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Abstract

The type 2 cannabinoid receptor (CB2R) was initially regarded as a peripheral cannabinoid 

receptor. However, recent technological advances in gene detection, alongside the availability of 

transgenic mouse lines, indicate that CB2Rs are expressed in both neurons and glial cells in the 

brain under physiological and pathological conditions, and are involved in multiple functions at 

cellular and behavioral levels. Brain CB2Rs are inducible and neuroprotective via up-regulation in 

response to various insults, but display species differences in gene and receptor structures, CB2R 

expression, and receptor responses to various CB2R ligands. CB2R transcripts also differ between 

the brain and spleen. In the brain, CB2A is the major transcript isoform, while CB2A and CB2B 

transcripts are present at higher levels in the spleen. These new findings regarding brain versus 
spleen CB2R isoforms may in part explain why early studies failed to detect brain CB2R gene 

expression. Here, we review evidence supporting the expression and function of brain CB2R from 

gene and receptor levels to cellular functioning, neural circuitry, and animal behavior.
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INTRODUCTION

Cannabis is derived from a flowering plant which has been used for centuries for medical 

and recreational purposes. The major psychoactive component in cannabis is delta-9-

tetrahydrocannabinol (Δ9-THC; Mechoulam et al., 2014), which acts mainly on inhibitory 

G-protein-coupled cannabinoid CB1 and CB2 receptors (Demuth and Molleman, 2006; 

Mackie, 2008). CB1 receptors (CB1Rs) are highly expressed in the central nervous system 

and functionally modulate presynaptic neurotransmitter release (Devane et al., 1988; 

Herkenham et al., 1990; Howlett, 1998; Matsuda et al., 1990), while CB2Rs were previously 
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believed to be confined to the periphery, particularly the spleen and immune system (Griffin 

et al., 1997; Munro et al., 1993), and therefore regarded as peripheral cannabinoid receptors 

(Buckley, 2008). However, recent evidence derived from studies in both rodents and 

primates suggests that CB2R is also expressed in the brain and in neurons (den Boon et al., 

2012; Foster et al., 2016; Gong et al., 2006; Lanciego et al., 2011; Liu et al., 2009; Stempel 

et al., 2016; Van Sickle et al., 2005; Xi et al., 2011; Zhang et al., 2014). Emerging evidence 

for brain CB2R expression is largely a result of technological advances in genetics and 

molecular techniques, allowing greater sensitivity and specificity for CB2R detection (Foster 

et al., 2016; Liu et al., 2009; Stempel et al., 2016; Van Sickle et al., 2005; Xi et al., 2011; 

Zhang et al., 2014; Zimmer, 2015). In this review, we discuss evidence that has accumulated 

over the past decade supporting the expression and function of CB2R in the brain and in 

neurons, spanning from genetic manipulations to cellular functioning, neural circuitry, and 

animal behavior, and describe the recent technological advances that have contributed to this 

discovery.

CB2R GENES, TRANSCRIPTS, AND RECEPTORS

CB2 gene and receptor structures

The CB2R was cloned in 1993 from human leukemia cells (Munro et al., 1993). CB2R has 

seven transmembrane domains and 44% amino acid sequence homology to the CB1R 

(Demuth and Molleman, 2006; Pertwee, 1997). While CB2 RNA has been detected in the 

brain across species, there nonetheless exist significant species differences between human, 

rat and mouse CB2R genes (Cnr2). The human CB2R gene spans about four times (90 kb) 

the size of the mouse (23 kb) and the rat (20 kb; Liu et al., 2009; Zhang et al., 2015). Figure 

1 (A, B) shows mouse CB2R (mCB2R) gene structure and transcripts, illustrating three 

exons with two separate promoters in the CB2R gene, which encode two transcripts (mCB2A 

and mCB2B) using exon 1 or exon 2 as different 5′UTR sequences. The mCB2A transcript 

contains exon 1 and exon 3, and the mCB2B transcript contains exon 2 and exon 3. In 

contrast, the rat CB2 (rCB2R) gene includes 3 exons that can be spliced to four rCB2R 

transcripts (mRNA) isoforms - CB2A, CB2B, CB2C and CB2D, and each displays different 

expression in the brain and peripheral tissues (Liu et al., 2009; Zhang et al., 2015). The 

CB2R-encoding regions are located entirely on exon 3 in both rats and mice.

Like other G-protein coupled receptors, mCB2Rs and rCB2Rs contain an extracellular N-

terminus, 7 transmembrane domains (TMs), 3 extracellular and 3 intracellular loops, and an 

intracellular C-terminus (Zhang et al., 2015). Table 1 shows the CB2R amino acid sequences 

in mice, rats and humans. Notably, mCB2Rs are 13 amino acid residues shorter than rCB2R 

or hCB2Rs (347 versus 360) at the C-terminus due to a premature stop codon in the mCB2R 

gene (Liu et al., 2009; Zhang et al., 2015). The rCB2Rs and mCB2Rs share 93% amino-acid 

homology (not counting the deleted C-terminal 13 amino acids in mCB2Rs). Human CB2R 

shares similar amino-acid homologies with mouse (82%) and rat (81%) (Table 1) (Zhang et 

al., 2015), but there are more similarities in amino acid sequences between human and rat 

(97%) than human and mouse CB2R (82%) (Pertwee, 1997).
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CB2 mRNA expression in the brain

Reverse transcription quantitative real-time polymerase chain reaction (RT-
qPCR) findings—Early RT-qPCR assays failed to detect CB2 mRNA in the brain 

(Galiegue et al., 1995; Schatz et al., 1997). More recently, the use of isoform-specific 

probes, which are in a species- and tissue-specific manner, enabled detection of brain CB2R 

mRNA expression (Liu et al., 2009). Human CB2A was found primarily in the testis and in 

the brain (including the amygdala, caudate/putamen, NAc, cortex, hippocampus and 

cerebellum), while the human CB2B isoform was expressed primarily in the spleen and 

leukocytes (Liu et al., 2009). Mouse CB2A and CB2B were detected predominantly in the 

spleen and at lower levels in the PFC and striatum, although CB2A showed higher expression 

in the mouse brain than CB2B (Liu et al., 2009). Mice and rats also show some species 

differences in CB2R splicing. For example, CB2A and CB2B were found previously in mice 

and rats, whereas CB2C and CB2D isoforms were only detected in rats, and the mouse brain 

expresses more CB2R overall than rat (Zhang et al., 2015). While the distribution of CB2R 

on DA- and non-DA expressing neurons appears equivalent in mice, rats show significantly 

less CB2R on DA neurons relative to non-DA neurons, which may contribute to behavioral 

differences in the response to cannabinoid ligands (see further discussion in Zhang et al., 

2015).

The mCB2A transcript (mRNA) is the predominant isoform in the mouse brain (Figure 1C), 

expressing at 20-30-fold higher levels than mCB2B, while in spleen mCB2A and mCB2B 

levels are not as prominent (mCB2A ~3-fold higher than mCB2B (Zhang et al., 2014). When 

CB2A mRNA levels in brain and spleen are compared directly, spleen CB2A is about 50-100-

fold higher than that in the brain (Figure 1 E). However, using riboprobes that recognize the 

encoding sequences on both CB2A and CB2B isoforms, CB2R mRNA has been consistently 

detected in the cortex, hippocampus, and globus pallidus of non-human primates (Lanciego 

et al., 2011; Sierra et al., 2015), indicating conservation of brain CB2R across species. 

Relative to CB1 mRNA (Figure 1 D), neural CB2 mRNA is low under normal physiological 

conditions (about 100~300-fold lower than CB1 mRNA in the brain), but is upregulated 

under pathological conditions (see discussion below; Yu et al., 2015).

In situ hybridization (ISH) findings.—One key technique in classical (unamplified) 

ISH involves hybridization to mRNA with oligonucleotide and RNA probes (both radio-

labelled and hapten-labelled), allowing localization of gene expression in tissue sections or 

cells. Early ISH studies to label mRNA targeted CB1R and CX5 (later known as CB2R). In 

these early studies, high density CB2R was detected in the marginal zone of the spleen, 

whereas CB1R was detected in the brain and many other peripheral tissues (Lynn and 

Herkenham, 1994; Munro et al., 1993). In following years, Northern blot experiments also 

failed to identify CB2 RNA in the brain, instead showing that the CB1 gene was expressed 

in the central nervous system and CB2R was expressed at low levels in the brain but high 

levels in peripheral immune tissues (Galiegue et al., 1995; Schatz et al., 1997). CB2R 

expression in the periphery (spleen and tonsils) was deemed to be equivalent to CB1R in the 

brain (Galiegue et al., 1995).
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RNAscope ISH findings.—RNAscope is a novel method of detecting low level gene 

expression within intact brain sections that is 2000-fold more sensitive than classical ISH 

(Wang et al., 2012). This advanced technique uses unique probe designs that selectively 

amplify target-gene signals without background noise from non-specific hybridization. 

RNAscope ISH has consistently detected CB2 mRNA expression in the brain, including 

midbrain dopamine (DA) neurons of the rat and mouse ventral tegmental area (VTA; Zhang 

et al., 2015; Zhang et al., 2014; Zhang et al., 2017) and hippocampus (Li and Kim, 2015; 

Stempel et al., 2016). Figure 2 shows CB2R distributions in mouse brain using RNAscope, 

illustrating that CB2 mRNA in the prefrontal cortex (PFC), hippocampus, midbrain and 

cerebellum, with much lower levels in the dorsal striatum (DS) and nucleus accumbens 

(NAc). Double-label RNAscope ISH, combined with immunohistochemistry (IHC) assays, 

have further indicated that CB2R genes and receptors are expressed in VTA DA neurons 

(Zhang et al., 2015; Zhang et al., 2014; Zhang et al., 2017). In the hippocampus, RNAscope 

ISH has shown CB2 mRNA colocalized with NeuN+ and VgluT2+ glutamatergic neurons 

(Li and Kim, 2015).

Efforts towards identifying cell-type specificity of brain CB2 expression have been advanced 

by the development of fluorescence-activated cell sorting (FACS), which allows isolation of 

fluorescently labeled neural sub-populations, followed by RT-PCR for CB2 mRNA 

detection. These techniques revealed CB2 mRNA expression in NeuN+ neuronal cells in the 

hippocampus (Stempel et al., 2016). FACS assays also detected significant CB2 mRNA in 

NeuN-negative (glial) cells (including microglia) in normal subjects, consistent with the 

findings from RNAscope assays (Li and Kim, 2015) and transgenic CB2-reporter mouse 

lines (Lopez et al., 2018; Schmole et al., 2015; see discussion below).

Findings from CB2 transgenic mice

Partial germline CB2-KO mice.—The development of CB2-KO mice has provided new 

advantages in validating CB2R signal specificity in the brain. While the ideal negative 

control is complete deletion of CB2R, full germline CB2-KO mice are not currently 

available and the most commonly used CB2-KO mice (the Zimmer and Deltagen strains) 

involve partial deletion of the CB2R gene. The Zimmer CB2-KO strain has a C-terminal 131 

amino acid deletion (Buckley, 2008; Buckley et al., 2000). This truncation eliminates part of 

the intracellular and extracellular 3rd loops, trans-membrane regions 6 and 7, and the 

intracellular C-terminus region (Zhang et al., 2015; Zhang et al., 2014; Zhang et al., 2017; 

Zhang et al., 2018). The Deltagen strain CB2-KO has an N-terminal 112 amino acid deletion 

(The Jackson Laboratory, Cnr2tm1Dgen/J) (Li and Kim, 2016a, b). This truncation causes loss 

of part of the extracellular N-terminal (from amino acid residues 26 to 137), trans-membrane 

regions 1-3 and intracellular loops 1 and 2 (Zhang et al., 2018). Partial knockout strains 

require matching of probe primers to the deleted portion of the gene. When using the CB2A 

probe, which targets an upstream undeleted region, we detected similar levels of CB2 

mRNA between WT and CB2-KO Zimmer mice (Figure 1 E) (Zhang et al., 2014; Zhang et 

al., 2017). However, when using a CB2-KO probe that targets the gene deleted region in the 

Zimmer strain, we detected CB2 mRNA in WT, but not in CB2-KO mice (Figure 1 F; Zhang 

et al., 2014; Zhang et al., 2017).
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Conditional CB2-KO mice.—To date, at least two CB2-floxed mouse lines have been 

generated using Cre-Lox technology, in which two loxP sites were inserted into the CB2R 

gene flanking the entire coding region of exon 3 and the upstream splicing acceptor site, 

resulting in complete deletion of the CB2R protein encoding region upon recombination. 

The CB2-floxed mice were then crossed with synapsin-Cre or DAT-Cre mice, in which Cre 

recombinase expression is under control of the synapsin (neuron-specific) or DA transporter 

(DAT; DA neuron-specific) gene promoters (Liu et al., 2017; Stempel et al., 2016). FACS, 

combined with qPCR, showed CB2R mRNA expression in NeuN+ cells (neurons) in wild 

type mice, whereas levels in neurons were reduced by 70% in synapsin-CB2-KO mice and 

completely abolished in constitutive CB2-KO mice (Stempel et al., 2016). Moreover, 

double-label RNAscope ISH assays revealed co-localization of CB2 mRNA and the 

neuronal marker NeuN (Rbfox3) mRNA in most hippocampal neurons in the CA3 region of 

WT mice, but not in Syn-CB2R KO mice (Stempel et al., 2016), and CB2 mRNA and TH 

mRNA colocalization in VTA DA neurons in WT, but not in DAT-CB2-KO mice (Liu et al., 

2017).

CB2-reporter mouse lines.—Transgenic reporter mouse lines express a DNA sequence 

encoding green fluorescent protein (GFP) or enhanced GFP (EGFP) in a target gene (Vacaru 

et al., 2014). Two published CB2-reporter mouse lines exist: the CB2-GFP BAC transgenic 

mouse line (Schmole et al., 2015) and the CB2EGFP/f/f mouse line (Lopez et al., 2018). In 

these reporter mouse lines GFP or EGFP signals were detected in peripheral immune cells 

and hippocampal microglia, but not in hippocampal neurons in normal, healthy subjects. 

However, in the BAC clone construct, Clal fragments (74 kb) containing exons 1, 2 and GFP 

(which replaced the open reading frame of exon 3 of the Cnr2), were injected into fertilized 

eggs. Since the location of genomic integration, size, and copy numbers are unknown in this 

mouse line (Schmole et al., 2015) and endogenous Cnr2 may still exist, it remains possible 

that GFP expression was independent of endogenous CB2R expression. In the second 

reporter mouse line, the homologous recombination construct, in which internal ribosome 

entry site (IRES) and EGFP cassettes were inserted into the 3′UTR region downstream of 

CB2R STOP codon, was integrated into mouse Cnr2 locus (Lopez et al., 2018). In theory, 

EGFP expression should have been driven by endogenous CB2R expression. However, 

translation initiation from the transgene IRES site is cap-independent and lacks CB2R 

structural 5’UTR while endogenous CB2R protein expression is cap-dependent (Leppek et 

al., 2018), suggesting that CB2-GFP expression may also be independent of endogenous 

CB2R expression in this mouse line. One explanation as to why GFP was identified in 

microglia and not in neurons in these reporter lines may therefore be due to non-specific 

upregulation in gene expression during microglial activation, which fluctuates more 

frequently than neurons (Holtman et al., 2017; Schmole et al., 2015; Walter et al., 2003).

CB2 RECEPTOR EXPRESSION IN THE BRAIN

Findings from immunoreactivity and immunostaining

Low levels of gene expression in brain do not necessarily mean low levels of receptor 

expression. Brain opioid receptor mRNA levels are generally low, particularly in the cerebral 

cortex, olfactory bulb, and spinal cord (Mansour et al., 1995a; Mansour et al., 1994a), but 
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high densities of opioid receptors are expressed in these brain regions (Mansour et al., 

1995b; Mansour et al., 1994b). Similarly, brain CB2A mRNA levels are very low (<50-100-

fold) compared to that in spleen, while western blot (WB) and IHC assays consistently 

detect CB2R immunoreactive band(s) or immunostaining in the brain (Ashton et al., 2006; 

Baek et al., 2008; Brusco et al., 2008a; Brusco et al., 2008b; Garcia-Gutierrez et al., 2018; 

Gong et al., 2006; Schmidt et al., 2012; Van Sickle et al., 2005; Zhang et al., 2014; Zhang et 

al., 2017; Zhang et al., 2018). Immunohistochemical studies in post mortem human brains 

identified CB2R on microglia in the cerebellum (Nunez et al., 2004), while IHC assays (with 

and without ISH) show CB2-immunostaining in hippocampal glutamate neurons (Li and 

Kim, 2015, 2017; Stempel et al., 2016), cortical pyramidal neurons (Gong et al., 2006; 

Garcia-Gutierrez et al., 2018), VTA DA neurons (Aracil-Fernandez et al., 2012; Garcia et 

al., 2015; Zhang et al., 2014; Zhang et al., 2017; Zhang et al., 2018), and other neurons in 

the NAc (Aracil-Fernandez et al., 2012), brainstem (Van Sickle et al., 2005) and cerebellum 

(Gong et al., 2006). Similarly, electron microscopy and immunolabeling identified CB2R in 

the mouse cortex, hippocampus, and cerebellum (Onaivi et al., 2008b; Onaivi et al., 2006), 

although the specificity of CB2 antibody signals in early studies were questioned (Ashton et 

al., 2014; Atwood and Mackie, 2010; Baek et al., 2013; Marchalant et al., 2014; Zhang et 

al., 2018).

Antibody signal specificity

An ideal antibody should meet specific criteria, including selective immunolabeling, 

consistent results across assays, the ability to be blocked by an immunizing peptide, and 

absence of labeling in genetic KO animals (Lorincz and Nusser, 2008; Rhodes and Trimmer, 

2006). Several commercially available antibodies (e.g., Cayman, Abcam, and Santa Cruz) 

for CB2R have failed the KO control test, showing neuronal staining patterns in the 

hippocampus of both WT mice and CB2-KO mice (Baek et al., 2013). However, the signal 

specificity of a given CB2 antibody depends upon the antibody epitope and which strain of 

partial CB2-KO mice is used as a control (Zhang et al., 2018). When using both the Zimmer 

and Deltagen partial CB2-KO strains as controls, most antibodies tested exhibit a degree 

(50~70%) of mCB2 specificity when the appropriate partial CB2-KO strain was used (Zhang 

et al., 2018). Going forward, full CB2-KO mice and monoclonal CB2R antibodies will be 

critical for highly specific labeling of brain CB2R protein (Zhang et al., 2018).

CB2R IMPACT ON NEURONAL FUNCTION

Electrophysiological studies on brain CB2Rs

Several lines of electrophysiological evidence indicate that activation of brain CB2Rs alters 

neuronal activity and excitability. Systemic and local administration of JWH133, a highly 

selective CB2R agonist, significantly inhibits VTA DA neurons both in vivo and ex vivo 
(Zhang et al., 2014; Zhang et al., 2017). Specifically, in perforated and cell-attached patch 

clamp recordings from either single neurons or brain slices, JWH133 dose-dependently 

reduced VTA DA neuron firing in wild type mice, an effect that was blocked by application 

of the CB2R antagonist, AM630, and absent in CB2-KO mice (Zhang et al., 2014). In living 

anesthetized mice, systemic administration of JWH133 reduced both phasic and tonic VTA 

DA neuron firing (Zhang et al., 2014). In contrast, VTA GABA neuron firing was unaffected 
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by JWH133, suggesting CB2Rs may be confined to DA cells in the VTA (Zhang et al., 

2014). Similar effects have been observed in rats (Zhang et al., 2017), indicating cross-

species conservation of CB2R functionality in the brain.

Multiple intracellular signaling mechanisms are recruited by CB2R activation, which 

modulates neuronal activity and plasticity in a cell type-specific manner. When 

endocannabinoids, such as anandamide and 2-arachidonoylglycerol (2-AG), or exogenous 

CB2R ligands bind to CB2R, a Gαi/o-mediated signaling cascade is activated. This signaling 

results in inhibition of adenyl cyclase, activation of intracellular (including the PI3K-Akt 

pathway) and extracellular signal-regulated (ERK) kinases, and ultimately suppression of 

neuronal activity (Demuth and Molleman, 2006; Ibsen et al., 2017). CB2R also interacts 

with the MAP kinase pathway (Martinez-Pinilla et al., 2017). Compared to CB1R, CB2R 

has higher affinity for Gαi than Gαo, as shown by in situ studies (Glass and Northup, 1999; 

Ibsen et al., 2017). Like CB1 and other Gi-coupled receptors, CB2R activation triggers G-

protein-coupled inwardly-rectifying potassium channels (GIRKs) in cortical neurons 

(Stumpf et al., 2018). However, unlike other Gi-coupled receptors, JWH133 (a CB2R 

agonist) did not alter GIRK activation in VTA DA neurons, but instead enhanced M-type 

potassium (KCNQ7.4) currents, leading to inhibition of neuronal firing and 

hyperpolarization of the cell (Ma et al., 2018).

CB2Rs also display region- and cell type-specific modulation of neuronal activity. In the rat 

medial PFC, activation of CB2Rs induces IP3R activation and opening of calcium-

dependent chloride channels on pyramidal cells, as measured by voltage and current clamp 

experiments (den Boon et al., 2014; den Boon et al., 2012). Application of JWH133 to the 

medial PFC reduced neuronal firing rates by 45%, an effect blocked by the CB2R antagonist 

SCH 356036 (den Boon et al., 2014). Similarly, in the hippocampus activation of CB2R via 

endogenous cannabinoid release or pharmacological ligands result in long-lasting 

hyperpolarization of CA3 and CA2 pyramidal cells through altered activity of the sodium-

bicarbonate co-transporter (Stempel et al., 2016). In contrast, chronic administration of a 

CB2 receptor agonist (JWH133 or GP1a) in cultures of rodent hippocampal slices for 7-10 

days significantly increased quantal glutamate release and spine density via ERK signaling 

(Tang et al., 2015). Chronic intraperitoneal injections of JWH133 also increased excitatory 

synaptic transmission in mice (Kim and Li, 2015). Accordingly, CB2-KO mice show 

reduced excitatory synaptic transmission, long-term potentiation, and dendritic spine density 

in the hippocampus (Li and Kim, 2016b). In the medial entorhinal area of the rat, the 

endogenous cannabinoid 2-AG suppresses GABAergic inhibition, an effect mimicked by the 

CB2R agonist JWH133, but blocked by the CB2R antagonist AM630 (Morgan et al., 2009). 

Furthermore, JTE-907, a CB2R inverse agonist structurally unrelated to AM-630, increased 

GABAergic neurotransmission at picomolar concentrations (Morgan et al., 2009). Beyond 

the cortex and VTA, activation of CB2 receptors inhibits spontaneous and evoked neuronal 

responses to noxious stimuli in the dorsal root ganglia, spinal cord, and thalamus (Jhaveri et 

al., 2008; Nackley et al., 2004; Sagar et al., 2005).
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Neurochemical studies on brain CB2Rs

Microdialysis and voltammetry studies have revealed additional insights into the effects of 

CB2R signaling on neurotransmitter release. Both systemic and local administration of 

JWH133 into the NAc dose-dependently reduced extracellular DA levels, an effect that was 

blocked by co-administration of AM630 and absent in CB2-KO mice (Xi et al., 2011; Zhang 

et al., 2017). These findings confirm electrophysiological reports that CB2R activation 

attenuates VTA DA neuron firing. Using in vivo voltammetry assays to record endogenous 

DA release from dopaminergic terminals in the NAc, CB2R activation was found to inhibit 

presynaptic DA release and gives rise to the antipsychotic action produced by positive 

allosteric modulators of muscarinic M4 acetylcholine receptors (Foster et al., 2016). In the 

hippocampus, local infusion of Δ9-THC or JWH133 dose-dependently reduces glutamate or 

GABA release by activation of CB2Rs (Ando et al., 2012; Zheng et al., 2015), providing 

further evidence that CB2R activation has physiological implications in multiple regions of 

the brain.

CB2R INVOLVEMENT IN BEHAVIOR

Cannabis action

Cannabinoid-induced tetrad: In animals, cannabinoid agonists such as Δ9-THC 

produce a characteristic combination of tetrad symptoms – hypothermia, analgesia, 

hypoactivity, and catalepsy (Metna-Laurent et al., 2017; Wiley and Martin, 2003; Zimmer et 

al., 1999), known as the cannabinoid-induced tetrad. Pharmacological blockade of CB1R by 

SR141716A or AM251, or genetic CB1R deletion, suppressed the Δ9-THC-induced tetrad 

(Metna-Laurent et al., 2017; Zimmer et al., 1999), indicating tetrad behaviors mediated by 

activation of brain CB1R. However, following recent findings of functional CB2R and 

GPR55 (also called CB3R) in the brain (Henstridge et al., 2011; Ryberg et al., 2007; Van 

Sickle et al., 2005), we have begun to explore potential involvement of both CB1R and 

CB2R in the cannabinoid-induced tetrad using CB2-KO mice and GPR55-KO mice as 

controls. As anticipated, Δ9-THC and WIN55212-2 produced dose-dependent analgesia, 

hypothermia, catalepsy and rotarod impairment in WT, but not CB1-KO mice. However, 

deletion of CB2Rs in CB2-KO mice selectively blocked Δ9-THC- and WIN55212-2-induced 

analgesia and catalepsy (Wang et al., 2018). To determine whether these effects are mediated 

by activation of CB2Rs in the brain or periphery, Δ9-THC was then locally microinjected 

into the lateral cerebral ventricles. Intracerebral ventricular microinjection of Δ9-THC 

produced the full tetrad in WT, but not CB1-KO mice. Genetic deletion of CB2Rs also 

blocked intracranial Δ9-THC-induced analgesia and catalepsy, suggesting neuronal CB2R 

involvement. Consistent with these findings, Liu and colleagues (2017) also recently 

reported that selective deletion of CB2R from DA neurons increased basal level of 

locomotor behavior and altered WIN-55212-2-induced analgesia (tail flick) and catalepsy. 

Surprisingly, the tetrad produced by both Δ9-THC and WIN55212-2 was enhanced 

significantly in GPR55-KO mice compared to WT, suggesting that activation of GPR55 

produces an inhibitory effect on the cannabinoid-induced tetrad. Together, these findings 

suggest that 1) brain CB1Rs plays dominant role in mediating cannabinoid-induced tetrad 

effects; 2) brain CB2Rs also play an important role in mediating cannabinoid-induced 
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analgesia and catalepsy; and 3) brain GPR55 acts as an inhibitory brake to CB1R or CB2R 

effects in the cannabinoid-induced tetrad.

Cannabinoid reward versus aversion: Cannabis is well known for its ability to 

produce euphoria, pleasure, and relaxation (Fattore et al., 2008; Maldonado et al., 2006; 

Parsons and Hurd, 2015). However, not all users enjoy cannabis and some experience 

dysphoria, anxiety, and depression (D’Souza et al, 2004; Raft et al, 1977). Similar 

paradoxical effects of Δ9-THC have been found in non-human primates. For example, Δ9-

THC is self-administered by squirrel monkeys (Justinova et al, 2003; Tanda et al, 2000), but 

not self-administered by rhesus monkeys (John et al, 2017; Mansbach et al, 1994). In 

rodents, Δ9-THC or other cannabinoid compounds can be rewarding, ineffective or aversive, 

as assessed by intravenous self-administration, conditioned place preference, and electrical 

brain-stimulation reward (Panagis et al, 2008; Vlachou and Panagis, 2014).

Since CB1R is highly expressed in the central nervous system and CB2R is expressed 

predominantly in peripheral tissues, the rewarding effects of cannabinoids were assumed to 

be mediated by activation of CB1R, and not CB2R (Fratta and Fattore, 2013; Mackie, 2005). 

This hypothesis is supported by electrophysiological evidence that activation of CB1Rs on 

GABAergic neurons may increase VTA DA neuron activity via disinhibition (Lupica and 

Riegel, 2005; Lupica et al, 2004; Lupica and Hoffman, 2018; Szabo et al, 2002). In vivo 
microdialysis studies also show that Δ9-THC increases DA release in the NAc of rats (Chen 

et al, 1991; Tanda et al, 1997). However, there is no direct behavioral evidence in vivo 
demonstrating whether a CB1R-dependent mechanism underlies cannabis reward. In 

contrast to this view, we have recently reported that activation of CB1R in glutamatergic 

neurons by Δ9-THC produces aversive effects (Han et al., 2017).

With the recent finding that functional CB2R is expressed in VTA DA neurons (Foster et al., 

2016; Zhang et al., 2014; Zhang et al., 2017), we hypothesized that distinct CB1R and 

CB2R mechanisms mediate cannabis reward versus aversion, respectively (Figure 3). To test 

this hypothesis, we used the electrical intracranial self-stimulation (ICSS) paradigm to 

evaluate the effects of various cannabinoids on brain stimulation reward (BSR). At low 

doses, Δ9-THC and WIN55,212-2 produced mild enhancement of BSR, but inhibition at 

higher doses, indicating biphasic effects. Pretreatment with a CB1R antagonist (AM251) 

attenuated the low dose-enhanced BSR, while a CB2R antagonist (AM630) attenuated the 

high dose-inhibited BSR (Spiller et al., 2018). To confirm these opposing effects, rats were 

treated with selective CB1R and CB2R agonists, which produced significant BSR 

enhancement and inhibition, respectively (Spiller et al., 2018). CB1R activation therefore 

produces reinforcing effects, whereas CB2R activation is aversive. The subjective effects of 

cannabis may depend on the balance of opposing CB1R and CB2R effects. Cannabis may be 

either rewarding or aversive in humans dependent upon individual differences in neural CB1 

and CB2 receptor expression.

Feeding

CB1Rs and CB2Rs play crucial roles in regulating energy metabolism (Li et al., 2011). 

Genetic ablation of CB1R results in reduced body weight in mice (Zimmer et al., 1999), 
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while genetic deletion of CB2R results in increased food intake and obesity with age (Agudo 

et al., 2010). CB2R agonists reduce food intake in lean mice (Ishiguro et al., 2010) and 

improve both body weight and obesity-associated inflammation in diet-induced obese mice 

(Verty et al., 2015). Moreover, CB2 genetic ablation results in adiposity (Schmitz K et al., 

2016). A common CB2 variant, Q63R, causing reduced CB2R function, has been associated 

with eating disorders in humans (Ishiguro et al., 2010). However, the mechanisms 

underlying CB2R modulation of body weight and obesity are poorly understood. Since 

CB2Rs are also expressed in organs controlling metabolism such as the liver, adipose tissue, 

skeletal muscle and the endocrine pancreas (Deveaux et al., 2009; Rossi et al., 2011), it is 

generally believed that peripheral CB2Rs may be involved. However, overexpression of 

CB2Rs in the brain induces hyperglycaemia and a lean phenotype in adult mice (Romero-

Zerbo et al., 2012), suggesting that brain CB2Rs are also involved in food intake and energy 

metabolism. Taken together, these findings suggest that CB2Rs may represent a new 

pharmacological target for the treatment of binge-eating and obesity.

Drug addiction

Cocaine addiction: Growing evidence suggests that cannabinoids or medical marijuana 

may be useful for the treatment for drug addiction (Gonzalez-Cuevas et al., 2018). 

Prolonged or acute exposure to drugs of abuse, including cocaine and morphine, increases 

brain CB2R mRNA expression by up to five-fold in key reward-related regions such as the 

VTA, NAc, PFC, and striatum (Figure 4; Bystrowska et al., 2018; Onaivi et al., 2008a; 

Zhang et al., 2017), suggesting that CB2R ligands may have therapeutic potential for 

cocaine abuse (Zhang et al., 2017b). Accordingly, systemic and local administration of 

CB2R agonists (JWH133 or GW405833) into the VTA or NAc dose-dependently reduced 

intravenous cocaine self-administration in WT and CB1-KO mice, an effect that was blocked 

by the CB2R antagonist AM630 and absent in CB2-KO mice (Xi et al., 2011; Zhang et al., 

2015; Zhang et al., 2014). JWH133 also blocked cocaine-induced hyperactivity, conditioned 

place preferences, and extracellular NAc DA in mice (Canesco-Alba et al., 2018; Delis et al., 

2017; Xi et al., 2011). Although JWH133 was less effective in attenuating cocaine self-

administration in rats (Zhang et al., 2015), systemic administration of beta-caryophyllene 

(BCP), a dietary CB2R agonist extracted from cannabis or other plants, dose-dependently 

reduced cocaine intake in both rats and mice (Zhang et al., 2017b). Similarly, overexpression 

of CB2Rs in the mouse brain decreased locomotor responses to cocaine and reduced mouse 

cocaine self-administration (Aracil-Fernandez et al., 2012). In contrast, selective deletion of 

CB2R from DA neurons increased acute psychostimulant hyperactivity and augmented 

cocaine-conditioned place preferences, possibly due to enhanced NAc DA response to 

psychostimulants (Canesco-Alba et al., 2018; Liu et al., 2017). In other studies, CB2R 

antagonists and inverse agonists reduced cocaine-primed reinstatement to drug seeking, but 

were not effective in attenuating ongoing cocaine self-administration in rats (Adamczyk et 

al., 2012).

Alcohol and nicotine addiction: CB2Rs also appear to play a role in alcohol and 

nicotine abuse. CB2-KO mice drink more alcohol and develop more robust alcohol 

conditioned place preferences than WT controls (Ortega-Alvaro et al., 2015; Powers et al., 

2015). The CB2R agonist BCP reduces alcohol intake and acquisition of alcohol conditioned 

Jordan and Xi Page 10

Neurosci Biobehav Rev. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



place preferences in mice (Al Mansouri et al., 2014). However, a recent report suggest that 

selective deletion of CB2 from DA neurons attenuated alcohol-conditioned place preferences 

and blocked chronic stress-induced increase in alcohol consumption (Liu et al., 2017), 

indicating further research is needed to understand the role of CB2 in alcohol reward. CB2-

KO mice also do not show conditioned place preferences to nicotine, and CB2R antagonists 

block nicotine conditioned place preferences (Canesco-Alba et al., 2018; Ignatowska-

Jankowska et al., 2013; Navarrete et al., 2013).

Opioid addiction: Although few studies to date have examined the impact of CB2R 

ligands on opioid abuse, CB2R does interact with mu opioid receptors to attenuate chronic 

pain. Co-administration of a CB2R agonist alongside morphine produces synergistic 

increases in the anti-nociceptive effects of morphine (Grenald et al., 2017). Conversely, 

CB2R antagonism reduces the analgesic effects of morphine, but also reduces morphine 

tolerance (Altun et al., 2015). These findings on brain CB2R involvement in drug reward 

and addiction suggest that brain CB2Rs may constitute new therapeutic targets in medication 

development for the treatment of substance use disorders.

CB2R INVOLVEMENT IN NEUROPSYCHIATRIC DISORDERS

CB2R is inducible

Although brain CB2R levels are low in healthy subjects under basal conditions, many 

studies suggest that brain CB2Rs are inducible or up-regulated in response to various insults 

(Atwood and Mackie, 2010; Mechoulam and Parker, 2013), including chronic pain 

(Beltramo et al., 2006; Luongo et al., 2010), ischemia-induced hypoxia (Ashton and Glass, 

2007), drug addiction (Bystrowska et al., 2018; Onaivi et al., 2008b; Zhang et al., 2017; 

Zhang et al., 2003), Alzheimer’s disease, HIV-induced encephalitis and multiple sclerosis 

(Benito et al., 2008; Lopez et al., 2018; Schmole et al., 2015). Brain CB2R upregulation 

may be a common neuroprotective response to various central nervous system insults. Below 

we briefly review evidence supporting CB2R involvement in various cognitive functions and 

neuropsychiatric conditions.

Learning and memory

CB2R signaling plays an important regulatory role in learning and memory. Deletion of 

CB2R in mice disrupts consolidation of aversive memories of a foot-shock and reduces 

hippocampal synapse proliferation and expression of stress- and growth factor-related genes, 

such as in brain-derived neurotrophic factor (BDNF) and glucocorticoid receptors (NR3C1) 

(Garcia-Gutierrez et al., 2013). Systemic administration of AM630, a CB2R antagonist, 

impairs aversive memory consolidation, whereas JWH133, the CB2R agonist, enhances 

aversive memory consolidation as measured by performance on an inhibitory avoidance test 

(Garcia-Gutierrez et al., 2013). Similarly, in rats cannabidiol disrupts consolidation of fear 

memories via activity at CB1R and CB2R in the dorsal hippocampus (Ratano et al., 2017; 

Stern et al., 2017). More specifically, using the inhibitory avoidance task alongside 

pharmacological manipulations (i.e., inhibition of monoacylglcerol lipase to increase 2-AG 

levels, with and without CB1R/CB2R antagonists), Ratano and colleagues reported 2-AG 

enhanced memory consolidation specifically through CB2R and not CB1R (Ratano et al., 
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2018). Moreover, fear conditioning increased CB2R, but not CB1R, gene expression in the 

hippocampus, which correlated with anxiety-related behaviors such as freezing and escape 

latencies (Robertson et al., 2017).

Recent technological advances in genome editing techniques allow for additional insights 

into cell-type specific effects of CB2R activation. Genetic deletion of CB2Rs impaired 

hippocampus-dependent, long-term contextual fear memory, but had no effect on 

hippocampus-independent, cued fear memory (Li and Kim, 2016a). Overexpression of 

CB2Rs using Crispr-Cas9 in hippocampal pyramidal neurons reduced anxiety, whereas 

deletion of CB2Rs in pyramidal neurons enhanced spatial working memory. In contrast, 

overexpression of CB2Rs in hippocampal microglia enhanced, and reduction of microglial 

CB2R expression reduced, the expression of contextual fear memories (Li and Kim, 2017).

Alzheimer’s disease

In addition to modulating learning and memory in healthy subjects, CB2R has been 

implicated in several neuropsychiatric disorders involving memory deficits. For example, 

post-mortem analysis of human brains with Alzheimer’s disease (AD) show CB2R 

upregulation in the frontal cortex, which correlated with amyloid beta levels and plaque 

scores, two primary markers of disease severity (Solas et al., 2013). Similarly, an AD mouse 

model (a CB2R-reporter line crossed with mice expressing five familial AD mutations), 

showed significantly increased CB2-EGFP levels in the central nervous system at 3 months 

of age, coincident with inflammation and amyloid plaques in the cortex, hippocampus, brain 

stem and thalamus (Lopez et al., 2018). In another mouse model of AD, chronic CB2R 

activation using a selective agonist reduced microglial inflammation in the hippocampus, 

increased clearance of amyloid plaques, improved hippocampal plasticity and glutamatergic 

signaling, and enhanced memory performance in the Morris water maze (Wu et al., 2017). 

Similarly, the CB2R agonist 1-phenylisatin improved learning and memory on an attentional 

set shifting task and reduced amyloid beta plaque load in the hippocampus in another mouse 

model of AD (Jayant et al., 2016).

Neuroinflammation

Consistent with a role for CB2R in memory disorders, mouse models of post-operative 

cognitive dysfunction have identified increased CB2R expression in the hippocampus and 

prefrontal cortex, accompanied by memory loss, following surgery. Surprisingly, these 

effects were reversed with JWH133 treatment (a CB2R agonist) but exacerbated by AM630 

treatment (a CB2R antagonist) (Sun et al., 2017). In animal models of traumatic brain injury 

(TBI), administration of a CB2R inverse agonist attenuated neuronal death in the cortex, 

striatum and amygdala (Bu et al., 2016), and reversed TBI-induced electrophysiological 

changes in hippocampal and prefrontal cortex oscillatory activity (Liu et al., 2017b). In a rat 

model of vascular dementia, the CB2R agonist BCP improved learning and memory on the 

Morris water maze, increased cerebral blood flow, and upregulated CB2R expression in the 

hippocampus (Lou et al., 2017). Similarly, another CB2R agonist, 1-phenylisatin, improved 

learning and memory and reversed mitochondrial and acetylcholinesterase deficits in a 

different rodent model of vascular dementia (Jayant et al., 2016).
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Epilepsy

CB2R also regulates seizure activity in animal models of epilepsy. The CB2R agonist BCP 

decreases seizure frequency and spread in mice undergoing maximal electroshock seizure 

and kainic-acid induced neurotoxicity tests, respectively (Tchekalarova et al., 2018). BCP 

also reduced oxidative stress resulting from seizure activity and improved memory 

performance in the Morris water maze (Tchekalarova et al., 2018). These findings suggest 

that CB2Rs may be a valuable medication target for treating memory loss, cognitive deficits, 

and inflammation in neuropsychiatric conditions ranging from dementia to epilepsy.

Mood disorders

CB2R also appears to be involved in the neurobiology of mood disorders. Transgenic mice 

overexpressing CB2Rs exhibited an endophenotype resistant to acute and chronic 

anxiogenic- and depression-like stimuli (Garcia-Gutierrez and Manzanares, 2011; Garcia-

Gutierrez et al., 2010). These striking behavioral features were associated with pronounced 

alterations in brain regions related to stress, anxiety, and depression, including the 

hippocampus and amygdala. In contrast, CB2-KO mice displayed high vulnerability to 

stressful stimuli (Ortega-Alvaro et al., 2011). Chronic administration of AM630, a selective 

CB2R antagonist, resulted in anxiolytic- and antidepressant-like effects (Garcia-Gutierrez et 

al., 2011; Garcia-Gutierrez et al., 2010), while administration of JWH133, a selective CB2R 

agonist, produced the opposite behavioral and neurochemical effects (Garcia-Gutierrez et al., 

2010). In addition, an association between CB2R polymorphisms and depression was 

detected in a Japanese population (Onaivi et al., 2008a), and alterations in cortical CB2R 

(and GPR55) gene and protein expression are associated with suicide incidents (Garcia-

Gutierrez et al., 2018). Taken together, these findings suggest an important role of CB2R in 

regulating anxiety and depression.

CONCLUSIONS

CB2R was initially assumed to express exclusively in the periphery. However, recent 

technological advances in the sensitivity and specificity of RNA and protein detection, 

alongside progress in genome editing techniques, have generated converging evidence across 

species supporting the presence of functional CB2R in the brain. Today, corroboration for 

brain CB2R is available at every level in biology, from genes to protein expression and from 

functional effects at the neuronal level to behavior and neuropsychiatric disease. Ongoing 

work will develop increasingly specific antibodies to identify CB2R protein expression, as 

well as full CB2-KO mouse lines in which more commercially-available antibodies can be 

validated. Future research will also identify more selective CB2R agonists and antagonists 

that have promise as pharmacological tools and pharmacotherapeutics. Given the broad 

involvement of CB2Rs in behavior, understanding brain CB2R signaling may provide fresh 

insights into interventions and treatments for disorders ranging from dementia to epilepsy 

and drug addiction.
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Highlights

• Cannabinoid CB2R was initially assumed to be exclusively in the periphery

• Technological innovations have revealed functional CB2R expression in 

neurons and glial cells

• Species differences exist in CB2R genes, receptor expression, and function

• Region-specific CB2R transcripts are found in the brain and periphery

• Brain CB2Rs are inducible and neuroprotective against various insults, 

involved in cannabis action, drug addiction, and other psychiatric disorders
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Figure 1. 
Quantitative mouse brain CB2 mRNA assays by RT-PCR. (A) Mouse CB2 gene structure; 

(B) Structures of two CB2 transcripts (CB2A, CB2B), illustrating CB2-encoding sequence on 

exon 3, the gene-deleted region in Zimmer strain CB2-KO mice, and the binding sites of 

three Taqman probes used to detect CB2 expression in the brain and spleen; (C) Mouse 

CB2A over CB2B ratio in the brain and spleen, illustrating that brain CB2A level is much 

higher (20-30-fold) than brain CB2B mRNA, while in spleen, CB2A is only ~3-fold higher 

than CB2B; (D) CB1 over CB2A ratio in the brain and spleen, illustrating that brain CB2A 

Jordan and Xi Page 24

Neurosci Biobehav Rev. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mRNA level is 100-300-fold lower than that of CB1 in the brain; (E) The CB2A probe that 

targets the upstream 5′UTR from the gene-deleted region detected similar levels of CB2 

mRNA in WT, CB1-KO and CB2-KO mice; (F) The CB2-KO probe that targets the gene-

deleted region detected CB2 mRNA only in WT or CB1-KO mice, but not in CB2-KO mice. 

UTR: untranslated region.

NM_009924.2 and AK036658.1 are the GenBank cDNA codes.
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Figure 2. 
CB2 mRNA distributions in the brain as detected using RNAscope ISH assays. The CB2 

mRNA was detected in multiple brain regions, including PFC, hippocampus, midbrain and 

cerebellum in WT (left) and CB1-KO mice (middle), but not in CB2-KO mice (right). PFC: 

Prefrontal cortex; Hippo: Hippocampus; DS: Dorsal striatum; NAc: Nucleus accumbens; 

Cereb: Cerebellum.
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Figure 3. 
Diagram showing how Δ9-THC modulates the mesolimbic DA system. Δ9-THC may 

produce rewarding effects by binding to CB1R on GABAergic interneurons in the VTA, 

thereby reducing GABA-mediated inhibition of VTA DA and increasing DA release in the 

NAc. Conversely, Δ9-THC may produce aversive effects by activating CB1R on 

glutamatergic neurons in the VTA, or CB2R on DA neurons, thereby inhibiting VTA DA 

release to the NAc. The subjective effects of Δ9-THC may thus depend on the balance of 

opposing CB1R and CB2R effects and individual differences in neural CB1 and CB2 

receptor expression. VTA: Ventral tegmental area. NAc: Nucleus accumbens, DA: 

Dopamine.
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Figure 4: 
Effects of cocaine self-administration (SA) on CB2 mRNA expression in the brain and in 

VTA DA neurons in mice. (A) CB2 mRNA expression in naive mouse, illustrating CB2 

mRNA expression in tyrosine hydroxylase (TH)-positive dopamine neurons as measured by 

RNAscope ISH; (B) CB2 mRNA expression in mice after 4-6 weeks of cocaine SA, 

illustrating that prolonged cocaine self-administration (1 mg/kg/infusion, 3 hrs per daily 

session, maximal 50 infusions per session) significantly up-regulates CB2 expression in 

VTA DA neurons; (C) Quantitative results in RNAscope assays, illustrating that cocaine SA 
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significantly increased CB2 mRNA expression in VTA dopamine neurons; (D) Quantitative 

RT-PCR results, illustrating that cocaine, but not sucrose, self-administration significantly 

up-regulated CB2 mRNA expression in the prefrontal cortex (PFC), striatum and VTA-

containing midbrain. *p<0.05. ***p<0.001, compared to naive control mice.
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Table 1.

Species Differences in Cannabinoid Receptor 2 Amino Acid Sequences and Antibody Binding Sites.

 Abcam rCB2-Ab TM1

Rat CB2 MAGCRELELTNGSNGGLEFNPMKEYMILSDAQQIAVAVLCTLMGLLSALENVAVLYLILS 60

Mouse CB2 MEGCRETEVTNGSNGGLEFNPMKEYMILSSGQQIAVAVLCTLMGLLSALENMAVLYIILS 60

Human CB2 MEECWVTEIANGSKDGLDSNPMKDYMILSGPQKTAVAVLCTLLGLLSALENVAVLYLILS 60

Cayman hCB2-Ab

TM2 TM3

Rat CB2 SQRLRRKPSYLFIGSLAGADFLASVIFACNFVIFHVFHGVDSRNIFLLKIGSVTMTFTAS 120

Mouse CB2 SRRVRRKPSYLFISSLAGADFLASVIFACNFVIFHVFHGVDSNAIFLLKIGSVTMTFTAS 120

Human CB2 SHQLRRKPSYLFIGSLAGADFLASVVFACSFVNFHVFHGVDSKAVFLLKIGSVTMTFTAS 120

TM4

Rat CB2 VGSLLLTAVDRYLCLCYPPTYKALVTRGRALVALGVMWVLSALISYLPLMGWTCCPSPCS 180

Mouse CB2 VGSLLVTAVDRYLCLCYPPTYKALVTRGRALVALCVMWVLSALISYLPLMGWTCCPSPCS 180

Human CB2 VGSLLLTAIDRYLCLRYPPSYKALLTRGRALVTLGIMWVLSALVSYLPLMGWTCCPRPCS 180

TM5 Alomone rCB2-Ab

Rat CB2 ELFPLIPNDYLLGWLLFIAILFSGIIYTYGYVLWKAHQHVASLAEHQDRQVPGIARMRLD 240

Mouse CB2 ELFPLIPNDYLLGWLLFIAILFSGIIYTYGYVLWKAHRHVATLAEHQDRQVPGIARMRLD 240

Human CB2 ELFPLIPNDYLLSWLLFIAFLFSGIIYTYGHVLWKAHQHVASLSGHQDRQVPGMARMRLD 240

TM6 TM7

Rat CB2 VRLAKTLGLVMAVLLICWFPALALMGHSLVTTLSDKVKEAFAFCSMLCLVNSMINPIIYA 300

Mouse CB2 VRLAKTLGLVLAVLLICWFPALALMGHSLVTTLSDQVKEAFAFCSMLCLVNSMVNPIIYA 300

Human CB2 VRLAKTLGLVLAVLLICWFPVLALMAHSLATTLSDQVKKAFAFCSMLCLINSMVNPVIYA 300

Mackie rCB2-Ab

Rat CB2 LRSGEIRSAAQHCLTGWKKYLQGLGSEGKEEAPKSSVTETEAEVKTTTGPGSRTPGCSNC 360

Mouse CB2 LRSGEIRSAAQHCLIGWKKYLQGLGPEGKEEGPRSSVTETEADVKTT------------------------ 347

Human CB2 LRSGEIRSSAHHCLAHWKKCVRGLGSEAKEEAPRSSVTETEADGKITPWPDSRDLDLSDC 360

NIDA-5633 mCB2-Ab
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