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New Statistical Methods for 
Constructing Robust Differential 
Correlation Networks to 
characterize the interactions 
among microRNAs
Danyang Yu1, Zeyu Zhang2, Kimberly Glass3, Jessica Su3, Dawn L. DeMeo3, Kelan Tantisira3, 
Scott T. Weiss3 & Weiliang Qiu   3

The interplay among microRNAs (miRNAs) plays an important role in the developments of complex 
human diseases. Co-expression networks can characterize the interactions among miRNAs. Differential 
correlation network is a powerful tool to investigate the differences of co-expression networks between 
cases and controls. To construct a differential correlation network, the Fisher’s Z-transformation test 
is usually used. However, the Fisher’s Z-transformation test requires the normality assumption, the 
violation of which would result in inflated Type I error rate. Several bootstrapping-based improvements 
for Fisher’s Z test have been proposed. However, these methods are too computationally intensive to 
be used to construct differential correlation networks for high-throughput genomic data. In this article, 
we proposed six novel robust equal-correlation tests that are computationally efficient. The systematic 
simulation studies and a real microRNA data analysis showed that one of the six proposed tests (ST5) 
overall performed better than other methods.

A microRNA (miRNA) is a non-coding RNA molecule that plays an important role in RNA silencing and 
post-transcriptional regulation of gene expression1,2. There is increasing evidence that miRNAs are closely related 
to various human complex diseases. Each miRNA can interact with hundreds of genes and plays various roles 
in tumorigenesis, metastasis, proliferation3. In addition, a single gene can also be targeted by multiple miRNAs, 
which constitutes complex miRNA-target interactions3.

The interplay among miRNAs plays an important role in the development of complex human diseases. The 
network provides a natural way to model the interactions among miRNAs, with nodes representing miRNAs and 
edges representing interactions between miRNAs4. The main advantages of network-based approaches include 
their feasibility for large amounts of data, resistance to disturbances, and ease of visual interpretation5. The devel-
opment of network theory makes it possible to calculate the global properties of these networks, providing insight 
into the behavior of the systems they represent6. A gene co-expression network is an undirected graph in which 
nodes represent genes or probes, and a pair of nodes is connected by an edge if there is a significant co-expression 
relationship between them7. An edge weight indicates the magnitude of the co-expression (e.g., correlation) 
between the pair of nodes connected by the edge. A gene co-expression network focuses on the interplay of mul-
tiple genes, checking whether these genes are over or under expressed simultaneously.

By comparing the gene network based on diseased samples (cases) and that based on non-diseased samples 
(controls), one can know which gene pairs are involved in the development of the disease. We call a network of 
genes as a gene differential correlation network if the edges in the network connect pairs of genes having signifi-
cantly different edge weights (i.e., correlations) between the gene co-expression network based on cases and that 
based on controls (Fig. 1). Constructing differential correlation networks is different from detecting differentially 

1Department of Information and Computing Science, College of Mathematics and Econometrics, Hunan University, 
Hunan, China. 2Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 
China. 3Channing Division of Network Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, USA. 
Correspondence and requests for materials should be addressed to W.Q. (email: stwxq@channing.harvard.edu)

Received: 27 June 2018

Accepted: 11 February 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-40167-8
http://orcid.org/0000-0002-9155-6957
mailto:stwxq@channing.harvard.edu


2Scientific Reports |          (2019) 9:3499  | https://doi.org/10.1038/s41598-019-40167-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

mean expression in that it can identify changes of co-expression between disease and normal subjects and pro-
vide a potential biological interaction when they don’t show different mean expression level8,9. To the best of our 
knowledge, no research has constructed differential correlation networks using miRNAs yet.

To construct a differential correlation network, we usually first test for each pair of nodes if the correlation 
between the pair is the same or not between cases and controls. We then connect a pair of nodes if the difference 
of the correlations between cases and controls is greater than a threshold. The benchmark statistical method 
for testing equal correlation of a pair of random variables between two independent populations is the Fisher’s 
Z-transformation test. However, it is sensitive to the violation of the normality assumption. The normal distri-
bution cannot be guaranteed in real data analysis. The violation of the normality assumption would result in 
inflating type I error rate (i.e., false positive rate).

Some improved tests for equal correlation have been proposed to be robust against the violation of the nor-
mality assumption. However, there are some limitations of those methods. For instance, the two methods (twocor 
and twopcor) proposed by Wilcox10 are bootstrapping based methods, which are computationally intensive. To 
construct a gene differential correlation network, we need to test equal correlation between cases and controls for 
G(G-1)/2 pairs of gene probes, where G is the number of gene probes, which is usually large (~20,000) in whole 
genome-wide data analysis. Hence, it is not efficient to use bootstrapping-based methods to construct gene dif-
ferential correlation networks.

ROS-DET (combination of robust correlations and hypothetical testing) proposed by Kayano et al. (2011) 
only focuses on pairs of genes that have positive correlations in one subject group and negative correlations 
in another subject group11. It ignores the scenarios where two correlations are significantly different but have 
the same directions. The result of other methods without bootstrapping, such as Zou’s method12 and HC4 
(heteroscedastic-consistent estimators) method13, can be unsatisfactory, even under normality assumption14. 
Hence, there is a great need to develop a robust and fast test for equal correlation. In this article, we proposed 6 
novel tests for equal correlation and performed systematic simulation studies and a real data analysis to compare 
the performances of these new methods with existing methods. For the real dataset, we construct a robust dif-
ferential correlation network. Note that the term ‘robustness’ in this article is different from that in the theory of 
robust network, in which robustness indicates a network performs well after attacks. In this article, robustness 
indicates that the method performs well when model assumptions, such as normality assumption, are violated.

Results
Simulation studies.  We compared the 6 proposed equal-correlation tests (ST1, ST2, ST3, ST4, ST5, ST6) 
with 4 existing tests (twopcor, twocor, twohc4cor10 and Fisher’s Z-transformation test) using systematic simula-
tion studies, in which we evaluated if the 6 proposed methods could achieve higher power than the 4 existing 
methods, while keeping the nominal type I error rate (0.05), when random variables X and Z are generated from 
normal or non-normal distributions. The methods twopcor and twocor are bootstrapping-based methods.

Following Wilcox (2009), we generated the observations of the random variables X and Z from 
g-and-h-distributions15 (see Section 3 of Supplementary Document I for the definition of a g-and-h distribution) 
for cases and controls. In a g-and-h distribution, the parameters g and h are both non-negative. If both g and h are 
equal to zero, then the g-and-h distribution is the standard normal distribution. A positive value of g indicates a 
skewed distribution. A positive value of h indicates that the g-and-h distribution has heavier tail than the standard 
normal distribution. As g becomes larger, the g-and-h distribution would be more asymmetric. As h becomes 

Figure 1.  An illustration of a differential correlation network. In this toy example, the correlations between 
node 1 and node 5 and between node 5 and node 6 are different between network for controls and network for 
cases.
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larger, the g-and-h distribution would have heavier tail than the standard normal distribution. To compare per-
formance of different methods for distributions with different skewnesses and tails, we considered ten scenarios: 
(1) g = 0.2 and h = 0.2 (asymmetrical distribution with heavy tail); (2) g = 0.5 and h = 0.5 (more asymmetrical 
distribution with heavier tail); (3) g = 1 and h = 1 (most asymmetrical distribution with heaviest tail); (4) g = 0.2 
and h = 0 (asymmetrical distribution with relatively light tail); (5) g = 0.5 and h = 0 (more asymmetrical distribu-
tion with heavy tail); (6) g = 1 and h = 0 (most asymmetrical distribution with relatively light tail); (7) g = 0 and 
h = 0.2 (symmetrical distribution with heavy tail); (8) g = 0 and h = 0.5 (symmetrical distribution with heavier 
tail); (9) g = 0 and h = 1 (symmetrical distribution with heaviest tail); and (10) g = 0 and h = 0 (standard normal 
distribution).

Also following Wilcox (2009), we generated observations for a pair of random variables X ad Z. We first gen-
erated random numbers X1 and e1 for cases and X2 and e2 for controls based on g-and-h distributions. Then we 
generated random numbers of Z1 and Z2 via the formula z1 = θ1x1 + λj(x1)e1for cases and z2 = θ2x2 + λj(x2)e2 for 
controls, j = 1, 2, 3. The parameters θ1 and θ2 indicate the magnitude of correlations between z1 and x1 and 
between z2 and x2, respectively. For example, θ1 = 0 indicates z1and x1 are uncorrelated. θ1 > 0 indicates z1 and x1 
are positively correlated. θ1 < 0 indicates z1 and x1 are negatively correlated. The functions λj(x), j = 1, 2, 3 indicate 
the three variance patterns (vp) of z. For vp1, λ1(xi) = 1; For vp2, λ2(xi) = |xi| + 1; For vp3, λ =

+
x( )i x3

1
1i

. With 

vp2, the conditional variance of Z given X, would be large if X is close to its mean; With vp3, the conditional var-
iance of Z given X, would be small if is close to its mean. The random error terms e1 and e2 have the same distri-
butions as x1 and x2

14.
To evaluate the effect of sample size on the performances of the equal-correlation tests, we considered 3 differ-

ent sample sizes: (1) 30 cases and 30 controls; (2) 100 cases and 100 controls; and (3) 200 cases and 200 controls.
To evaluate the type I error rates of the tests, we considered two scenarios: (1) θ1 = θ2 = 0; and (2) θ1 = θ2 = 1; 

To evaluate the powers of the tests, we set θ1 = 0 and θ2 = 1. So we totally have 10 × 3 × 3 × 2 = 180 scenarios for 
evaluating Type I error rates and 10 × 3 × 3 × 1 = 90 scenarios for evaluating powers.

For each scenario, we generated 100 datasets. For each dataset, we generated 1000 pairs of random varia-
bles X and Z for cases and controls, respectively. Because bootstrapping-based methods (twopcor and twocor) 
would cost too much time, we evaluated the performances of twopcor and twocor only in the scenarios where 
nCases = nControls = 100, g = 0.2, and h = 0.2 (nCases is the number of cases and nControls is the number of 
controls).

To evaluate the performances of equal-correlation tests, we used Type I error rate and power in simulation 
studies. Figures 2 and S6 showed that the median Type I error rates of twocor and ST5 did not exceed the nomi-
nal level 0.05 in all scenarios in the simulation studies, which shows the excellent robustness of twocor and ST5. 

Figure 2.  Boxplots of type I error rates. Upper left panel: the scenario with θ1 = 0, θ2 = 0, g = 0.2, 
h = 0.2, nCases = nControls = 100, vp1; Upper middle panel: the scenario with θ1 = 0, θ2 = 0, g = 0.2, 
h = 0.2, nCases = nControls = 100, vp2; Upper right panel: the scenario with θ1 = 0, θ2 = 0, g = 0.2, 
h = 0.2, nCases = nControls = 100, vp3; lower left panel: the scenario with θ1 = 1, θ2 = 1, g = 0.2, h = 0.2, 
nCases = nControls = 100, vp1; lower middle panel: the scenario with θ1 = 1, θ2 = 1, g = 0.2, h = 0.2, 
nCases = nControls = 100, vp2; lower right panel: the scenario with θ1 = 1, θ2 = 1, g = 0.2, h = 0.2, 
nCases = nControls = 100, vp3.
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The median Type I error rates of ST1 and ST2 (when h = 0, θ1 = 0, θ2 = 0), and ST6 (when variation pattern is 
vp3, h = 0, θ1 = 1, θ2 = 1 and n = 100 or 200) were just a little bit higher than 0.05 in few scenarios, which shows 
the symmetry does not affect the type I error rates of ST1, ST2 and ST6, but the heave tail does. For twopcor, 
the median Type I error rates were higher than 0.05 when the variance pattern was vp1 or vp2. When θ1 = 1, 
θ2 = 1(i.e., correlations between X and Z are non-zero, but the same, in both cases and controls), the median Type 
I error rates of twohc4cor and ST4 are higher than 0.05; For ST3 the median Type I error rates are higher than 0.05 
when θ1 = 0, θ2 = 0 (i.e., correlations between X and Z are zero in both cases and controls).

For the power analyses, the median powers of all six methods increase as sample size increases. (see Fig. 3) For 
all six methods, the powers were smaller when the variation pattern was vp2. Among the methods (ST1, ST2, ST5, 
ST6 and twocor) that have the median Type I error rates smaller than 0.05 in almost all simulation scenarios, the 
ST5 and twocor always have the highest power, which is not affected by sample sizes, distributions and variance 
patterns. The median powers of ST5 were almost equal to those of twocor in all scenarios.’

We summarized the simulation results in Fig. 4 and Table S1. Figure 4 is a plot of the number nreject of scenarios 
with mean type I error rate significantly >0.05 versus the median rank of power m. For each scenario and each 
equal-variance test, we used one-sample t-test to test the null hypothesis H0 that the mean of the 100 estimated 
type I error rates from 100 simulated data sets is significantly ≤0.05 versus the alternative hypothesis Ha that the 
mean of the 100 estimated type I error rates from 100 simulated data set is significantly >0.05. If the p-value of 
the one-sample t-test <0.05, we claimed for this scenario and this equal-variance test, the mean type I error rate 
>0.05. For a given scenario, we ranked in terms of power the equal-variance tests that did not reject the null 
hypothesis H0. For ranks with ties, average ranks were used. For the equal-variance tests that rejected the null 
hypothesis H0, we set their ranks as missing values. Since for each scenario evaluating power (θ1 = 0, θ2 = 1), there 
are two corresponding scenarios evaluating Type I error rate (θ1 = θ2 = 0 or θ1 = θ2 = 1), we set ranks as missing 
values if one of the two corresponding scenarios with mean Type I error rate > 0.05. We then obtained the 
median m of the rank for each equal-variance test. The right panel of Fig. 4 is based on all scenarios. The proposed 
equal-variance test ST5 located at the left-bottom corner of the left panel of Fig. 4 (nreject = 0, m = 1.75), indicating 
it had the smallest number of false positive rate and largest power, hence performed best. The methods twocor 
and twopcor have not appeared in the right panel of Fig. 4 because they are bootstrapping-based methods, which 
are computationally intensive. We only include them in the scenarios where nCases = nControls = 100, g = 0.2, 
and h = 0.2. The left panel of Fig. 4 is the plot for these scenarios, from which we can see that twocor performed 
the best (nreject = 0, m = 1.5) and ST5 performed the second (nreject = 0, m = 2).

Real data analysis.  We downloaded the miRNA dataset GSE15008 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=gse15008) from the public data repository Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo)  

Figure 3.  Boxplots of powers. Upper left panel: the scenario with θ1 = 0, θ2 = 1, g = 0.2, h = 0.2, 
nCases = nControls = 100, vp1; Upper middle panel: the scenario with θ1 = 0, θ2 = 1, g = 0.2, h = 0.2, 
nCases = nControls = 100, vp2; Upper right panel: the scenario with θ1 = 0, θ2 = 1, g = 0.2, h = 0.2, 
nCases = nControls = 100, vp3; lower left panel: the scenario with θ1 = 0, θ2 = 1, g = 0, h = 0.2, 
nCases = nControls = 30, vp2; lower middle panel: the scenario with θ1 = 0, θ2 = 1, g = 0, h = 0.2, 
nCases = nControls = 100, vp2; lower right panel: the scenario with θ1 = 0, θ2 = 1, g = 0, h = 0.2, 
nCases = nControls = 200, vp2.
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to construct differential correlation networks of miRNAs using the 6 equal-correlation tests (3 proposed tests and 3 
existing tests). GSE15008 contains 677 miRNAs from 174 non-small-cell lung cancer (NSCLC) tissues and 187 adja-
cent normal tissues from patients. After data preprocessing, 178 miRNAs were kept for differential correlation analysis 
(The details about the data preprocessing are shown in Section 4 of Supplementary Documents I). The quantile plots 
(Fig. S2) and plots of the top 2 principal components (Fig. S3) based on the 178 miRNAs showed no obvious patterns.

Before constructing differential correlation network, we inspected the normality of expression data of the 178 
selected miRNAs using Shapiro–Wilk test for cancer tissues and for normal tissues, separately. The normality 
assumption for majority of microRNAs is violated. Specifically, 80.34% of FDR adjust p-values for testing normal-
ity are smaller than 0.05 for cancer tissues, 63.48% of FDR adjust p-values are smaller than 0.05 for normal tissues, 
and 88.20% of FDR adjust p-values are smaller than 0.05 for either cancer tissues or normal tissues. Please see 
Table S4 for p-values and adjusted p-values of miRNAs. We also did Wilcoxon signed rank test for each of the 178 
selected miRNAs to check if they are differentially expressed between cancer tissues and adjacent normal tissues. 
Please see their FDR adjusted p-values in Table S5.

We randomly divided the 174 NSCLC samples into two equal parts. One part (87 samples) formed the cases 
of the discovery set and the other part (87 samples) formed the cases of the validation set. Similarly, we randomly 
divided the 187 normal samples into roughly two equal parts. One part (94 samples) formed the controls of the 
discovery set and the other part (93 samples) formed the controls of the validation set.

We compared ST1, ST5, ST6, Fisher’s test, twohc4cor, and twocor in the real data analysis. We did not include 
ST2 because of its low power in the simulation studies. We did not include ST3 and ST4 because they were no 
better than ST5 and ST6 in the simulation studies. We did not include twopcor because of its long computational 
time and its low power in the simulation studies.

We claimed that the differential correlation of a pair of miRNAs is validated if its FDR-adjusted p-value < 0.05 
in the discovery set and raw p-value < 0.05 in the validation set. We applied Benjamini and Yekutieli method16 to 
calculate FDR-adjusted p-values.

We called the network formed by the pairs of miRNAs with validated differential correlations as the validated 
differential correlation network. We visualize validated differential correlation networks by Cytoscape.

We chose the miRNA having the maximum number of edges in the validated differential correlation network 
as the hub miRNA. We applied the web-tool miRSystem17 to predict the genes targeted by the hub miRNA and to 
obtain the KEGG pathways enriched in these genes.

To evaluate the differential correlation networks in the real data analysis, we used the proportion of the vali-
dated edges in the discovery set =r e

e
1

2
, where e1 is the number of validated edges (i.e., the pairs of microRNAs 

having FDR-adjusted p-values < 0.05 in the discovery set and raw p-values < 0.05 in the validation set). e2 is the 
number of edges detected based on only the discovery set (i.e., the pairs of microRNAs having FDR-adjusted 
p-values < 0.05 in the discovery set).

The numbers e1 of validated edges obtained by the 6 proposed tests are 0 (ST1), 35 (ST5), 37 (ST6), 71 (Fisher), 
0 (twohc4cor) and 440 (twocor). ST6 had the highest validation rate (r = 100.00%), followed by ST5 (r = 94.59%), 
Fisher (r = 88.75%), and twocor (r = 74.83%). In terms of running time, Fisher is the fastest method among the 
6 methods, which took only 2.42 seconds. ST1 is the second fastest method, which took 5.97 seconds. ST5 and 
ST6 took 35.92 seconds and 37.32 seconds, respectively. Twohc4cor used 89.88 seconds, which is around 2.5 more 
times than ST5/ST6. Twocor, the bootstrapping-based method, took the longest time: 31429.21 seconds (i.e., 
8.73 hours). The results of the differential correlation analyses of the 6 methods for the real dataset GSE15008 are 
summarized in Table 1.

Figure 4.  nreject is the number of scenarios with Type I error rate > 0.05, m is the median ranks of power. We set 
ranks as missing value if one of the two corresponding Type I error rates (two scenarios with same sample size, 
variation pattern, g and h) is larger than 0.05. The right panel was obtained based on all scenarios, the left panel 
was obtained based on scenarios including twopcor and twocor.
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Figure 5 showed the validated differential correlation networks based on ST5, ST6, Fisher, and twocor. The 
hubs in the differential correlation networks obtained by ST5 and ST6 are the same, i.e., hsa-miR-143, which 
targets 531 genes (Table S2). These 531 genes are enriched in 5 KEGG pathways (LEISHMANIASIS, PRION 
DISEASES, GNRH SIGNALING PATHWAY, ECM RECEPTOR INTERACTION, and ALZHEIMER’S DISEASE) 
(Table S3). The hub detected by Fisher is has-miR-492, which targets 107 genes (Table S2). These 107 genes are 
not enriched in KEGG pathways. The hub detected by twocor is hsa-miR-363, which targets 573 genes. These 
573 genes are enriched in 5 KEGG pathways (DILATED CARDIOMYOPATHY, CALCIUM SIGNALING 
PATHWAY, ECM RECEPTOR INTERACTION, LONG TERM POTENTIATION, and REGULATION OF 
ACTIN CYTOSKELETON) (Table S3).

Note that microRNAs in the differential correlation network are not necessarily having different mean expres-
sion levels between cases and controls (i.e., not necessarily differentially expressed). Hence, constructing dif-
ferential correlation network can identify disease-associated microRNAs that would be missed in differential 
expression analysis. For example, in our real data analysis, the microRNA hsa-miR-152 in differential correlation 
networks detected by ST5 and ST6 is not differentially expressed between cancer tissue and adjacent normal 
tissue (FDR adjusted p-value of the Wilcoxon signed rank test equals to 0.9997). Please see Fig. 6 (scatter plots of 
expression levels with hsa-miR-152 and has-miR-145) and Fig. 7 (histograms of has-miR-152) for cases and for 
controls, separately.

ST1 ST5 ST6 Fisher twohc4cor twocor

e1 0 35 37 71 0 395

e2 0 37 37 80 0 537
e
e
1
2

/ 94.59% 100.00% 88.75% / 73.56%

Hubs / hsa-miR-143 hsa-miR-143 hsa-miR-492 / hsa-miR-363

Running time(seconds) 5.97 35.92 37.32 2.42 89.88 31429.21

Table 1.  Summary of the differential correlation analyses of the 6 methods for the real dataset GSE15008.

Figure 5.  Validated differential correlation network.

https://doi.org/10.1038/s41598-019-40167-8
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Discussion
A differential correlation network of miRNAs, characterizing the differences between the co-expression network 
among cases and that among controls, could help understand how pairs of miRNAs affect the disease of interest. 
In this article, we proposed six novel robust tests (ST1, ST2, ST3, ST4, ST5, and ST6) for equal correlation and 
compared them with four existing tests (twocor, twopcor, Fisher’s Z- transformation test, and twohc4cor) in the 
construction of differential correlation networks. Simulation studies showed that ST5 performed as well as twocor 
(a bootstrapping-based method), and had the highest powers among the tests that kept the nominal type I error 
rates in all scenarios in our simulation studies. Real data analysis also showed the good performance of ST5. ST5 
had the second highest validation rate (r = 94.59%) in the real data analysis, followed by Fisher (r = 88.75%) and 
twocor (r = 74.83%), while ST6 had the highest validation rate (r = 100%). Furthermore, ST5 is computationally 
fast. Hence, the proposed equal-correlation test ST5 could be used to construct robust differential correlation 
networks in genomic data analysis.

Although twocor showed good performance in simulation studies, twocor detected too many differential 
correlation edges (e1 = 395, e2 = 537), but had the smallest validation rate (r = 73.56%) in the real data analysis. 
Moreover, as a bootstrapping-based method, twocor is computationally intensive. Therefore, twocor probably is 
not suitable to construct differential correlation networks in genomic data analysis, in which the number of nodes 
is large.

In the real data analysis, the rank of the proportion of validated edges is ST6, ST5, Fisher, and twocor. ST1 and 
twohc4cor failed to detect any significant differential correlation based on the discovery sets. It indicates that ST1 
and twohc4cor are not powerful methods, which are also shown in the simulation studies. In the validated differ-
ential correlation networks of ST5, ST6 and twocor, the top three nodes having the largest number of edges are 

Figure 6.  Scatter plot of expression levels with hsa-miR-152 and has-miR-145.

Figure 7.  Histograms of has-miR-152 for cancer tissues and for normal tissues, separately.

https://doi.org/10.1038/s41598-019-40167-8
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same (hsa-miR-143, hsa-miR-145, hsa-miR-363). The miRSystem predicted that hsa-miR-143 (the hub detected 
by ST5 and ST6), has-miR-145, and hsa-miR-363 (the hub detected by twocor) are connected to pathways related 
to lung cancer, such as GNRH signaling pathway18 (empirical-p-value is 0.01490), calcium signaling pathway19 
(empirical-p-value is 0.01872), and TGF-BETA signaling pathway20 (empirical-p-value is 0.02706). However, 
hsa-miR-492 (detected by Fisher) is not related to lung cancer (Table S3). We surmised the reason why the hub 
selected by Fisher is not related to lung cancer is the high false positive rates of the Fisher’s Z- transformation test.

From Fig. 4, we observed that the power increases as sample size increases in our simulation studies, which 
matches our intuition. Specifically, in Fig. 4 the bottom left panel (nCases = nControls = 30), bottom middle 
panel (nCases = nControls = 100), and bottom right panel (nCases = nContrls = 200) have increasing ranges 
of median powers: [0.1, 0.5] (nCases = nControls = 30), [0.3, 0.75] (nCases = nControls = 100), and [0.5, 0.95] 
(nCases = nContrls = 200). Figure S6 contains more examples. (You can download Figure S6 at https://sites.
google.com/view/weiliangqiu/supplementary-documents/figure-s6).

In this article, there are a couple of limitations. Firstly, the sample size (174 NSCLC tissues and 187 normal 
tissues) of the GEO dataset GSE15008 is not very large and we did not find an independent dataset to do valida-
tion. Instead, we randomly split the GSE15008 dataset into two sets: discovery set and validation set. Secondly, we 
could not derive the asymptotic or approximate distribution of the ST5 test statistic yet. Instead, we numerically 
demonstrated that the distribution of the ST5 test under the null hypothesis could be approximated by the chi 
square distribution with one degree of freedom. Further research on the asymptotic distribution of ST5 is needed.

Although ST5 combines ST3 and ST4, the degree of freedom of the corresponding chi square test statistic is 
still one, like ST1, ST2, ST3, and ST4. Although ST6 combines ST3 and ST4, it has 2 degree of freedom. That is, 
ST5 uses more information, in the meantime it does not increase degree of freedom. We think this is the possible 
reason why ST5 overall performed better than ST1, ST2, ST3, ST4, and ST6. Further investigations are warranted.

Heavy tail (h) has more effect on type I error rate than symmetry (g). For instance, for Fisher’s test, the median 
type I error rates are 0.05 (setting: θ1 = θ2 = 1, g = 0, h = 0, vp1, nCase = nControls = 200), 0.52 (setting: θ1 = θ2 = 1, 
g = 1, h = 0, vp1, nCases = nControls = 200), 0.52 (setting: θ1 = θ2 = 1, g = 0, h = 1, vp1, nCases = nCon-
trols = 200), and 0.85 (setting: θ1 = θ2 = 1, g = 1, h = 1, vp1, nCases = nControls = 200), respectively. Please see 
Figure S6.

In summary, we proposed 6 robust tests for equal correlation to construct differential correlation networks 
and found ST5 had overall good performance in both the simulation studies and the real data analysis. However, 
if the expression data follow normal distribution, Fisher-z test should be used due to high computational effi-
ciency and high detection ability. The ST5 test is highly recommended to construct differential correlation net-
work to characterize the effects of the interactions between genes (not limited to mi-RNAs) on diseases (not 
limited to lung cancer) when the expression data violates normality assumption for majority of genes, hence to 
help uncover the molecular mechanisms of complex human diseases.

Methods
To construct a differential correlation network for a set of miRNAs, we first test for each pair of miRNAs if their 
correlation among cases is the same as that among controls using an equal-correlation test. We then set a criterion 
to determine if the test is significant or not (i.e., if the pair of miRNAs should be connected by an edge in the 
differential correlation network or not). To determine if a test is significant or not, we need to control for multiple 
testing since G(G-1)/2 tests are performed, where G is the total number of miRNAs. We claimed that the differ-
ential correlation of a pair of miRNAs is validated if its FDR-adjusted p-value < 0.05 in the discovery set and raw 
p-value < 0.05 in the validation set.

Novel equal-correlation tests.  For given two random variables X and Z, we would like to test if the corre-
lation corr(X, Z) in cases is the same as that in controls. Inspired by the joint test of equal mean and equal variance 
proposed by Ahn and Wang21 and the improved Ahn and Wang’s equal-variance tests proposed by Qiu et al.22, we 
proposed 6 robust tests (ST1, ST2, ST3, ST4, ST5, ST6) for equal correlation without the normality assumption.

ST1 Test.  Let’s consider the following logistic regression:
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n0 represents the number of controls, n1 represents the number of cases, yi = 1 indicates that the i-th subject is 
a case, and yi = 0 indicates that the i-th subject is a control. = = |Pr yp ( 1 w )i

I
i i

I  is the probability that the i-th sub-
ject is a case given w i
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x
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 are sample means of X in cases and controls, respectively. 
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 are sample means of Z in cases and controls, respectively. The score test statistic 

of the above logistic regression for testing the null hypothesis H I
0 : β = 0I

1  is
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That is, when UI is large, we reject β =H : 0I I
0 1 . We can show that ρ ρ= ∑ − ∝ −=

+ ��y y wU ( )I
i
n n

i i1 1 2
0 1  (See the 

section 1 of Supplementary Document I). Hence, testing β =H : 0I I
0 1  is equivalent to test for ρ1 = ρ2.

Note that in logistic regression (1), the random variable yi is conditional on the random variable w i
I.

We denote the score test in (2) as ST1 Test.

ST2 Test.  ST2 test is an improved version of ST1 by replacing the sample variances by the square of median 
absolute deviations (MAD) since MAD is more robust to outliers than standard deviation. Let’s consider the 
following logistic regression:
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The ST2 test statistic for testing the null hypothesis β =H : 0II II
0 1  is

χ= → .T U
var(U )

HII
II

II 1
2

II
0

ST3 Test.  To get more robust weights than w I and w II, we utilized the M type correlation10 in ST3 test. The 
idea of the M type correlation is to use a robust version of trimmed mean to replace sample mean in calculating 
sample correlation. Please refer to Section 2 of Supplementary Document I for the details about the ST3 test.
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ST4 Test.  In ST4 test, we defined the weights w i
IV based on the Spearman’s rank correlation. The formulas are 

below:
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where di = rank(xi)−rank(zi), where rank (x) represents the ranks of x in both case and control, and
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ST5 Test.  Our systematic simulations (see the Result Section) showed that the performances of ST3 and ST4 
are complement of each other. So, we combined the test statistics of ST3 and ST4 to form the test statistic of ST5. 
Specifically, the test statistic of ST5 is the average of TIII and TIV:

= + .T T T( )/2V III IV

It is challenging to derive the asymptotic distribution of the test statistic TV. We guess that the asymptotic 
distribution of the test statistic TV is close to the chi square distribution with one degree of freedom χ( )1

2 . To 
numerically support this guess, we generated a simulated dataset with 50,000 pairs of random variables X and Z 
for 100 cases and 100 controls from a g-and-h distribution under the null hypothesis HV

0 that the correlation 
between X and Z in cases is the same as that in controls (see Simulations Section for more details). We then calcu-
lated the values of TV for each of the 50,000 pairs of random variables X and Z and drew the histogram of these 
50,000 values of TV. Figure 8 showed that the histogram of the test statistic TV is very close to the density of the 

chi-squared distribution with one degree of freedom. Hence, in this article, we assumed that χ→T
HV

1
2

V
0 . Further 

investigation is warranted.

ST6 Test.  We can combine ST3 and ST4 based on the following multiple logistic regression:

Figure 8.  Histogram of the values of the test statistic TV in testing for equal correlation based on 50,000 pairs of 
simulated random variables X and Z having equal correlation between cases and controls. The red curve is the 
density function of the chi square distribution with one degree of freedom χ( )1

2 .
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The proof that the asymptotic distribution of χ→T
HVI

2
2

VI
0  is given in the Supplementary Document II.

Code availability.  The R package including functions for implementing ST1, ST2, ST3, ST4, ST5, ST6, and 
Fisher’s Z-transformation test can be download from the website: https://CRAN.R-project.org/package=corTest.

Data Availability
The datasets analyzed during the current study are available in the GEO repository, https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=gse15008.
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