SCIENTIFIC REPORTS

natureresearch

Received: 13 June 2018 Accepted: 22 January 2019 Published online: 25 February 2019

The 1997 Mars Pathfnder Spacecraft OPENLanding Site: Spillover Deposits from an Early Mars Inland Sea

J.A. P. Rodriguez1, V. R. Baker2, T. Liu 2, M. Zarroca3, B.Travis1, T. Hui2, G. Komatsu ⁴, D. C. Berman1, R. Linares3, M.V. Sykes1, M. E. Banks1,5 & J. S. Kargel1

The Martian outfow channels comprise some of the largest known channels in the Solar System. Remote-sensing investigations indicate that cataclysmic foods likely excavated the channels ~3.4 Ga. Previous studies show that, in the southern circum-Chryse region, their fooding pathways include hundreds of kilometers of channel foors with upward gradients. However, the impact of the reversed channel-foor topography on the cataclysmic foods remains uncertain. Here, we show that these channel foors occur within a vast basin, which separates the downstream reaches of numerous outfow channels from the northern plains. Consequently, foods propagating through these channels must have ponded, producing an inland sea, before reaching the northern plains as enormous spillover discharges. The resulting paleohydrological reconstruction reinterprets the 1997 Pathfnder landing site as part of a marine spillway, which connected the inland sea to a hypothesized northern plains ocean. Our food simulation shows that the presence of the sea would have permitted the propagation of low-depth foods beyond the areas of reversed channel-foor topography.These results explain the formation at the landing site of possible fuvial features indicative of fow depths at least an order of magnitude lower than those apparent from the analyses of orbital remote-sensing observations.

On July 4, [1](#page-7-0)997, the Mars Pathfinder touched down on the lower reaches of Tiu and Ares Valles^{1,[2](#page-7-1)} (Fig. [1](#page-1-0)), two of Mars' largest outflow channels³. Numerous remote-sensing investigations of these outflow channels have linked their origin primarily to large-scale erosion by episodically occurring⁴⁻⁷ cataclysmic floods^{[8,](#page-7-5)[9](#page-7-6)}. The floods were estimated to have had typical depths ranging from \sim 30 to \sim 300 m and flow velocities of up to \sim 30 m/s^{[10](#page-7-7)}. However, during channel-filling discharges, these values may have peaked at ~985 m and ~150 m/s, respectively^{[11–](#page-7-8)13}. Erosional vestiges of these cataclysmic foods, detected by orbital imaging, include sizeable teardrop-shaped islands^{3,[11](#page-7-8),[14](#page-7-10)[,15](#page-7-11)} and streamlined hills^{1[,2](#page-7-1)}. The regional context for this cataclysmic flooding shows that it originated from areas located several hundred 4σ 4σ to several thousand $4.5.13$ $4.5.13$ $4.5.13$ $4.5.13$ kilometers upstream from the Pathfinder site.

Detailed geological mapping shows that the youngest cataclysmic food fows ensued from Tiu Valles, that they truncated the lowest reaches of Ares Vallis, and that their most recent manifestations resurfaced the Pathfnder site $3,14$ $3,14$ (Fig. [1B](#page-1-0); see supplementary methodology for mapping approach). The Pathfinder's camera imaged probable food deposits in the vicinity of the lander, including rounded/semi-rounded pebbles, cobbles, and boulders, some of which show potential imbrication¹. Using the size of the largest boulders and the inferred regional slope values, in combination with empirical relationships derived from terrestrial floods^{[16](#page-7-13)-18}, Smith *et al.*^{[2](#page-7-1)} computed flow velocities of \sim 8 m/s, and flow depths ranging from \sim 10 to \sim 20 m. These values are an order of magnitude or so lower than inferred for the regional cataclysmic flooding peaks noted above. Moreover, the Smith et al.^{[2](#page-7-1)} characterization of the size distribution and angularity of the sediments shows that nearby outcrops comprise their likely source areas.

These results starkly contrast with the much more massive flooding with distal sources that has been reconstructed from the orbital remote-sensing characterizations of these and other outflow channels $10-12$ $10-12$. However, the

¹Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA. ²Department of Hydrology & Atmospheric Sciences, University of Arizona, Tucson, AZ, 85721, USA. ³External Geodynamics and Hydrogeology Group, Department of Geology, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain. ⁴International Research School of Planetary Sciences, Università D'Annunzio, Viale Pindaro 42, 65127, Pescara, Italy. ⁵NASA Goddard Space Flight Center, Goddard, MD, 20771, USA. Correspondence and requests for materials should be addressed to J.A.P.R. (email: alexis@psi.edu)

Figure 1. (A) View of Mars' western hemisphere centered at $2^{\circ}20'34''N$, $49^{\circ}51'57''W$. The dashed white lines trace the planet's largest canyon network, which includes the circum-Chryse outfow channels and Valles Marineris. Tis network converges into the northern lowlands (blue arrows) via Simud and Tiu Valles (area highlighted in white). The red lines and arrows indicate other circum-Chryse outflow channels, which are not part of the network. The base image for panel A is a color-coded shaded-relief Mars Orbiter Laser Altimeter (MOLA) digital elevation model (DEM) (460m/pixel). Credit: MOLA Science Team, MSS, JPL, NASA. **(B)** View showing the topographic transition between the foors of the Simud Interior Basin (SIB) and the Simud/ Tiu Valles system. See panel A for the view's context and location. We removed from the DEM prominent topographic features such as impact craters, chaotic terrains, and teardrop-shaped islands to better resolve the broad-scale elevation changes that characterize the transition. The contact between the SIB and Simud Valles forms a south-facing break in slope that closely follows an elevation of −3,800m (indicated by an indented black line). On the other hand, the contact between the SIB and Tiu Valles consists of two canyons (blue arrows) that exhibit reversed topographic gradients with approximate overfow elevations at −3,700 m (western canyon) and −3,550 m (eastern canyon). The contact between Ares and Tiu Valles is an erosional unconformity (dashed black line)^{[3,](#page-7-2)14}. The crosshair symbol shows the location of the Mars Pathfinder landing site. The elevation ranges are from MOLA-extracted topography (460 m/pixel). Credit: MOLA Science Team, MSS, JPL, NASA. The base image for panel B is part of a Thermal Emission Imaging System (THEMIS) Day IR (infrared) 100 m Global Mosaic [\(http://www.mars.asu.edu/data/\)](http://www.mars.asu.edu/data/). Credit: Christensen *et al*. [61.](#page-8-0) We produced the mosaic areas and maps in this fgure using Esri's ArcGIS® 10.3 sofware [\(http://www.esri.com/sofware/arcgis\)](http://www.esri.com/software/arcgis).

latter estimates mostly agree with values characteristic of ancient megafooding in Iceland and Washington State, respectively produced by sub-glacier discharges and ice-dammed glacial lake failures^{[9,](#page-7-6)[19,](#page-7-16)20}.

The presence of hundreds of kilometers of reversed gradient channel-floor areas leading to lower Simud and Tiu Valles^{[21](#page-7-18)-25} indicates that the previously proposed waning stages in a cataclysmic flood¹¹ cannot explain this discrepancy (Fig. [1B\)](#page-1-0). Tis topographic confguration would have necessarily restricted foods capable of reaching the Pathfinder site to those with stages that gained sufficient elevations to exceed the total relief present in the reversed gradient floors.

A south-facing break in slope at a planetary elevation of −3,800 m comprises the lowest elevation spillover pathway connecting these reversed channel areas to the lower reaches of Simud Valles^{[24,](#page-7-20)[25](#page-7-19)} (Fig. [1B](#page-1-0)). Floodwaters retained below this elevation are hypothesized to have generated paleolake[s21–](#page-7-18)[25.](#page-7-19) However, the full extent of the consequential inundations remains unknown.

Here, we show that this drainage divide encloses a vast basin located within the deepest areas of the outfow channel systems located south of Tiu and Simud Valles (Fig. [2A\)](#page-3-0). Tis basin, which we refer to as the Simud Interior Basin (SIB, 15°41′N to 13°18′S), includes extensive plains as well as numerous interior mesas, some of which have tops reaching as much as several hundred meters above the −3,800 m elevation level. The SIB occupies a total surface area of ~430,000 km^2 (approximately equivalent to that of California), of which 323,000 km² lies below the divide. The basin encloses a total cavity volume of ~80,000 km³, which is similar to that of the Caspian Sea, Earth's most extensive inland water body (see supplementary methodology for approach on volumetric characterizations).

Martian outflow channel activity appears to have been episodic and spanned from the Late Noachian^{[26–](#page-7-21)[29](#page-7-22)} to the Early Amazonian^{[7](#page-7-4)[,14](#page-7-10)[,30](#page-7-23)–35}. However, numerous mapping investigations indicate that outflow channel activ-ity peaked during the Late Hesperian (~[3](#page-7-2).4 Ga)^{3,[4,](#page-7-3)14}, which is also the model age that our impact crater count statistics on the SIB's surface indicate (Fig. S1; see supplementary methodology for approach on surface age determinations).

A texturally smooth sedimentary unit (Fig. [2A](#page-3-0)), which overlaps and embays the foors of numerous outfow channels connected to the basin's periphery (Fig. [2B–D](#page-3-0)), extensively covers the SIB's interior. Tis stratigraphic superposition indicates that the unit's emplacement occurred following peak fooding activity during the Late Hesperian. An equipotential elevation corresponding to the −3,800 m elevation drainage divide delimits the uppermost reaches of these materials (Figs [2A;](#page-3-0) S2). Te SIB's entire inundation due to water ponding and subsequent complete evaporation can best account for the basin's preservation as well as for the presence of sedimentary mantles with uppermost reaches that match the drainage divide's elevation. Proposed alternatives invoke outfow channel histories dominated by debris fow[s5](#page-7-12)[,36](#page-7-25)[,37](#page-7-26) and lava fow[s38](#page-7-27)[–40.](#page-7-28) While highly fuidized debris fows and lavas could have also ponded up to the drainage divide, these fuid-fow processes would have buried the SIB (Fig. S3).

Consequently, regional outfow channel activity must have resulted in the formation of an inland sea within the SIB's confnes (Fig. [3A,](#page-4-0) sketches 1–3; Fig. [3B](#page-4-0)). In this context, we interpret the texturally smooth sedimentary unit to be mostly composed of marine sediments overlying catastrophic food deposits emplaced during the early inundation phases. Lithologically, the sediments are expected to be diverse because the foods would have transported materials eroded from the foor, wall and subsurface stratigraphy of multiple locations in southern circum-Chryse and Valles Marineris (VM), an immense canyon with an extension equivalent to the width of the continental United States. Our observations, however, do not exclude the possibility that older debris flows^{[5](#page-7-12),[36](#page-7-25),[37](#page-7-26)} and lava flows^{38–40}, discharged via the regional outflow channel system, exist within the stratigraphic record buried beneath these marine sediments.

The floors of VM open east into the broader zones of the southern circum-Chryse outflow channels (Fig. [1A](#page-1-0)). This geographic nexus is an indicator that cataclysmic flow discharges that initiated within VM^{4,14} were signifi-cant contributors to the excavation of large outflow channel areas^{4[,14](#page-7-10)} as well as to the northern plains' history of sedimentation^{[3,](#page-7-2)[4](#page-7-3)[,14](#page-7-10)} and potential inundation⁴¹⁻⁴³. However, our knowledge of the precise VM floods' discharge mechanisms, sources, and the paleogeography of their precursor paleolakes/seas, remains incomplete and these issues are still subjects of scientifc research and dispute (see the supplementary background for likely causes of VM cataclysmic floods).

The SIB is uniquely positioned at the convergence of a vast outflow channel system and the eastern VM canyons (Fig. [1A](#page-1-0), blue arrows in Fig. [2A](#page-3-0)). It is also upstream from Simud and Tiu Valles (Fig. [1B,](#page-1-0) white arrows in Fig. [2A\)](#page-3-0). This paleo-geographic setting would have limited the flows reaching Simud and Tiu Valles to spillover foods that followed the formation of the inland sea. A fundamental implication of this observational constraint is that extremely voluminous cataclysmic foods likely dominated the fow type discharges from Mars' most exten-sive outflow channel system into the northern plains (Fig. [3A,](#page-4-0) sketches 1-4). This finding provides additional support to the decades-old hypothesis advocating that a northern plains ocean^{41–50} formed during the Late Hesperian due to cataclysmic floods 42.45 (see the supplementary background for details on the controversy surrounding the Late Hesperian northern ocean hypothesis).

While the SIB's perimeter lacks discernible shoreline features, potential wave-cut terraces have been identifed marking the flanks of numerous mesas in Hydraotes Chaos⁵¹. The $-3,800$ m elevation level consistently forms the upper topographic bound to these terraces (Fig. [2E and F\)](#page-3-0). By analogy to the Aral Sea, we propose that marine terrace formation throughout the inland sea shorelines might have been restricted to submerged areas of relatively high inclination (~0.5° to \ge ~10°, Fig. S4; Aral Sea supplementary text). In contrast, the terraces would have been absent from regions where high evaporation rates would have driven rapid seafront retreat over shallowly submerged, low inclination coastal plains $({\sim}0.01^{\circ}$ to ${\sim}0.015^{\circ}$, Fig. S4; Aral Sea supplementary text).

The inland sea would have been relatively shallow, typically \sim 300 m deep, but reaching depths of as much as ~1800m within Hydraotes Chaos (Fig. S5A). Our simulation of the sea's thermal stability (supplementary materials on the inland sea's thermal stability) shows that the sea would have rapidly shrunk as a result of an initial stage characterized by evaporation rates exceeding the rates of surface freezing. Tis initial stage would have been followed by the formation of a relatively thin ice layer (a few meters thick) covering the sea, which would have rapidly thickened due to high sublimation rates. Also, some of the sea's volume could have been lost through infltration into subsurface regolith materials. Within a few thousand years, the sea would have mostly disappeared.

Figure 2. (A) View of the southern circum-Chryse region centered at 0°29′11″N, 34°0′22″W, including the SIB's drainage divide at an elevation of −3,800m (white line). Te black areas indicate the distribution of smooth sedimentary mantle material, which has upper reaches bounded by the divide topography. The blue arrows and boxes with a red background show the SIB's infow routes from both eastern VM and numerous outflow channels. The boxes with a green background identify Simud and Tiu Valles, which comprise the only outflow routes from the basin (white arrows). The crosshair symbol shows the location of the Mars Pathfinder landing site. The base image for panel A is a color-coded shaded-relief MOLA DEM (460 m/pixel). Credit: MOLA Science Team, MSS, JPL, NASA. **(B** and **C)** Close-up views of SIB contacts with adjoining, more elevated, outflow channel scoured floors. The red line identifies the basin's divide at the −3,800 m elevation and closely traces the upper distribution of its smooth sedimentary unit. The base image for panel B is part of a THEMIS Day IR (infrared) 100m Global Mosaic ([http://www.mars.asu.edu/data/\)](http://www.mars.asu.edu/data/). Credit: Christensen et al.^{[61](#page-8-0)}. The image in panel C is part of a Context Camera (CTX) mosaic (~6 m/pixel). Credit: NASA/JPL. The license terms can be found at pds-imaging.jpl.nasa.gov/portal/mro_mission.html. **(D)** Close-up viewon panel B showing the sedimentary unit's embayment of adjoining bedforms (black arrows). Panel D is a part of a CTX (~6m/pixel) mosaic. Credit: NASA/JPL. Te license terms can be found at pds-imaging.jpl.nasa.gov/portal/ mro_mission.html. **(E)** View showing the distribution of mesas within central Hydraotes Chaos that stand above the −3,800 m elevation level (blue mask). The image is a combined elevation color-coded and shadedrelief MOLA DEM (460m/pixel; credit: MOLA Science Team, MSS, JPL, NASA) over a CTX mosaic (~6m/ pixel; credit: NASA/JPL). Te license terms can be found at pds-imaging.jpl.nasa.gov/portal/mro_mission.html. **(F)** Close-up view on panel E showing how the upper distribution of the terraces fanking the mesas closely follows the −3,800m elevation level (surfaces highlighted in blue are at ≤−3,800m elevation). Te image is a part of a CTX mosaic (~6 m/pixel). Credit: NASA/JPL). The license terms can be found at pds-imaging.jpl.nasa. gov/portal/mro_mission.html. Te CTX mosaic underlies a transparent MOLA-generated blue mask. Credit: MOLA Science Team, MSS, JPL, NASA. We produced the mosaic areas and maps in this fgure using Esri's ArcGIS[®] 10.3 software (http://www.esri.com/software/arcgis).

Our model indicates that no signifcant ice sheets formed, which is consistent with the absence of glacial fow features such as moraines or eskers throughout the basin's interior landscape. Also, the Hydraotes Chaos mesas and knobs form some of the SIB's highest relief features, some reaching above the −3,800m elevation level. However, these promontories lack striations and streamlined or rounded morphologies, which typically form at locations where glaciers overflow prominent topographic features. Instead, wave-cut terraces⁵¹ flank some of their margins (Figs. [2E and F;](#page-3-0) S4). The absence of an ice sheet within the SIB reduces the likelihood that glaciers extending from Tiu Valles produced the landscape that we observe at the Pathfinder site^{[52](#page-8-4)[–54](#page-8-5)}. Glaciers however, appear to have played a more prominent role in the geologic histories of other outflow channel regions^{[6,](#page-7-32)[15,](#page-7-11)54}.

The estimated SIB sea's maximum ponding elevation of $-3,800$ m matches that of the Late Hesperian northern plains ocean's uppermost paleo-shoreline level described in Rodriguez *et al*. [48](#page-8-6) (Fig. [3B\)](#page-4-0), which they determined

Figure 3. (A) Perspective sketches depicting the paleohydrological reconstruction of the SIB's northwestern part and adjoining areas of Simud Valles. Panel (B) shows the sketched region's context and location. Notice that the north direction is towards the bottom right. (1) View of an inland sea margin within the northwestern part of the SIB produced by the progressive impoundment of cataclysmic foods below the drainage divide at the −3,800m elevation separating the basin and Simud Valles. (2) Floods propagating over the sea produce spillover marine discharges onto Simud and Tiu Valles, which reach the Pathfnder landing site and produce an ocean within the northern plains. (3) Following the cataclysmic foods, an inland sea and a northern plains ocean form. Both marine bodies share the same upper shoreline levels at the −3,800m elevation, indicating the presence of an interconnected groundwater table at that time (double-headed arrow). (4) Extensive marine sedimentary deposits, with an upper distribution limited by the drainage divide, are lef behind within the SIB following the sea's disappearance. (**B**) Paleogeographic reconstruction including the two marine bodies formed after the cataclysmic floods (#3 in Panel A). The Pathfinder landing site (crosshair symbol) is located on an enormous spillway that connected the inland sea and the northern ocean. The blue mask over the digital elevation model corresponds to the reconstructed extents of the inland sea and the northern plains ocean. The base map is a MOLA digital elevation model (460m/pixel) centered at 5°31′17″N, 30°51′24″W. Credit: MOLA Science Team, MSS, JPL, NASA.

based on the lowest distribution of potential tsunami backwash channels. Tese shoreline stands closely match the elevation mean that Parker *et al*. [43](#page-7-30) estimated for the Late Hesperian northern ocean shoreline (Contact 2, −3760 m±560m). A shared groundwater table through which the two marine bodies reached hydrostatic equilibrium and topographically equalized shorelines best explains their shared elevations. Tus, this topographic correlation comprises an additional piece of evidence in favor of the northern plains ocean hypothesis^{[41](#page-7-29)[–50](#page-8-1)}. The matched sea levels are also the highest measured seawater elevations, indicating that equalization must have taken place shortly afer the ocean's emplacement. Tis observation indicates signifcant groundwater fow through subsurface conduits^{[55](#page-8-7),[56](#page-8-8)} (Fig. S5), which connected the basin's floor and the northern plains through a regionally extensive groundwater table (Fig. [3A,](#page-4-0) panel 3).

The initial stage in the SIB's development could have been the result of collapse and subsidence over these conduits (Fig. S5), combined with the efect of large-scale erosion due to episodic cataclysmic foods, which mostly occurred between \sim [3](#page-7-2)00²⁹ and \sim 100³ Ma before the Late Hesperian peak in outflow channel activity. While the SIB's drainage divide must have changed during the basin's development and progressive growth, our results indicate that it attained its present position and elevation before the Late Hesperian. To the north, the SIB transitions into broad outfow channel plains (white arrows in Fig. [2](#page-3-0)), wherein infowing cataclysmic foods would have spread out, losing velocity and shedding large volumes of their coarser bedload component[s6](#page-7-32),[7](#page-7-4). This process of sedimentation, along with the potential emplacement of tsunami deposits in the region⁴⁸, would have produced a thick build-up of sedimentary deposits, which impounded later fooding events, thereby leading to the formation of the SIB's sea. Rodriguez *et al*. [57](#page-8-9) showed evidence of an ancient mega-tsunami event in circum-Chryse that was significantly older than those documented in previous work $48,49$ and which consequently could have contributed to the early phases of sedimentation along the SIB's northern margin. Furthermore, its deposits, which include the location of the Viking 1 Lander landing site, exhibit sufficient run-up distances and elevation gains to have reached the SIB. If the ocean was ice-covered, the hydraulic funneling efect resulting from the wave's confned propagation between the ice cover and the ocean foor might have produced extremely high-speed mega-tsunami discharges along the frozen ocean's margins, which could explain the apparent enormity of the mega-tsunami's onshore propagation⁵⁷.

The fluvial sedimentology at the Pathfinder site points to an emplacement history due to floods¹ that were at least an order of magnitude shallower than those reconstructed from remote-sensing data². It also indicates that the latest foods to fow through the Pathfnder site transported a sedimentary bedload that was mostly derived from regional sources^{[2](#page-7-1)}. Numerous investigations indicate that the sudden failure of enormous paleolakes^{[13,](#page-7-9)[22](#page-7-33)} and aquifers^{[3](#page-7-2)} within VM likely produced cataclysmic floods in the lower floors of the circum-Chryse outflow channels^{4[,5](#page-7-12)}, which mostly occur within the SIB's extents (see supplementary background on likely causes of VM cataclysmic floods).

We modeled the abrupt release of $\sim 1.2^{14}$ m³ of lake water from VM into the inland sea during a total period of 72 hours (Fig. [4;](#page-6-0) see supplementary methodology for flood modeling approach). The sea's formation would have submerged the SIB's reversed gradient channel-floor areas leading to lower Simud and Tiu Valles²¹⁻²⁵, thereby providing a constant elevation surface between eastern VM and these outfow channels (yellow arrow in Fig. [4](#page-6-0)). As a consequence, the presence of the inland sea would have permitted the long-distance propagation of low depth foods in southern circum-Chryse.

Our simulation shows an initial peak discharge, after a 24-hour time interval, at 1.0⁹ m³/s, reaching depths and flow velocities of \sim 250 m and \sim 30 m/s, respectively. These depth and velocity values fall within the ranges estimated to have led to the formation of outfow channel multi-kilometer scale features observed in remote-sensing data¹⁰. The simulation shows that the cataclysmic flood significantly raised the water surface elevations (WSEs) above the −3,800m elevation level within the inland sea's extents. However, consistent northwards WSE reductions, as shown in the 24, 36, 48, and 72-hour time steps, indicate that the inland sea's presence could have efectively attenuated the depths of infowing cataclysmic foods. By the 36-hour mark, relatively low depth foods would have initiated marine spillover discharges into the Simud Valles (e.g., blue arrow in Fig. [4](#page-6-0), food depth to the −3,800 elevation level). Tese spillover fows have subsequently expanded eastwards into Tiu Valles during the 48 and 72-hour marks.

The 48 and 72-hour marks show that the floods propagating over the inland sea gained velocity (\sim 10 m/s to \sim 20 m/s) at the spillover boundary into Simud Valles (red arrows in Fig. [4](#page-6-0)). Tus, the spillover foods would have entrained large (multiple meters in size¹¹) clasts derived from the inland sea's northern margin and the outflow channel floors. The acquisition of this sedimentary load explains the fact that the proposed fuvial sediments observed at the Pathfnder site were found to have been likely derived from nearby source areas². By the 72-hour mark, marine spillover floods ~10m in depth and moving at \sim 2m/s would have reached the Pathfinder site. The simulation ends at the 72-hour mark due to an agreement between these hydraulic parameters and those obtained from *in-situ* observations². Our results reconcile the apparent enormity of the cataclysmic regional flooding¹⁰, as inferred from orbital remote-sensing data, with the much less intense fluvial processes documented from *in-situ* observations at the Pathfinder site^{[2](#page-7-1)}.

The simulation reveals abrupt flood velocity losses (\sim 30 m/s to \lt 10 m/s) during flow through Aureum, Hydraotes, and Chryse Chaos (white arrows in Fig. [4](#page-6-0)). The resulting reduced sediment-transport capacity would have led to the dislodging of coarse bedload materials (probably mostly clasts larger than a meter¹¹) into these regions. Moreover, the modeled cataclysmic food discharge would have signifcantly increased the inland sea's depth (Fig. [4\)](#page-6-0), resulting in powerful flood currents with typical underlying seawater depths of several hundred meters. Basal intermixing-induced deceleration, perhaps enhanced along the sea level interface, might have further increased the shedding of bedload materials.

The flooding history of the SIB's region was likely episodic^{[3](#page-7-2),[4,](#page-7-3)[6](#page-7-32)[,7](#page-7-4)}. Variations in the depths and velocities of infowing cataclysmic foods, as well as in the resulting inland sea paleogeographic confgurations, would have likely afected the hydraulic parameters of the foods reaching the Pathfnder site. However, a fundamental interpretation of our modeling is that the formation of an extensive sea would have permitted the foods to reachbeyond the inundated reversed channel foor areas, despite the sepotential variations.

Extensive Late Noachian marine deposits, emplaced when an Earth-like surface hydrologic system is thought to have existed on Mars, likely cover the Eridania basin^{27,58}. In contrast, while the Late Hesperian northern plains ocean hypothesis^{41-[47](#page-8-12)} has gained support in recent years^{[48](#page-8-6)-50}, to date the ocean's floor materials and features have not been unambiguously identified^{3,[14](#page-7-10)}. A fundamental obstacle towards the recognition of these materials is that detailed stratigraphic reconstructions of the northern plains^{[3,](#page-7-2)14} indicate their most probable occurrence as mostly buried beneath the Vastitas Borealis Formation (VBF)^{14,59} (Fig. S6), a geologic unit identified as the Late Hesperian lowland unit on the latest geologic map of Mars³. The VBF covers most of the proposed paleooceanic basin, and it is likely made up of the frozen ocean's geologic residue[45,](#page-8-2)[59](#page-8-13)[,60](#page-8-14). In contrast to the northern plains

Figure 4. Numerical simulation of a cataclysmic flooding event from eastern VM^{[13](#page-7-9)} into the proposed inland sea. The simulation shows the water depths, velocities, and water surface elevations (WSEs) that developed within the inland sea region and adjoining Simud and Tiu Valles during 72 hours following the cataclysmic food event. Row A (0hours) shows an inland sea with a surface elevation at −3,800m (yellow arrow) covering the SIB. Our modeling assumes that this sea existed at the initiation of the cataclysmic food event. The simulation shows WSE northwards reductions in the 24, 36, 48, and 72-hour time steps. By the 36-hour mark, relatively low depth foods propagating over the SIB's northern areas (blue arrow) would have produced marine spillover floods into Simud Valles. The SIB's spillover discharges would have expanded onto Tiu Valles by the 48- and 72-hour marks. The white arrows identify broad zones of flood deceleration, mostly located within Aureum, Hydraotes, and Chryse Chaos. By the 72-hour mark, the foods reached the Pathfnder landing site. The red arrows show abrupt velocity gains as the floods exited the inland sea as vast marine spillover floods. The red pointers indicate the location of the Pathfinder landing site. Our results indicate that at the landing site, the depth and velocity of the floods were 10 m and 2 m/s, respectively. These depth and velocity values are close matches to those estimated in Smith *et al*.^{[2](#page-7-1)}. The simulation was generated using a river flood model (the Martian HEC-RAS 5.0.3). The simulation's base map is a MOLA-DEM (460 m/pixel) shaded relief. Credit: MOLA Science Team, MSS, JPL, NASA. The subsided plateaus in the Aureum Chaos region show no evidence of overfow erosion, indicating that subsidence was subsequent to the sea's formation (Fig. S7)[55](#page-8-7),[62](#page-8-15). Consequently, we corrected the DEM at the contact between this chaotic terrain and the margin of the inland sea by creating a flow barrier (Fig. S7).

paleoocean basin, our numerical modeling and geologic observations indicate that the proposed inland sea, and its frozen residue materials, disappeared within approximately a thousand years (see supplementary materials on the inland sea's thermal stability). Consequently, the basin foor materials might comprise the most extensive Late Hesperian marine sedimentary deposit currently existing at the Martian surface.

Enormous groundwater-fed lakes and vast aquifers are thought to have comprised the sources of the foods that formed the inland sea. These aquifers might have formed during the Middle and Late Noachian^{[56](#page-8-8)} [\sim 3.94 to \sim 3.71 Ga^{[3](#page-7-2)} as well as during the Hesperian Period⁴⁵ [~3.71 to ~3.37 Ga³ due to the gradual assimilation into the subsurface of surface and atmospheric water. Consequently, some of the aquifers possibly existed for ~540Ma. Furthermore, it is possible that these aquifers were geothermally heated⁵⁹ and could have had contact with hydrothermal systems, creating environments with potential sources of liquid water, nutrients and energy for putative organisms. Tus, we suggest that this inland sea's sedimentary record is a prime target for missions to search for evidence of ancient life within early Mars aquifers.

References

- 1. Golombek, M. P. *et al*. Overview of the Mars Pathfnder mission and assessment of landing site predictions. *Science* **278**(5344), 1743–1748, <https://doi.org/10.1126/science.278.5344.1743> (1997).
- 2. Smith, P. H. *et al*. Results from the Mars Pathfinder Camera. *Science* **278**(5344), 1743–1748, [https://doi.org/10.1126/](https://doi.org/10.1126/science.278.5344.1758) [science.278.5344.1758](https://doi.org/10.1126/science.278.5344.1758) (1997).
- 3. Tanaka, K. L. *et al*. Geologic map of Mars. U.S. Geological Survey Scientifc Investigations Map 3292, scale1:20,000,000, [http://pubs.](http://pubs.usgs.gov/sim/3292/) [usgs.gov/sim/3292/,](http://pubs.usgs.gov/sim/3292/) Date of access: 03/14/2018 (2014)
- 4. Rotto, S. & Tanaka, K. L. Geologic/geomorphic map of the Chryse Planitia Region of Mars Geologic map of the western equatorial region of Mars, U.S. Geological Survey Scientific Investigations Map, I-2441-A, scale1: 5,000,000, [http://pubs.er.usgs.gov/](http://pubs.er.usgs.gov/publication/i2441) [publication/i2441,](http://pubs.er.usgs.gov/publication/i2441) Date of access: 03/14/2018 (1995).
- 5. Rodriguez, J. A. P., Tanaka, K. L., Miyamoto, H. & Sasaki, S. Nature and characteristics of the fows that carved the Simud and Tiu outfow channels, Mars. *Geophys. Res. Lett.* **33**, L08S04,<https://doi.org/10.1029/2005GL024320>(2006).
- 6. Rodriguez, J. A. P. *et al*. Evidence for Middle Amazonian catastrophic fooding and glaciation on Mars. *Icarus* **242**, 202–210 (2014).
- 7. Rodriguez, J. A. P. *et al*. Did the outfow channels mostly form during the Amazonian Period? *Icarus* **257**, 387–295 (2015).
- 8. Baker, V. R. & Milton, D. J. Erosion by catastrophic foods on Mars and Earth. *Icarus* **23**, 27–41 (1974).
- 9. Baker, V. R. *et al*. Fluvial geomorphology on earth-like planetary surfaces: A review. *Geomorphology* **245**, 149–182 (2015).
- 10. Wilson, L., Ghatan, G. J., Head, J. W. III & Mitchell, K. L. Mars outfow channels: A reappraisal of the estimation of water fow velocities from water depths, regional slopes, and channel floor properties. *J. Geophys. Res.* **109**, E09003, [https://doi.](https://doi.org/10.1029/2004JE002281) [org/10.1029/2004JE002281](https://doi.org/10.1029/2004JE002281) (2004).
- 11. Komatsu, G. & Baker, V. R. Paleohydrology and food geomorphology of Ares Vallis. *J. Geophys. Res.* **102**, 4151–4160 (1997).
- 12. Craddock, R. A. & Tanaka, K. L. Estimates of the Maximum and Minimum Flow Velocities of the Circum-Chryse Outfow Channels, Mars Pathfnder Landing Site Workshop II: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington, Proceedings of the Workshop held 24–30 September, 1995 in Spokane, Washington. Edited by Golombek, M. P., Edgett, K. S. & Rice, J. W. Jr. LPI Technical Report 95-01, Part 1. Houston, TX: Lunar and Planetary Institute, p.9 (1995).
- 13. Warner, N. H., Sowe, M., Gupta, S., Dumke, A. & Goddard, K. Fill and spill of giant lakes in the eastern Valles Marineris region of Mars. *Geology* **41**, 675–678 (2013).
- 14. Tanaka, K. L., Skinner, J. A. & Hare, T. M. Geologic map of the northern plains of Mars. U.S. Geological Survey Scientific Investigations Map 2888, scale 1:15,000,000 (1mm=15km) at 90° N and 1:7,500,000 at 0° N, [http://pubs.usgs.gov/sim/2005/2888/,](http://pubs.usgs.gov/sim/2005/2888/) Date of access: 03/14/2018 (2005).
- 15. Pacifci, A., Komatsu, G. & Pondrelli, M. Geological evolution of Ares Valles on Mars: Formation by multiple events of catastrophic fooding, glacial and periglacial processes. *Icarus* **202**(1), 60–77 (2009).
- 16. Komar, P. D. Selective gravel entrainment and the empirical evaluation of fow competence. *Sedimentology* **34**(6), 1165–1176, [https://](https://doi.org/10.1111/j.1365-3091.1987.tb00599.x) doi.org/10.1111/j.1365-3091.1987.tb00599.x (1987).
- 17. Komar, P. D. In *Floods: Hydrological, Sedimentological and Geomorphological Implications*, Beven, K. & Carling, P. Eds, pp. 107–130 (Wiley, New York, 1989).
- Komar, P. D. & Carling, P. A. Grain sorting in gravel-bed streams and the choice of particle sizes for flow-competence evaluations. *Sedimentology* **38**(3), 489–502,<https://doi.org/10.1111/j.1365-3091.1991.tb00363.x> (1991).
- 19. Malin, M. C. & Eppler, D. B. Catastrophic foods of the Jokulsa a Fjollum, Iceland. (Abstract) In Holt, H. (Ed.), *Reports of Planetary Geology Program* (*NASA Technical Memorandum* 84211) Washington, D.C.: U.S. Government Printing Office (1981).
- 20. O'Connor J. E. & Baker, V. R. Magnitudes and implications of peak discharges from glacial Lake Missoula. *Geol. Soc. Am. Bull*. **104**, 267–279, doi.org/10.1130/0016-7606(1992)104<0267:MAIOPD>2.3.CO;2 (1992).
- 21. Lucchitta, B. K. & Ferguson, H. M. Chryse basin channels: Low gradients and ponded fows. *J. Geophys. Res.* **88**, A553–A568 (1983).
- 22. Harrison, K. P. & Chapman, M. G. Evidence for ponding and catastrophic foods in central Valles Marineris, Mars. *Icarus* **198**, 351–364 (2008).
- 23. Coleman N. M. & Baker V. R. Surface morphology and origin of outfow channels in the Valles Marineris region, chapter 9, 172–191. In *Megafooding on Earth and Mars*, (Eds) Burr, D., Carling, P. A. & Baker, V. R., Cambridge University Press (2009).
- 24. Rodriguez et al. Did periglacial lakes develop within Martian outflow channels? 46th Lunar and Planetary Science Conference, #2306 (2015).
- 25. Pajola, M. et al. The Simud-Tiu Valles hydrologic system: A multidisciplinary study of a possible site for future Mars on-site exploration. *Icarus* **268**, 355–381,<https://doi.org/10.1016/j.icarus.2015.12.049> (2016).
- 26. Carr, M. H. Formation of Martian food features by release of water from confned aquifers. *Geophys. Res. Lett.* **85**, 2995–3007 (1979).
- 27. Irwin, R. P. III, Howard, A. D. & Maxwell, T. A. Geomorphology of Ma'adim Vallis, Mars, and associated paleolake basins. *J. Geophys. Res.* **109**, E12009,<https://doi.org/10.1029/2004JE002287>(2004).
- 28. Irwin, R. P. III & Grant, J. A. Large basin overfow foods on Mars, In Burr, D. M., Carling, P. A. & Baker, V. R. (eds), *Megafooding on Earth and Mars*. Cambridge, UK, 209–224 (Cambridge University Press, 2009).
- 29. Warner, N. H. *et al*. Retreat of a giant cataract in a long-lived (3.7–2.6 Ga) martian outfow channel. *Geology* **38**(9), 791–794, [https://](https://doi.org/10.1130/G31268.1) doi.org/10.1130/G31268.1 (2010).
- 30. Fuller, R. R. & Head, J. W. III Amazonis Planitia—The role of geologically recent volcanism and sedimentation in the formation of the smoothest plains on Mars. *J. Geophys. Res*., **107**, E10, 11-1-11-25,<https://doi.org/10.1029/2002JE001842> (2002).
- 31. Plescia, J. B. Cerberus Fossae, Elysium, Mars—A source for lava and water. *Icarus* **164**, 79–95 (2003).
- 32. Dohm, J. M. *et al*. Recent geological and hydrological activity on Mars—Te Tarsis/Elysium corridor. *Planet Space Sci.* **56**(7), 985–1013,<https://doi.org/10.1016/j.pss.2008.01.001>(2008).
- 33. Vaucher, J. *et al*. Te volcanic history of central Elysium Planitia—Implications for Martian magmatism. *Icarus* **204**, 418–442 (2009). 34. Hamilton, C. W., Fagents, S. A. & Wilson, L. Explosive lava-water interactions in Elysium Planitia, Mars—Constraints on the formation of the Tartarus Colles cone groups. *J. Geophys. Res.* **115**, E9,<https://doi.org/10.1029/2009JE003546> (2010).
- 35. Cassanelli, J. P. & Head, J. W. Large-scale lava-ice interactions on Mars: Investigating its role during Late Amazonian Central Elysium Planitia volcanism and the formation of Athabasca Valles. *Planet Space Sci.* **158**, 96–109,<https://doi.org/10.1016/j.pss.2018.04.024,> (2018).
- 36. Nummedal, D. & Prior, D. B. Generation of Martian chaos and channels by debris fows. *Icarus* **45**, 77–86 (1981).
- 37. Tanaka, K. L. Debris-fow origin for the Simud/Tiu deposits on Mars. *J. Geophys. Res.* **104**(E4), 8637–8652 (1999).
- 38. Leverington, D. W. A volcanic origin for the outfow channels of Mars: Key evidence and major implications. *Geomorphology* **132**, 51–75 (2011).
- 39. Hopper, J. P. & Leverington, D. W. Formation of Hrad Vallis (Mars) by low viscosity lava fows. *Geomorphology* **207**, 96–113 (2014). 40. Leverington, D. W. Is Kasei Valles (Mars) the largest volcanic channel in the solar system? *Icarus* **301**, 37–57, [https://doi.](https://doi.org/10.1016/j.icarus.2017.10.007)
- [org/10.1016/j.icarus.2017.10.007](https://doi.org/10.1016/j.icarus.2017.10.007) (2018). 41. Parker, T. J., Saunders, R. S. & Schneeberger, D. M. Transitional morphology in west Deuteronilus Mensae, Mars: Implications for
- modifcation of the lowland/upland boundary. *Icarus* **82**, 111–145 (1989).
- 42. Baker, V. R. *et al*. Ancient oceans, ice sheets and the hydrological cycle on Mars. *Nature* **352**, 589–594 (1991).
- 43. Parker, T. J., Gorsline, D. S., Saunders, R. S., Pieri, D. C. & Schneeberger, D. M. Coastal geomorphology of the Martian northern plains. *J. Geophys. Res.* **98**, 11061–11078 (1993).
- 44. Head, J. W. *et al*. Possible ancient oceans on Mars: Evidence from Mars Orbiter Laser Altimeter data. *Science* **286**, 2134–2137 (1999).
- 45. Cliford, S. M. & Parker, T. J. Te evolution of the Martian hydrosphere: Implications for the fate of a primordial ocean and the current state of the northern plains. *Icarus* **154**, 40–79 (2001).
- 46. Oehler, D. Z. & Allen, C. C. Giant polygons and mounds in the lowlands of Mars: signatures of an ancient ocean? *Astrobiology* **12**(6), 601–15 (2012).
- 47. Moscardelli, L., Dooley, T., Dunlap, D., Jackson, M. & Wood, L. Deep-water polygonal fault systems as terrestrial analogs for largescale Martian polygonal terrains. *GSA Today* **22**, 4,<https://doi.org/10.1130/GSATG147A.1> (2012).
- 48. Rodriguez, J. A. P. *et al*. Tsunami waves extensively resurfaced the shorelines of an early Martian ocean. *Scientifc Reports* **6**, Article Number 25106, <https://doi.org/10.1038/srep25106> (2016).
- 49. Costard, F. *et al*. Modeling tsunami propagation and the emplacement of thumbprint terrain in an early Mars ocean, J. *Geophys. Res. Planets* **122**, 633–649, <https://doi.org/10.1002/2016JE005230>(2017).
- 50. Citron, R. I. *et al*. Timing of oceans on Mars from shoreline deformation. *Nature* **555**, 643–646 (2018).
- 51. Ori, G. G. & Mosangini, C. Complex depositional systems in Hydraotes Chaos, Mars: An example of sedimentary process interactions in the Martian hydrological cycle. *J. Geophys. Res.* **103**, 22713–22723 (1998).
- 52. Lucchitta, B. K. Pathfnder Landing Site: Alternatives to catastrophic foods and an Antarctic ice-fow analog for outfow channels on Mars. 29th Lunar and Planetary Science Conference, #1287 (1998).
- 53. Chapman, M. G. & Kargel, J. S. Observations at the Mars Pathfnder site: Do they provide "unequivocal" evidence of catastrophic fooding? *J. Geophys. Res.* **104**(E4), 8671–8678 (1999).
- 54. Lucchitta, B. K. Antarctic ice streams and outfow channels on Mars. *Geophys. Res. Lett.* **28**, 403–406 (2001).
- 55. Rodriguez, J. A. P. *et al*. Outfow channel sources, reactivation, and chaos formation, Xanthe Terra, Mars. *Icarus* **175**, 36–57 (2005). 56. Rodriguez, J. A. P. *et al*. Martian outfow channels: How did their source aquifers form, and why did they drain so rapidly? *Scientifc Reports* **5**, Article number: 13404,<https://doi.org/10.1038/srep13404>(2015).
- 57. Rodriguez, J. A. P. *et al*. A NASA spacecraf may have landed on an early Mars mega-tsunami deposit in 1976. 50th Lunar and Planetary Science Conference, #2132 (2019).
- 58. Michalski, J. R., Noe Dobrea, E. Z., Niles, P. B. & Cuadros, J. Ancient hydrothermal seafoor deposits in Eridania basin on Mars. *Nature Communications*, **8**, Article number: 15978,<https://doi.org/10.1038/ncomms15978>(2017).
- 59. Kreslavsky, M. A. & Head, J. W. Fate of outflow channel effluent in the northern lowlands of Mars: The Vastitas Borealis Formation as a sublimation residue from frozen ponded bodies of water. *J. Geophys. Res.* **107**, 5121,<https://doi.org/10.1029/2001JE001831> (2002).
- 60. Mouginot, J., Pommerol, A., Beck, P. & Kofman, W. & Cliford, S. M. Dielectric map of the Martian northern hemisphere and the nature of plain flling materials. *Geophys. Res. Lett.* **39**, L02202,<https://doi.org/10.1029/2011GL050286> (2012).
- 61. Christensen, P. R., Gorelick, N. S., Mehall, G. L. & Murray, K. C. *THEMIS Public Data Releases*, Planetary Data System node, Arizona State University,<http://themis-data.asu.edu>, Date of access: 12/21/2018.
- 62. Rodriguez, J. A. P. *et al*. Control of impact crater fracture systems on subsurface hydrology, ground subsidence, and collapse, Mars. *J. Geophys. Res.* **110**, E06003,<https://doi.org/10.1029/2004JE002365> (2005).

Acknowledgements

J.A.P.R. is grateful to Ken L. Tanaka for his advice and guidance during his early investigations of the Martian chaotic terrains and outflow channels. The team is grateful to three anonymous reviewers for their insightful comments. MZ's contribution was supported by the Serra-Húnter Fellow. We are also grateful to Elaine Owens and Alexander Cox for their insightful editing of the manuscript.

Author Contributions

J.A.P.R. identifed the Simud Interior Basin (SIB) and developed the core hypotheses, wrote most of the main text, prepared Figures 1, 2 and 3B, and the Supplementary Figures 2, 4, 5A, 5B, and 7. V.R.B. contributed to the overall design and structure of the manuscript and provided critical theoretical refnements. T.L. and T.H. ran the catastrophic food numerical models shown in Fig. 4. M.Z., R.L. produced Fig. 3B and Supplementary Figures 3, 5C, and 6. B.T. produced the sea's thermal stability numerical model supplement. M.S. indicated the Aral Sea as Earth potential analog to the Simud Interior Basin and M.Z., R.L. and J.A.P.R. produced the related supplement. G.K., D.B., M.B. and J.S.K. contributed to the development of specifc aspects of the proposed hypotheses and the overall presentation of the work. D.B. generated the CTX topography used in the analyses of Hydraotes Chaos presented in Fig. S4C. All authors have reviewed the manuscript and agreed to its submission. *Dr. Tomas Platz estimated the production rates for impact craters \geq 30 km in diameter.

Additional Information

Supplementary information accompanies this paper at [https://doi.org/10.1038/s41598-019-39632-1.](https://doi.org/10.1038/s41598-019-39632-1)

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International \bigcirc License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit [http://creativecommons.org/licenses/by/4.0/.](http://creativecommons.org/licenses/by/4.0/)

 $© The Author(s) 2019$