed and mature 

domain variation is rare as compared to nearby regions (Figure 5 B). Moreover, we report 

the largest catalog of seed and mature domain miRNA variation surpassing current datasets 

by many folds (Bhattacharya et al., 2014; Gong et al., 2012; Liu et al., 2012). Annotation of 

variants for their location within precursor miRNA sequence motifs such as CNNC, basal 

UG, apical UGU/UGUG, etc. reveals that variation within these regions is also extremely 

rare in gnomAD and should be prioritized if found in disease datasets. In addition to ExAC/

gnomAD datasets, we also provide ADmiRE annotations of miRNA variation from analysis 

of the WGS samples from 1000 Genomes, UK10K, and National Heart, Lung and Blood 

Institute’s (NHLBI’s) Trans-Omics for Precision Medicine (TOPMed- dbSNP VCF 

provided on the bravo server) projects (Supplementary Data).

We further evaluated previously curated sets of miRNAs which utilize expression criteria 

from high-throughput sequencing data, namely, ‘high confidence’ miRNAs (Kozomara & 

Griffiths-Jones, 2014) (miRBase v21) and ‘robust’ miRNAs (Rie et al., 2017) (FANTOM5 

project). Recently, it was highlighted that the miRNAs that have passed these stringent 

criteria should be prioritized in order to filter out false positive miRNA entries (Bartel, 

2018). Consistent with this recommendation, we find that both high confidence and robust 

miRNA datasets are enriched within the highly conserved miRNAs. Furthermore, both 

miRNA groups harbor significantly different allele frequency distributions (shifted towards 

rarity) compared to the remainder miRNAs in the entire gnomAD dataset (Mann-Whitney 

test p<0.001).

MicroRNA-mediated silencing pathways are conserved across eukaryotic lineages and many 

miRNA loci are also conserved across evolution (Altuvia et al., 2005; Chapman & 

Carrington, 2007). As expected, evolutionarily conserved miRNAs also tend to harbor less 

variation in the human population as indicated by the negative correlation between 

conservation and gnomAD minor allele frequency across miRNAs. Interestingly, miRNA 

families with a larger number of members tend to be highly conserved across 100 

vertebrates suggesting the expansion of functionally important miRNA families. We find 

approximately 66% miRNAs with low conservation across 100 vertebrates and suggest that 

they are part of the group of miRNAs which are rapidly gained and lost during evolution that 

are yet to undergo evolutionary selection in humans (Bartel, 2018). This hypothesis can be 

supported by the observation that these less conserved miRNAs tend to accumulate common 

variation in the human population as indicated by our analysis of the gnomAD dataset. 

(Figure 7).

Our goal in developing ADmiRE and providing analysis of the gnomAD dataset was to 

support future analyses of miRNA variation in disease datasets. We demonstrate the 
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application of ADmiRE annotations to the PanCancerAtlas dataset of WES from over 

10,000 individuals spanning 33 cancer types, substantially adding to the knowledge of 

miRNA variation in cancer previously cataloged in SomamiR DB and other studies 

(Bhattacharya, Ziebarth, & Cui, 2013; Tuna et al., 2016). Using data derived from our 

analysis of miRNAs in gnomAD we were able to filter out variants found in highly variable 

miRNAs as well as common variants within any miRNA from the analysis of germline 

miRNA variants in the PanCancerAtlas dataset. As a result, we did not find any miRNAs 

with variants in more than 1% of any of the TCGA tumor types suggesting that germline 

variation in those miRNAs effectively sequenced by WES analysis is unlikely to play a 

substantial role in cancer susceptibility in the tumors studied by TCGA. Additional analysis 

using rare variant burden tests was limited by the statistical power to analyze relatively small 

genomic region (~22bp) and the small number of samples in some cancer types (seven 

TCGA tumor types had ≤100 tumor samples analyzed). Further study is needed to determine 

the potential role of germline variants in miRNA genes in rare pathologic subtypes, other 

rare adult cancers, pediatric cancers and those miRNAs not effectively sequenced by WES. 

Genome-wide association approaches could also be explored by focusing on the common 

miRNAs variants (AF >5%) described here, as some of these common variants are predicted 

to alter miRNA target gene expression (Gong et al., 2012; Iuliano et al., 2013; Ryan et al., 

2010).

Analysis of somatic mutations in miRNAs demonstrated higher specificity with cancer type 

including the previously described association of miR-142 somatic mutations in hematologic 

malignancies such as lymphoma (DLBC) and leukemia (LAML). Our data also suggest a 

potentially novel association of somatic mutations in miR-21 in esophageal cancer with 

evidence that these rare somatic mutations affect the function of this miRNA as evidenced 

by altered regulation of multiple miR-21 target genes. Independently, we also analyzed 

miRNA variation in 155 frequently up- or down-regulated miRNAs in 9 cancer types as 

documented in the KEGG pathway, ‘miRNA in Cancer’ (ID: hsa05206) (Lee & Dutta, 

2009). Strikingly, 132 (85%) of these miRNAs are highly conserved across 100 vertebrates 

and 86 miRNAs are in the lowest quartile for variation in the gnomAD dataset. This result 

further underscores the utility of miRNA sequence annotations computed in this study and 

included in ADmiRE to detect potential causal miRNA variation.

Overall, we show that through the development and application of a dedicated annotation 

tool for miRNA variation, we characterized miRNA variation in multiple human population 

datasets and identify disease-related miRNA variation. WES datasets only effectively 

identify variation in 50% of miRNA genes and the growth in WGS datasets will provide 

greater power to identify disease-associated variation. Integrating the measures of miRNA 

sequence variation and conservation developed in this study with other existing miRNA 

annotations through ADmiRE will facilitate the interpretation of miRNA variation from 

human sequencing datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ACC Adrenocortical carcinoma

BLCA Bladder Urothelial Carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and Neck squamous cell carcinoma

KICH Kidney Chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LAML Acute Myeloid Leukemia

LGG Brain Lower Grade Glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MESO Mesothelioma

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma
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PCPG Pheochromocytoma and Paraganglioma

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SARC Sarcoma

SKCM Skin Cutaneous Melanoma

STAD Stomach adenocarcinoma

TGCT Testicular Germ Cell Tumors

THCA Thyroid carcinoma

THYM Thymoma

UCEC Uterine Corpus Endometrial Carcinoma

UCS Uterine Carcinosarcoma

UVM Uveal Melanoma
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Figure 1. Schematic of miRNA sequence domains.
miRNA Sequence domains as annotated in ADmiRE pipeline. Precursor (yellow) and 

mature (green) domains as defined by miRBase, primary (brown) domains defined as 100bp 

flanking regions to precursor domains, and seed (purple) domains defined as 2–8bp of 

mature domains. For the precursor hairpin transcript, sequence motifs namely, seed, CNNC, 

basal UG, apical UGU/UGUG, and loop motifs are shown.
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Figure 2. Description of Annotative Database of miRNA Elements (ADmiRE)
List of ADmiRE annotations categorized as miRNA-level features that describe miRNA 

gene annotations compiled from miRBase, from analyses computed in this study, or derived 

from additional external databases (left box). Additionally, every base within precursor 

miRNA stem-loop and 100bp flanking region is annotated for its domain and sequence motif 

information (per Figure 1), PhyloP and PhastCons conservation scores, and gnomAD allele 

frequency information (right box).
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Figure 3. Extent of capture and coverage of miRNA regions across different sequencing 
platforms
Cumulative coverage distribution of the sequenced bases within miRNA regions across high-

coverage WES (>65.7X), high-coverage WGS (>30X), and low-coverage WGS (~7.4X) 

sequencing platforms across 4 different sequencing centers for 20 samples from 1000 

Genomes project. Each point on y-axis corresponds to the fraction of miRNA bases covered 

at the corresponding read depth on the x-axis.
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Figure 4. Annotation of mature miRNA variation from ExAC dataset by ADmiRE and VEP tools
A. The overlap between number of mature miRNA variants annotated by ADmiRE and VEP 

for the pre-annotated variants from ExAC dataset B. Variant consequence prediction 

categories from VEP annotations (hatched) for mature miRNA variation as annotated by 

ADmiRE (solid).
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Figure 5. Patterns of miRNA variation in gnomAD WGS (n=15,496) dataset.
A. Distribution of allele frequency of all variants in log-scale across 4 different genomic 

regions; precursor miRNA (miRBase v21), protein-coding exonic (GENCODEv19), intronic 

(GENCODEv19), and intergenic (remaining fraction of the hg19 reference, slanted line fill). 

B. Allele frequency distribution of variants (log-scale) in mature, precursor, and primary 

domains of miRNAs, C. Allele frequency distribution of variants across mature and 

precursor miRNA domains compared between miRNAs in intragenic and intergenic regions 

(within RefSeq genes). D. Number of miRNAs across each bin of number of unique mature 

domain variants. *- Mann-Whitney adjusted p-value <0.001, ns- not significant
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Figure 6. Distribution of miRNA variation in gnomAD across miRNA domains
Allele frequency (AF) distribution (log-scale) for all miRNA variants in gnomAD (WGS and 

WES) across primary miRNA transcript domains, normalized by domain length, median 

shown. Allele frequency distribution of all variants within each of the miRNA domains is 

shown, grouped by A. high confidence miRNAs (green), and B. robust miRNAs (yellow). *- 

Mann Whitney adjusted p-value <0.001
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Figure 7. Hierarchical clustering of phyloP and phastCons 100way vertebrate conservation 
scores across mature miRNAs
PhyloP and phastCons scores are centered and z-score adjusted across each mature miRNA 

(n=2,571). Each miRNA is annotated for gnomAD AF percentile (grayscale), ‘high 

confidence’ miRNA (green) or otherwise (red), and ‘robust’ miRNA (yellow) or otherwise 

(purple).
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Figure 8. Somatic and rare germline variants in miRNA families that are frequently deregulated 
in adult cancers as per KEGG pathway, ‘miRNA in Cancer’
PanCancerAtlas samples with somatic (red) or rare germline (green) mutations in most 

frequently deregulated miRNAs listed in KEGG pathway ‘miRNAs in Cancer’ grouped by 

miRNA families. The full name of each cancer type corresponding to the TCGA standard 

abbreviation is provided in the Abbreviations section.
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Figure 9. Somatic mutations in mature miRNAs across 33 cancers and spectrum of mutations in 
top candidate miRNAs
A. Percent of samples with somatic mutations within each of the mature miRNAs ordered by 

number of samples sequenced for each cancer type (number of mature miRNA mutations 

normalized by the number of samples sequenced for respective cancer type). B. Distribution 

of somatic and rare germline variation along two candidate miRNAs, miR-142 and miR-21, 

that show accumulation of seed and mature domain variation as compared to ExAC 

(nonTCGA subset) dataset. C. Expression quantile of miR-21 target genes from mutated 

samples that are significantly different as compared to non-mutated samples of the same 

cancer type (ESCA) (Wilcoxon test p <0.05). The full name of each cancer type 

corresponding to the TCGA standard abbreviation is provided in the Abbreviations section.
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Table 1

Number of unique miRNA variants identified using ADmiRE from the gnomAD dataset

miRNA Domain gnomAD WGS
n= 15,496

gnomAD WES
n= 123,125 gnomAD Total

miRNA Functional Domains

Total 40,581 45,172 76,007

Mature (Seed) 4,626 (1,499) 7,039 (2,224) 10,206 (3,257)

Precursor 6,918 9,462 14,428

Primary 29,231 28,671 51,542

Precursor miRNA Sequence Motifs

Total 2,196 3,492 5,000

basalUG 40 56 79

UGU/UGUG 16 58 67

CNNC 438 681 997

Loop 1,702 2,697 3,857
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Table 2

Number of unique miRNA variants identified using ADmiRE from over 10,000 individuals from 

PanCancerAtlas dataset

miRNA Domain Rare Germline
(AF <0.1%) Somatic Total

miRNA Functional Domains

Total 2,991 3,539 6,530

Mature (Seed) 1,267 (395) 1,492 (460) 2,759 (855)

Precursor 1,724 2,047 3,771

Precursor miRNA Sequence Motifs

Total 547 618 1,165

basalUG 9 7 16

UGU/UGUG 4 14 18

CNNC 116 107 223

Loop 418 490 908
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