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Abstract

Purpose—The diffusion MRI “b-vector” table describing the diffusion sensitization direction can 

be flipped and permuted in dimension due to different orientation conventions used in scanners 

and incorrect or improperly utilized file formats. This can lead to incorrect fiber orientation 

estimates and subsequent tractography failure. Here, we present an automated quality control 

procedure to detect when the b-table is flipped and/or permuted incorrectly.

Methods—We define a “fiber coherence index” to describe how well fibers are connected to each 

other, and use it to automatically detect the correct configuration of b-vectors. We examined the 

performance on 3981 research subject scans (Baltimore Longitudinal Study of Aging), 1065 

normal subject scans of high image quality (Human Connectome Project), and 202 patient scans 

(Vanderbilt University Medical Center), as well as 9 in-vivo and 9 ex-vivo animal data.

Results—The coherence index resulted in a 99.9% (3979/3981) and 100% (1065/1065) success 

rate in normal subject scans, 98% (198/202) in patient scans, and 100% (18/18) in both in-vivo 

and ex-vivo animal data in detecting the correct gradient table in datasets without severe image 

artifacts. The four failing cases (4/202) in patient scans, and two failures in healthy subject scans 

(2/3981), all showed prominent motion or signal dropout artifacts.
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Conclusions—The fiber coherence measure can be used as an automatic quality assurance 

check in any diffusion analysis pipeline. Additionally, the success of this fiber coherence measure 

suggests potential broader applications, including evaluating data quality, or even providing 

diagnostic value as a biomarker of white matter integrity.
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Introduction

Diffusion-weighted magnetic resonance imaging (dMRI) is increasingly used to investigate 

the structural geometry of the brain, with a range of applications in both clinical and basic 

neuroscience (1). For example, dMRI is currently the only technique able to infer the 

anatomical white matter connections of the in vivo brain, in a process known as fiber 

tractography (2, 3). Additionally, dMRI is sensitive to tissue microstructure, with the 

potential to provide physically and physiologically meaningful microstructural tissue 

parameters (4). In both cases, the process from data acquisition to final metric is a multi-step 

procedure with variables and parameters that act as input throughout; the validity and 

accuracy of these parameters are necessary for meaningful results.

A typical dMRI acquisition is described by three key pieces of information. First, the 

acquisition creates the visually displayed 4-dimensional set of images volumes. These 

include both non-diffusion weighted (i.e., the b0 image) and diffusion-weighted images 

(DWIs), each sensitized to diffusion along a spatial direction. Second, the set of volumes is 

associated with a set of “b-values” - a parameter that describes the amount of diffusion 

weighting in each image volume. A scan protocol consists of one or more volumes with b-

values equal to 0 s/mm2 (hence the name b0 image) and usually a larger number of DWIs, 

with typical b-values on the order of 1,000 s/mm2. Third, each entry in the set of b-values is 

associated with a sensitization direction, known as a “b-vector”. The list of b-vectors is 

commonly written as a table and defined in the scan protocol. This table provides 

information about the direction that each image is sensitive to diffusion in, containing a unit 

vector (Xi+Yj+Zk) corresponding to each diffusion-weighted image. Together, the diffusion 

images, the b-values, and the b-vectors can be fit to a number of diffusion models in order to 

reconstruct voxel-wise estimates of tissue microstructure, fiber geometries, and axonal 

orientations, for example using the diffusion tensor (5, 6). The fiber orientation information 

is often visualized as diffusion encoded color (DEC) maps (where red, green, and blue 

represent diffusion primarily in right/left, anterior/posterior, and superior/inferior directions) 

(7) or as vector maps (where sticks point in the direction of greatest diffusivity) (8, 9) which 

allows qualitative representation of the local fiber orientation (Figure 1A). These 

orientations can then be followed in a step-wise manner in order to reconstruct entire 

pathways using fiber tractography (3, 10, 11). Note that the set of b-values and b-vectors 

specified in the acquisition design may not be precisely reflected in performed experiment 

(e.g., due to patient motion, software optimization, hardware considerations, etc.), thus it is 

important to interpret the dMRI acquisition from files generated during the scan process. 

Finally, the description of dMRI experiments in the literature uses a perhaps more rich 
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vocabulary that is strictly necessary. For clarity, in the remainder of the manuscript we 

describe the set of gradient directions as “b-vectors”, the “b-table”, or the diffusion 

“scheme”.

Despite the apparent simplicity in collecting and applying these sets of information, there 

are several ways that they can be corrupted, inaccurate, or incorrectly utilized. Specifically, 

the b-vectors can be a cause of orientation mismatch. For example, the X, Y, and Z 

directions of these vectors may not match the images first, second, and third dimensions, 

respectively. This could be due to an erroneous coordinate system (i.e., scanner bore versus 

patient coordinates), incorrect neuroimaging header information (in the creation of 

standardized medical image or neuroimaging file formats including NIFTI, PAR/REC, or 

DICOM files), incorrect slice collection order (e.g., bottom up or top down), or simple 

human error (e.g., assign a wrong b-table file for post-processing). In these cases, one error 

often encountered is a “flip” of a single diffusion direction. For example, the first (or any) 

dimension may be erroneously assigned to the patients left, when it is in fact a gradient to 

the patients right (Figure 1B). While the DEC map remains unchanged (in addition to 

various rotationally invariant scalar maps such as fractional anisotropy and mean 

diffusivity), and may actually pass a cursory visual inspection, the vector maps will point in 

the wrong direction, and accurate tractography cannot be adequately performed. Similarly, 

the b-vectors can also be incorrectly permuted (Figure 1C). In this case, both DEC and 

vector maps are clearly incorrect (although scalars remain the same), and again, tractography 

cannot be appropriately performed. A visual inspection of the data is highly recommended 

in any quality assurance assessment of diffusion MRI (12–14), where mistakes in the 

gradient table should be caught, and corrected for.

In our experience, practical failures in dMRI experiment interpretation occur most often 

when pulling data off the scanner and converting it to the desired neuroimaging format. For 

example, it is not uncommon to work with image data that has been converted to some 

radiological or neurological view, or standard coordinate system (LPS, RAS, etc.) at the 

same time forgetting to apply the same transformations to the gradient table. Alternatively, 

the wrong transformation can be applied when converting to standard formats, caused either 

by inaccurate image header attributes or copying headers from existing files (while replacing 

the image matrix) without checking that the header information is correct. In addition, the 

creator of the file may not know that the 1st, 2nd, and 3rd dimension are uniquely defined 

based on anatomy in the header (or may not know how to define this). Some versions of 

commonly used third party tools were not designed with dMRI in mind and make 

manipulation of such data precarious with loose interpretation of absolute coordinate 

systems. Similarly, many imaging formats have one or more transform matrices defined in 

the header, indicating to the software reading it how it should be transformed and displayed, 

and many software packages handle these transforms in different ways. Any change in the 

coordinate system can cause this mismatch, for example moving to common atlas spaces, or 

registering across subjects or longitudinal time points. Another point of b-table error, 

particularly in our experience with animal scanners, is whether the diffusion magnetic 

gradients are defined based on the image matrix (readout, phase encode, and slice direction) 

or based on the bore of the scanner. Although this has largely been mitigated in human 

scanners (defined based on the image matrix by all major vendors), it has still caused 
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frustration in the pre-clinical environment. Finally, human intervention can cause errors in 

the tables, for example entering the incorrect gradient table by hand, or using historical 

tables not defined on the scanner itself.

In this study, we present an automated check for whether the b-table is flipped and/or 

permuted incorrectly. This is realized by using a novel “fiber coherence index” which 

describes how well fibers are connected to each other by quantifying coherence of 

reconstructed orientations. With the assumption that brain white matter should result in 

coherent vector orientations, this function checks all combinations of b-vector permutations 

and/or flips in order to automatically detect, and correct, incorrect b-vectors. This quality 

assurance process is tested on both high-quality and clinical-quality human and animal 

datasets, including 3981 research subject scans, 1065 normal subject scans of high image 

quality, 202 patient scans, 9 animal in-vivo scans, and 9 animal ex-vivo scans, to examine 

the performance of this novel index. This index was implemented as part of a quality 

assurance and sanity check in one step of the diffusion pre-processing pipeline and is 

publically available in the DSI Studio diffusion software package (http://dsi-

studio.labsolver.org).

Methods

Here, we begin by introducing the fiber coherence metric and how this was used to 

determine the correct b-vectors table. Experimental validation of this method was performed 

using four collections of datasets, two human and two non-human primates, that differ 

greatly in data quality, data size, and acquisition conditions.

Fiber Coherence

The fiber coherence index, quantifies the number of pairs of neighboring fiber orientations 

that are coherent, and weights them by their anisotropy values:

C = ∑
∀ u, v

I 〈d , u〉 > cos 30° I 〈d , v〉 > cos 30° ( f (u) + f (v)) 1

Here, u, v are unit vectors of a pair of neighboring fiber orientations. The summation iterates 

through all possible pairs u, v  in the image volume. In our implementation, we only 

iterated fiber orientations with a fractional anisotropy (FA) value greater than the Otsu’s 

threshold (15) (a clustering-based image thresholding method used to determine the 

optimum threshold separating two image classes in order to minimize intra-class variance) 

multiplied by 0.6 to ignore background noisy fibers and isolate white matter voxels, from 

which we expect coherency. In addition, in our implementation, we used only the 26 

neighboring voxel configurations. d  is a unit vector providing the displacement orientation 

of the neighboring voxels. For example, if u, v were resolved at voxel coordinates of a , b , 

then d = ( a − b )/ | a − b |. The coherence was determined by |〈d , u〉 | > cos 30° , which 

counted fiber orientations that form an inner-angle less than 30 degrees with the 

displacement vector. The function I() returns one if the condition is true, zero if false. f (u)
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provides a weighting using the anisotropy value of the resolved fiber u. This anisotropy 

value can be replaced by a fiber volume fraction, or other measure of interest from different 

reconstruction methods to achieve the same purpose. It is important to note that each voxel 

can have more than one resolved fiber orientations, for example if using a model that is able 

to resolve crossing fibers. This index was implemented as part of a quality assurance and 

sanity check in one step of the diffusion pre-processing pipeline and is publically available 

in the DSI Studio diffusion software package (http://dsi-studio.labsolver.org).

B-table corrections

There are a total of 24 possible combinations of b-vector permutation and flipping (Table 1), 

of which only one describes the correct gradient orientation with respect to the image 

volumes themselves. While a local coherence is calculated for each imaging voxel, the 

summation calculates a total coherence index across the white matter (Equation 1). For each 

individual dataset, we calculated the total coherence for all 24 possible configurations, 

selected the one resulting in the largest white matter coherence, and designated this as the 

“correct” b-vector configuration. For reference, the configurations of the example dataset of 

Figure 1 for case “B” (flip) and case “C” (permute) have a total coherence index (summed 

across all white matter) that is only 86% and 84% that of case “A” (the correct 

configuration), respectively. Thus, in this example, the maximum coherence value rightly 

determines the correct b-vector scheme.

Note that the raw value of the coherence index will be dependent on variables such as brain 

size (number of voxels in summation) and resolution, and is thus comparable only across the 

24 combinations of b-vector schemes themselves, and not necessarily across subjects or 

datasets (see Discussion). The index is calculated and stored during voxel-wise 

reconstruction in DSI Studio.

The datasets

All human datasets were acquired after informed consent under supervision of the project 

Institutional Review Board. This study accessed only de-identified patient information.

The human datasets were composed of the 1200 subject (age range 22–35) data release of 

the human connectome project (HCP) acquired and provided by the Washington University– 

University of Minnesota HCP consortium (16, 17). Diffusion acquisition and processing are 

described in detail in (16, 18). Briefly, this includes very high-resolution acquisition (1.25 

mm isotropic), multiple diffusion weightings (b=1000, 2000, and 3000 s/mm2), with 96 total 

volumes for each b-value (6 b0 + 90 DWIs), resulting in 288 total volumes per scan. Data 

were processed for eddy currents, susceptibility distortions, and motion (19, 20). In total, 

1065 HCP datasets included diffusion data, and were incorporated in this study.

The “clinical-quality” datasets were composed of 202 patients scanned at Vanderbilt 

University Medical Center using a standard diffusion acquisition. This included a single b-

value (b=1000 s/mm2), with 33 volumes (1 b0 + 32 DWIs), and acquired at 2.5 mm 

isotropic resolution. Diffusion data was processed for eddy currents, susceptibility 

distortions, and motion (19, 20).

Schilling et al. Page 5

Magn Reson Imaging. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dsi-studio.labsolver.org/


An additional 3981 diffusion datasets from research subjects (age range 35–90) were 

acquired from the Baltimore Longitudinal Study of Aging (BLSA), with acquisitions typical 

of research and clinical studies (in contrast to the high-resolution, high-quality HCP dataset). 

For this study, we used data acquired from 2009 to present on the same scanner (a 3.0T 

Philips Achieva scanner, referred to as site number 10). Acquisition consists of a single b-

value (b=700 s/mm2), with 33 volumes (1 b0 + 32 DWIs), acquired axially at 0.8×0.8mm 

resolution with a slice thickness of at 2.2 mm. This dataset includes a total of 934 individual 

subjects, each scanned anywhere from 1 to 16 times, acquired longitudinally over multiple 

imaging sessions – with typically 2 scans acquired per imaging session.

The animal model used in this study is the squirrel monkey, a commonly used primate in 

neuroscience (21–24), and specifically diffusion MRI research (25–27). The data were 

acquired as part of the creation of a digital atlas of the squirrel monkey brain (28–32). Here, 

we have chosen to use 9 ex vivo and 9 in vivo squirrel monkey datasets. Ex vivo acquisition 

permits extended scan times, allowing increased image resolution, increased signal to noise 

ratio, and increased diffusion volumes. The acquisition in this study included multiple b-

values (3,000 and 9,000 s/mm2), with a total of 208 volumes (8 b0 + 200 DWIs), acquired at 

0.300 mm isotropic resolution. The in vivo dataset can be considered of more clinically-

feasible quality, containing a single b-value (1,000 s/mm2), 33 volumes (1 b0 + 32 DWIs), 

and acquired at 1 mm isotropic resolution.

Methodological Validation

For all datasets, the gradient table was first corrupted by randomly selecting and applying a 

combination of permutation and/or direction flipping (Table 1). This gradient table was 

input, along with the appropriate imaging data, into the DSI Studio diffusion tractography 

pipeline which consists of creating a “source file” (including the image volumes, b-values, 

and corrupted b-vectors) followed by voxel-wise reconstruction of the diffusion tensor. A 

“check b-table” flag was made available in both the GUI and command line DSI Studio 

interface, which was turned-on for all datasets. This flag runs the methodology described 

above, and automatically determines and corrects the b-vector table. This “corrected” table 

was extracted, and compared to the original gradient table. Of note, if a b-table correction is 

performed the user is informed both through the graphical interface and by naming 

conventions of the .fib (DSI Studio file format for fiber tracking) file.

Results

We validated the method on both human and animal models, and include both high-quality 

datasets as well as more clinically-feasible quality datasets for each model. Example b0 

images, DWIs, and FA maps are shown in Figure 2. Figure 2A shows an example of the 

HCP subject data; Fig. 2B shows the patient scans acquired at Vanderbilt University Medical 

Center using a standard diffusion acquisition; Fig. 2C shows an example of the BLSA 

normal subject data, and Fig. 2D and 2E show the animal scans.

The coherence index was automatically calculated for all datasets, including 1065 HCP, 202 

clinical DTI, 3981 BLSA, 9 ex vivo monkey, and 9 in vivo monkey, and the success rates are 
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displayed in Table 2. The method was successful in 100% of all HCP trials, and all ex vivo 

and in vivo monkey datasets.

For the clinical DTI, 198 of 202 b-vector tables were successfully corrected. To explore the 

reasons for failure, we investigate the raw DWI data of the 4 failure datasets. In all four 

cases, severe image artifacts were present in the DWIs (Figure 3, top), all due to signal 

dropout, most likely caused by patient motion causing intensity loss throughout entire axial 

slices. Signal dropout for a given DWI, sensitive to diffusion in a given direction, typically 

result in orientation estimates in that same direction (Figure 3, bottom), causing artificially 

increased coherence. With such severe artifacts, the diffusion reconstruction becomes 

unusable, and more comprehensive image restoration and image processing are necessary if 

the scans are to be clinically useful (33, 34). If excluding the problematic dataset, the 

coherence index achieved a 100% accuracy.

For the BLSA dataset, initial results showed that 259 instances of the entire 3981 had a 

different flipping or permutation from the correct b-tables, and only 3722 of 3981 b-vector 

tables were correctly detected. However, further inspection of the data showed that 257 out 

of 259 of these instances had a dimension swap in the y and z axis due to misinterpretation 

of the image header information by our code (identified as an incorrect application of the 

NIFTI s-form and q-form matrices, and corrected in DSI Studio builds September 2018 and 

later), and the coherence index correctly compensated for the dimension swapping (Figure 

4A), resulting in vectors with correct orientation in the image matrix space. Importantly, 

even though the data was incorrectly read, the b-vectors now match the image matrix itself, 

and subsequent tractography would have been successful. The remaining two cases showed 

significant signal dropout in every DWI (Figure 4B), possibly caused by patient motion. In 

short, the coherence index also achieved perfect performance if the problematic or unusable 

datasets were excluded. Note that these datasets were accessed prior to the standard quality 

assurance procedures in a form directly following file format conversion from the scanner. 

These datasets would have been excluded with routine quality assurance (13).

Discussion

In this study, we have proposed a metric, the fiber coherence index, which allows detection 

and correction of b-vector tables. The coherence index is based on the assumption that white 

matter orientation is coherent on the scale of millimeters throughout the brain, and that the 

correct gradient table results in the highest recovered overall coherence. This method was 

effective across a range of diffusion data quality and acquisition strategies and was also 

successful on non-human animal models. Our result showed that this index successfully 

identified the correct configuration of b-vector table in 98% of all datasets tested, and in all 6 

failure cases, severe image artifacts were present, most commonly entire axial slice dropout 

due to subject motion. Intuitively, because for an entire diffusion-weighted direction an 

entire slice (or many slices) has a low magnitude in the DWI, indicating higher diffusivity in 

that direction. Thus, an orientation-based coherence measure in those slices will always be 

erroneously magnified, and the correct gradient directions cannot be determined. In volumes 

without severe artifacts, our proposed algorithm was 100% successful. We don’t necessarily 

view these failures in a negative light. For example, if the data scientist or clinician is 
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confident that the gradient table is correct, and the algorithm suggests otherwise, this could 

be an indication of artifacts again causing magnified and erroneous coherence. Hence, this 

methodology could be used to flag volumes that require further validation and inspection.

A number of software packages (19, 35–38) exist which perform excellent quality 

assurance/quality control in pre-processing and processing steps, including correcting b-

tables based on motion (small rotations) and removing volumes with artifacts or outliers; 

however, few can identify major issues with the gradient schemes (i.e. flipping or 

permutations), and require the correct scheme in order to properly function. There are a 

nmber of reasons why the gradient table can be incorrectly flipped or permuted, including 

data conversion, space or view transformations, changes in coordinate systems, incorrect or 

incomplete image header information, transcription of accompanying text files, or simple 

human error. Additionally, as found in our results on the BLSA dataset, we found that 

various software can incorrectly read and apply transforms when loading image matrices. In 

this study, the coherence index was successfully able to correct the vector orientations in 

cases of both incorrect gradient table orientation and incorrect image matrix orientation. 

With all of these potential sources of error, we recommend calculation and implementation 

of this index as part of any standard diffusion quality assurance pipeline in order to detect 

possible inaccuracies in gradient tables. Specifically, this should be a first step in 

conjunction with other quality control and preprocessing approaches (or possibly 

immediately after a volume outlier detection in order to avoid errors such as that seen in a 

small percent of our datasets).

Similar quality assurance tools facilitate gradient table validation either through manual 

inspection (13) or automatic detection (39). Specifically, Jeurissen et al. (39) propose 

automated correction of gradient orientations by examining properties of resulting 

tractography, rather than properties of local reconstruction in the current study. Specifically, 

they reason that the optimal permuation of the table will be the one that results in the highest 

average whole-brain streamline length, and find successful correction of b-tables on par with 

the current study, across a range of datasets and SNR levels. Their method has the additional 

benefit of detecting small rotations of the gradient table (e.g., due to angulation of the 

imaging plane), at the expense of additional calculations (whole-brain tractography), time 

(27 minutes versus ~2 seconds), and potential sensitivity to tracking parameters, whereas 

ours does not rely on the additional steps of performing tractography. Future 

implementations of the current correction method should assess the ability to identify and 

correct for small rotational error of the gradient table in addition to simple flips and 

permuations. We note that no quality assurance tool will be able to detect human error of 

completely erroneous b-vectors (i.e. typos or simply the wrong direction sets).

We utilize the fiber coherence measure as a way to check the b-table prior to fiber 

reconstruction and tractography. However, there are other potential applications for this 

index. As previously described, this could be used as a data quality metric or artifact 

detection on the scale of voxels. Even more, this could be a potential measure of structural 

integrity. Currently, FA is often associated with “white matter integrity” (although this is 

certainly a misuse or misinterpretation of the actual measure (40)). The coherence, however, 

is a direct geometric measure of how well-aligned fiber populations are when stepping from 
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voxel to voxel. Thus, this could conceivably be used as some index that indeed describes 

white matter order, or inversely, describes disorder. While we hypothesize a lower coherence 

index, it remains to be seen how this measure is impacted in patients with brain diseases, 

both locally and globally.

The coherence index seems to have the capability to probe into other quality issues such as 

slice signal dropout. For example, the abnormal flipping and permutation in 2 of our healthy 

controls and 4 of our patients all led to prominent signal quality issue. In practice, we can 

examine which scans have different flipping and permutation results to identify problematic 

dataset. Furthermore, we have briefly explored other potential uses of the coherence index 

that should inspire future work. Comparisons across datasets (for example HCP and patient 

data) was hindered by the large differences in voxel size, and number of overall voxels, 

making both whole-brain and voxel-wise comparisons of the coherence index challenging. 

Comparisons of pre-process data with those that had not been pre-processed (i.e., not 

corrected for susceptibility and eddy current), as well as comparisons against data with 

known acquisition instabilities (for example specific sets of HCP data had known coil 

instabilities - HCP data issue code C: https://wiki.humanconnectome.org/pages/

viewpage.action?pageId=88901591) yielded no significant results. Comparisons of the six 

scans with artifacts against those without showed that coherence could be both decreased 

(due to more random orientations and lower FA) or dramatically increased (due to slice 

dropout causing all vectors in a given slice to point in the same direction), which suggests a 

potential way to filter or search for particular artifacts. It is possible that some other measure 

of orientation coherence, or conversely, orientation entropy, could solve these problems. It 

would be of interest to calculate a coherence over a given distance, which can be made 

consistent across differing acquisitions, rather than simply nearest neighborhoods. 

Alternative coherence measures, and weighting factors, could be an area of future 

exploration.

In conclusion, we recommend employing the fiber coherence measure as an automatic 

quality assurance check for b-table orientation in any diffusion analysis pipeline. The 

abnormal flipping or permutation may suggest further signal quality issues, and this fiber 

coherence measure may have broader applications in evaluating data quality, or even 

providing diagnostic value as a biomarker of white matter integrity.
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Figure 1. 
Effects of incorrect b-vector tables. Diffusion encoded color (DEC) maps and vector maps 

are shown for a correct gradient table (A), a table with a flipped component (B), and one 

with permuted components (C). With a flipped component, the DEC map may appear 

correct, but unit vectors will be flipped in one plane (coronal plane in this example), and will 

appear correct in another (axial). For a permuted table, both the color maps and vectors will 

be erroneous. In both (B) and (C), directions are incorrect, and subsequent analysis and 

tractography will also be erroneous. DEC and vector maps are colored red, green, and blue 

for diffusion primarily in the right/left, anterior/posterior, and superior/inferior directions, 

respectively.
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Figure 2. 
Example images for each of the 4 tested datasets. We have chosen to validate the fiber 

coherence index as a quality assurance metric on high quality HCP data (A), clinical-quality 

patient DTI data (B), research subject BLSA data (C) high quality ex vivo squirrel monkey 

scans (E), and standard in vivo squirrel monkey acquisitions (E). For each, basic diffusion 

imaging parameters are given, and example b0, DWI, and FA images are shown to show 

large variability in image quality.
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Figure 3. 
When the coherence index fails to correct gradient tables, image artifacts are always present. 

In this study, only 4 patient datasets had failures when correcting b-vectors, and all had slice 

dropout and subsequent reconstruction artifacts (top). In these cases, incorrect orientation 

estimates (bottom) were a result of signal dropout causing artificially increased coherence in 

a number of slices (see Axial slice #2).
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Figure 4. 
Image orientation misinterpretation and gradient correction failures. For the BLSA data, 259 

scans had a misinterpreted header with our initial code (A, note the incorrect orientation 

labels), however the index was able to find the correct vectors to match the image, where 

vectors are oriented appropriately, but the wrong color (red arrows). Only 2 datasets had 

failures of correcting b-vectors, both containing severe signal dropout and motion artifacts 

(B).
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Table 1.

24 possible b-vector permutations and direction-flipping combinations. X, Y, and Z correspond to the diffusion 

gradient vector orientations. Flipping corresponds to multiplying the unit vector in this direction by a −1.

(X,Y,Z) (X,Z,Y) (Y,X,Z) (Y,Z,X) (Z,X,Y) (Z,Y,X)

(−X,Y,Z) (−X,Z,Y) (−Y,X,Z) (−Y,Z,X) (−Z,X,Y) (−Z,Y,X)

(X,−Y,Z) (X,−Z,Y) (Y,−X,Z) (Y,−Z,X) (Z,−X,Y) (Z,−Y,X)

(X,Y,−Z) (X,Z,−Y) (Y,X,−Z) (Y,Z,−X) (Z,X,−Y) (Z,Y,−X)
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Table 2.

Success rates of automatically determining the correct b-vector scheme.

Dataset # Datasets # correct b-table detection % Success

HCP 1065 1065 100

Clinical DTI 202 198 98.02

BLSA 3981 3979 99.93

SM - ex vivo 9 9 100

SM - in vivo 9 9 100
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