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Abstract

Accumulating evidence suggests that autism spectrum disorder (ASD) may be conceptualized 

within a framework of reward processing impairments. The “Social Motivation Theory of Autism” 

posits that reduced motivation to interact with people and decreased pleasure derived from social 

interactions may derail typical social development and contribute to the emergence of core social 

communication deficits in ASD. Neuroinflammation may disrupt the development of mesolimbic 

dopaminergic systems that are critical for optimal functioning of social reward processing systems. 

This neuroinflammation-induced disturbance of mesolimbic dopaminergic functioning has been 

substantiated using maternal immune activation rodent models whose offspring show aberrant 

dopaminergic corticostriatal function as well as behavioral characteristics of ASD model systems. 

Preclinical findings are in turn supported by clinical evidence of increased mesolimbic 

neuroinflammatory responses in individuals with ASD. This review summarizes evidence for 

reward processing deficits and neuroinflammatory impairments in ASD and examines how 

immune inflammatory dysregulation may impair the development of dopaminergic mesolimbic 

circuitry in ASD. Finally, future research directions examining neuroinflammatory effects on 

reward processing in ASD are proposed.
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1) Introduction

Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder 

estimated to affect 1 in 59 children in the United States (Baio et al., 2018). Individuals with 

ASD present with extensive differences in symptom presentations, cognitive abilities, and 

adaptive skills. Given the heterogeneity inherent to the disorder, it is likely that multiple 

distinct etiological and pathophysiological factors contribute to the development of ASD. 

Despite the breadth of research investigating the developmental pathophysiology of ASD, no 

unifying etiological model has yet been established for ASD. This is in large part due to the 

intrinsic complexity of the genetics of ASD (Sahin & Sur, 2015), multiple environmental 

influences that have been shown to confer risk for ASD (Rossignol, Genuis, & Frye, 2014), 

and differential expression and identification of symptoms in males and females (Mandy & 

Lai, 2017) and children and adults (St Pourcain et al., 2017; Woodman, Smith, Greenberg, & 

Mailick, 2016) with ASD. These challenges associated with identifying a common etiologic 

factor for all individuals with ASD have impaired the development of novel psychosocial 

and pharmacological treatment options.

2) The Social Motivation Hypothesis of Autism

One approach to improved ASD treatment development is to consider mechanistic accounts 

that may apply to at least a significant subgroup of those with ASD who may share a 

common pathophysiology, thereby providing a mechanistic and functional framework for 

targeted treatment approaches suitable for that subgroup. Social communication impairments 

and their associated neurobiological underpinnings have received the majority of research 

attention as a path forward to understand ASD pathophysiology (Pelphrey, Shultz, Hudac, & 

Vander Wyk, 2011). Another candidate mechanism that has emerged recently are 

neurobiological systems associated with reward processing impairments in ASD. The 

framework that certain individuals with ASD are less motivated to interact with others and 

derive less pleasure from social interactions was introduced over a decade ago (Dawson, 

Webb, & McPartland, 2005), and this model has been useful for describing behavioral 

profiles and neural mechanisms of those individuals with ASD with decreased social 

motivational and pleasure responses (Chevallier, Kohls, Troiani, Brodkin, & Schultz, 2012; 

Dichter, Damiano, & Allen, 2012) as well as potential biomarkers for early emerging 

reduced social attention in ASD (Dawson, Bernier, & Ring, 2012).

The framework of the Social Motivation Hypothesis of Autism is that functional disruptions 

in brain circuits that support social motivation may constitute a primary deficit in ASD that 

may have downstream effects on the development of social cognition and communication 

(Chevallier, Kohls, et al., 2012; Kohls, Chevallier, Troiani, & Schultz, 2012). Decreased 

social motivation may not be the only mechanistic account of the full range of social deficits 

associated with ASD (e.g., some individuals with ASD have social interests and actively 

seek social interactions but fail to form friendships due to impaired social cognition and 

pragmatic language). However, even during the first year of life, infants with ASD 

demonstrate infrequent orienting to their own name and diminished eye contact (Ozonoff et 

al., 2010), suggesting that decreased social orienting and social interest are evident in 
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infancy in ASD and may interfere with the development of social cognition in at least a 

significant proportion of individuals with ASD (Dichter & Adolphs, 2012).

Social motivation is critical for optimal social development and learning (Fareri, Martin, & 

Delgado, 2008). During typical development, orienting to social stimuli begins in early 

infancy (Farroni, Massaccesi, Menon, & Johnson, 2007), including a neonatal preference for 

faces over non-face stimuli (Johnson, Dziurawiec, Ellis, & Morton, 1991). This 

prioritization is critical for social-communicative development (Brooks & Meltzoff, 2005) 

and social adaptation through the lifespan (Emery, 2000). Attention to social stimuli, even in 

infancy, is hypothesized to be accompanied by feelings of pleasure (Dawson et al., 2004), 

resulting in increased social motivation (Schultz, 2005) that promotes the development of 

neural systems underlying social information processing. In turn, such reward processing 

mechanisms may serve to encode and consolidate positive memories of social experiences 

that influence future responses to social stimuli and influence the development of brain 

systems that mediate social functioning more broadly (Chevallier, Kohls, et al., 2012).

Accordingly, the social impairments that characterize ASD may reflect decreased motivation 

to engage in reciprocal social behaviors in infancy and early childhood that would ultimately 

result in fewer experiences with social sources of information and decreased social learning 

(Dawson et al., 2005). When young children with ASD lack the motivation to participate in 

activities where social skills are typically forged, the resulting impoverished social 

environment further compounds social communication impairments and, thereby, negatively 

impacts the development of social cognition and social communication (Kuhl, Coffey-

Corina, Padden, & Dawson, 2005; Schultz et al., 2000). Consistent with this model, very 

young children with ASD demonstrate decreased orienting to social stimuli (Dawson, 

Meltzoff, Osterling, & Rinaldi, 1998; Klin, Lin, Gorrindo, Ramsay, & Jones, 2009), and 

atypical social orienting has been shown to predict decreased social competence in 

adolescents with ASD (Klin, Jones, Schultz, Volkmar, & Cohen, 2002). There is also 

evidence that social motivation remains impaired in individuals with ASD despite growth in 

other areas of cognitive development. For instance, older children with ASD report 

experiencing less pleasure from social rewards (Chevallier, Grezes, Molesworth, Berthoz, & 

Happe, 2012) and social stimuli are less salient for individuals with ASD (Chawarska et al., 

2014; Sasson et al., 2007). More generally, ASD is characterized by lower levels of reward 

responsivity (for review see Clements et al., 2018) and impaired reward-based learning 

(Johnson, Yechiam, Murphy, Queller, & Stout, 2006). Finally, intriguing preliminary 

findings that social communication abilities of individuals with ASD appear to improve 

under certain motivational contexts suggests that core social communication impairments in 

ASD may be influenced by motivational factors (Peterson, Slaughter, Peterson, & Premack, 

2013).

3) Brain reward circuitry and motivated social behavior

The mesocorticolimbic dopamine system is the primary neural network responsible for 

reward processing behaviors including reward approach, reward receipt, and reward-based 

learning (Schultz, 2015). Reward processing is mediated by dense dopaminergic projections 

originating from the ventral tegmental area (VTA) that project to the striatum, orbitofrontal 
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cortex (OFC), ventromedial prefrontal cortex (vmPFC), and the anterior cingulate cortex, 

forming a mesolimbic dopamine pathway sensitive to the magnitude and probability of 

reward (Berridge, Robinson, & Aldridge, 2009; Schultz, 2000; Treadway & Zald, 2013). 

Reward-predictive dopamine bursts originating in VTA send signals to the striatum, 

including the nucleus accumbens (NAc), that mediate approach behaviors towards salient 

goals (Bjork & Hommer, 2007; Knutson & Cooper, 2005). Functioning of the 

mesocorticolimbic dopamine system can be assessed using a multitude of method, including 

dopamine levels, dopamine metabolite and precursor concentrations, and dopamine receptor 

binding activity.

The neural circuits that mediate reward processing may have evolved, at least in part, to 

facilitate social affiliation and attachment (Insel, 2003; Trezza, Damsteegt, Achterberg, & 

Vanderschuren, 2011). The ascending mesolimbic dopamine system mediates responses to 

social and nonsocial incentives (Gunaydin & Deisseroth, 2014) and dopamine transmission 

in the nucleus accumbens modulates social play behaviors (Manduca et al., 2016). Social 

interaction mobilizes the same mesolimbic network that is active during the processing of 

nonsocial rewards such as food, money, and drugs of addiction (Schultz, 1997; Zink, 

Pagnoni, Martin-Skurski, Chappelow, & Berns, 2004). Further, functioning of the 

mesolimbic circuit in the context of rewarding stimuli is associated with high valuation, 

incentive salience, and motivation (Smith, Berridge, & Aldridge, 2011). Therefore, reward 

mechanisms may serve to encode and consolidate positive memories of social experiences, 

facilitating social abilities hypothesized to be impaired in ASD (Chevallier, Kohls, et al., 

2012).

4) Dopaminergic Impairments in ASD

A. Preclinical Evidence

Preclinical and clinical findings suggest that impaired mesolimbic dopamine functioning 

may contribute to cardinal features of ASD (Dichter & Adolphs, 2012; Hara et al., 2015; 

Staal, 2015). For example, the valproic acid model of ASD is one of the most widely used 

ASD animal models (Mabunga, Gonzales, Kim, Kim, & Shin, 2015); prenatal valproic acid 

exposure causes ASD-like phenotypes and a cascade of neurobiological changes, including 

excitatory/inhibitory neural imbalances linked to increased basal dopamine in the frontal 

cortex (Narita et al., 2002), hyperactive mesocortical dopamine in response to stress 

(Nakasato et al., 2008), and changes in locomotor behavior akin to that observed in striatal 

dopamine-depleted animals (Shaywitz, Yager, & Klopper, 1976). Additionally, SHANK3 
has been proposed as candidate gene for ASD (Durand et al., 2007; Pinto et al., 2010). 

SHANK3 is expressed in the VTA, and manipulations that reduce social interaction, such as 

social defeat stress, lead to significant reductions in VTA SHANK3 expression (Warren et 

al., 2013). In mice, disruption of SHANK3 leads to impaired social reward phenotypes 

(Wang et al., 2011). Additionally, SHANK3 impairs the maturation of excitatory synapses 

onto VTA dopamine neurons and results in reduced in vivo burst activity of dopamine 

neurons. Further, optogenetic activation of VTA dopamine neurons increases social 

preference in SHANK3-deficient mice, linking sufficiency of dopamine neuron activity to 

social interaction functions (Bariselli et al., 2016).
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B. Clinical Evidence

Clinically, there is evidence of impaired mesolimbic functioning in ASD. Individuals with 

ASD demonstrate altered effort-based decision making for rewards (Damiano, Aloi, 

Treadway, Bodfish, & Dichter, 2012; Mosner et al., 2017; Watson et al., 2015). Recent 

findings also show that individuals with ASD experience difficulty in social reward-based 

learning (Li et al., 2017). Additionally, social communicative abilities may improve in ASD 

under optimal motivational conditions (Chevallier, Kohls, et al., 2012; Lahaie et al., 2006; 

Wang, Dapretto, Hariri, Sigman, & Bookheimer, 2004). For instance, Peterson and 

colleagues (2013) demonstrated that adequate incentives boosted motivation and, as a result, 

improved performance on a theory-of-mind task in children with ASD.

Common polymorphisms of the dopamine D4 receptor gene and the dopamine transporter 

gene are related to challenging behaviors (Gadow, Devincent, Olvet, Pisarevskaya, & 

Hatchwell, 2010) and repetitive behaviors (Gadow, DeVincent, Pisarevskaya, et al., 2010) in 

ASD, and linkages have been reported between polymorphisms of the dopamine-3-receptor 

gene and striatal volumes (Staal, Langen, van Dijk, Mensen, & Durston, 2015) as well as 

symptoms of repetitive behaviors (Staal, 2015) in ASD. Oxytocinergic abnormalities in ASD 

(Bell, Nicholson, Mulder, Luty, & Joyce, 2006; Depue & Morrone-Strupinsky, 2005; Dolen, 

2015; Ross, Cole, et al., 2009) and initial reports of the therapeutic effects of intranasal 

oxytocin administration for treating core ASD symptoms (Andari et al., 2010; Guastella et 

al., 2010; Guastella, Mitchell, & Dadds, 2008) suggest an etiologically-relevant role for 

mesolimbic dopamine functioning in ASD. Although oxytocin impacts multiple systems, 

there are dense oxytocin projections within the mesolimbic dopamine system, including 

oxytocin neurons that project to both the ventral tegmental area and the nucleus accumbens 

(Ferguson, Young, & Insel, 2002; Insel & Young, 2001; Ross, Freeman, et al., 2009), and 

oxytocin receptor activation plays an important role in the activation of reward pathways 

during pro-social behaviors, suggesting that oxytocin may improve social symptoms in ASD 

via effects on the mesolimbic dopamine system (Choe et al., 2015; Dolen, Darvishzadeh, 

Huang, & Malenka, 2013; Olazabal & Young, 2006).

Perhaps the strongest evidence for reward-sensitive mesolimbic impairment in ASD stems 

from functional neuroimaging studies (for review see Clements et al., 2018). These studies 

have generally, but not always, found striatal hypoactivation in individuals with ASD during 

the processing of monetary rewards in the context of incentive delay tasks (Delmonte et al., 

2012; Dichter, Felder, et al., 2012; Dichter, Richey, Rittenberg, Sabatino, & Bodfish, 2012) 

as well as a range of other non-reward cognitive tasks (Carlisi et al., 2017; Choi et al., 2015; 

Kohls et al., 2013; Schmitz et al., 2008; Scott-Van Zeeland, Dapretto, Ghahremani, 

Poldrack, & Bookheimer, 2010; Solomon et al., 2015). Further, there is evidence for 

functional mesolimbic impairments in response to social rewards (Delmonte et al., 2012; 

Dichter, Felder, et al., 2012; Scott-Van Zeeland et al., 2010) and negative social 

reinforcements (Damiano et al., 2015) in ASD. It is noteworthy that functional mesolimbic 

impairments are evident in response to a range of rewards, including responses to food cues 

(Cascio et al., 2012) and special interests (Cascio et al., 2014; Dichter, Felder, et al., 2012), 

highlighting that functional mesolimbic impairments in ASD may not be specific to social 
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stimuli but may extend more broadly to range of rewarding stimuli (Dichter & Adolphs, 

2012).

5) Neuroinflammation as a Mechanistic Account of Reward Processing 

Impairments in ASD

The remainder of this review presents evidence that ASD is characterized by aberrant 

neuroinflammatory processes and that these processes represent a mechanistic factor 

contributing to the development and maintenance of reward processing impairments in ASD 

via effects on mesocorticolimbic dopamine systems. There is evidence to suggest a negative 

relationship between neuroinflammatory response and dopamine signaling via different 

pathways and receptors (i.e., D1, D2, D3). Specifically, decreases in dopaminergic activity 

have been linked with increased levels of inflammatory markers (Yan et al., 2015), while 

heightened dopamine responses are associated with attenuated cell-death as a result of 

immunological insult (e.g., lipopolysaccharide (LPS); Iravani et al., 2008). While 

dopaminergic signaling clearly impacts immunological responses, this review will largely 

provide evidence of the immunological effects on dopamine and its metabolites. These 

distinct perspectives may, in fact, reflect a bidirectional association between dopamine 

reactivity and inflammation. Linkages between neuroinflammation and mesocorticolimbic 

dopamine function have been previously described in the context of other psychiatric 

conditions (e.g., depression and anhedonia; Felger & Treadway, 2017) and 

neurodegenerative disorders (e.g., Parkinson’s disease; Kaur, Gill, Bansal, & Deshmukh, 

2017), and there is emerging preclinical and clinical data that comparable linkages may be 

characteristic of ASD as well.

6) Overview of the Immune System

The immune system is a complex defense mechanism that serves to protect an organism 

from potentially harmful pathogens via innate and adaptive systems (see Parkin & Cohen, 

2001 for a review). The innate immune system is a nonspecific first line of defense against 

antigens and includes physical barriers such as the skin, chemical barriers within the blood 

(e.g., antimicrobial proteins), and cells that attack potentially harmful foreign bodies. Cells 

involved within the innate system include neutrophils, dendritic cells, natural killer cells, 

mast cells, monocytes, and macrophages. Resident brain macrophages, known as microglia, 

serve a maintenance function by aiding in synaptic maturation and phagocytosis, a process 

by which pathogens or cell debris are degraded and destroyed (Takano, 2015). Microglia and 

other macrophages are also responsible for releasing cell-signaling molecules (i.e., 

cytokines) when activated by immunological insults. Cytokines, including interferons (e.g., 

IFN-α) and interleukins (e.g., IL-6, IL-1β), regulate pro- and anti-inflammatory responses 

and facilitate communication between the innate and adaptive arms of the immune system 

(Masi, Glozier, Dale, & Guastella, 2017). Adaptive immunity is then triggered when innate 

immunity is unable to ward off a pathogen, and this branch of the immune system is 

comprised of white blood cells, called B cells and T cells. In addition, the adaptive system 

serves a memory function for subsequent pathogen activations. Together, the innate and 
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adaptive immune systems engage in complex communications with one another to maintain 

a defense against foreign and native threats (Filiano, Gadani, & Kipnis, 2015).

7) Effects of Neuroinflammation on Reward Processing

A. Preclinical Studies

The link between neuroinflammation and dopamine dysregulation has been explored in 

numerous studies using a variety of stimuli (e.g., interferon-alpha, IFN-α, endotoxin) known 

to induce systemic inflammatory responses. Shuto, Kataoka, Horikawa, Fujihara, and Oishi 

(1997) first observed significantly depleted dopamine levels in cytokine-treated mice 

compared to mice treated with saline. More recently, studies examining the offspring of 

immune-challenged rodents have reported significant dopamine disruptions in canonical 

reward processing brain regions (Kirsten, Taricano, Flório, Palermo-Neto, & Bernardi, 2010; 

Vuillermot, Weber, Feldon, & Meyer, 2010). Further, animals exposed to inflammatory 

stimuli have also shown behavioral impairments, such as decreased motivation to work for 

food (Felger et al., 2013; Nunes et al., 2014), inhibited environmental exploring (Felger et 

al., 2007), and decreased sexual motivation (Bernardi et al., 2010). Using positron emission 

tomography (PET) imaging, which allows for the examination of metabolic and 

neurochemical changes in the brain, Felger and colleagues (2013) observed reductions in 

dorsal striatal dopamine release following chronic IFN-α administration in rhesus monkeys. 

Similarly, single administrations of IFN-α in rats resulted in reduced striatal 

dihydroxphenylacetic acid (DOPAC), a metabolite of dopamine (Kamata, Higuchi, 

Yoshimoto, Yoshida, & Shimizu, 2000; Sato et al., 2006). IFN-α administration in rats has 

also been associated with decreased dopamine within the amygdala and raphe nucleus 

(Kitagami et al., 2003). Together, these findings demonstrate the potential for inflammatory 

responses to downregulate neural dopamine in preclinical samples. However, some rodent 

studies have also reported increases in neural dopamine following IFN-α administration 

(Kumai et al., 2000; Sato et al., 2006), and Felger and Miller (2012) suggest that this 

discrepancy within the preclinical literature may reflect differences in cytokine dosing and 

length of exposure. Overall, these preclinical findings contribute to a model of 

inflammation-induced disruption of corticostriatal dopamine pathways.

B. Clinical Studies

Consistent with preclinical evidence, human fMRI studies investigating the impact of 

inflammation on the brain have also shown distinct effects on dopaminergic neural circuitry 

(Capuron et al., 2007; Capuron et al., 2012; Dowell et al., 2016; Eisenberger et al., 2010; 

Felger et al., 2013). For example, experimentally-induced inflammation has been shown to 

attenuate ventral striatal activation in response to reward tasks (Capuron et al., 2012; 

Eisenberger et al., 2010). Healthy individuals exposed to a single administration of low-dose 

endotoxin showed significantly attenuated neural activation within the ventral striatum to 

monetary reward cues relative to placebo-treated controls (Eisenberger et al., 2010). Typhoid 

vaccination, which evokes a brief inflammatory response, has also been associated with 

decreased ventral striatal response to reward prediction errors, as well as increased insula 

encoding of punishment prediction error, relative to placebo-treated controls (Harrison et al., 

2016). Similarly, patients with chronic hepatitis C virus (HCV) receiving IFN-α treatment 
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showed diminished ventral striatal activation during a hedonic reward task compared to 

untreated patients (Capuron et al., 2012). Within this same study, attenuated ventral striatal 

activity was significantly correlated with patient reports of decreased motivation. However, 

in contrast to these findings of decreased striatal response to reward stimuli following an 

inflammatory challenge, there are reports of increased ventral striatal sensitivity to social 

rewards and social threats following endotoxin exposure (Inagaki et al., 2015; Muscatell et 

al., 2016). Consequently, Inagaki (2015) and Muscatell (2016) hypothesized that 

inflammation-induced neural responses may be highly sensitive to the context in which they 

are processed. These discrepancies highlight the need for future work to evaluate the effects 

of experimentally-induced inflammation on neural and behavioral responses to different 

classes of rewards.

Molecular neuroimaging has further clarified linkages between neuroinflammation and 

impaired mesolimbic dopamine circuitry functioning. For example, examinations of 

neurometabolic functioning in HCV patients following a three-month-long IFN-α treatment 

course revealed increased resting state glucose metabolism in dorsal striatal regions 

(Juengling et al., 2000). Based on findings from the Parkinson’s disease literature, this 

hypermetabolic state is thought to reflect the loss of inhibitory dopamine neurons (Eidelberg 

et al., 1994; Mentis et al., 2002; Wichmann & DeLong, 1999). These findings have since 

been replicated and expanded upon by Capuron and colleagues (2007) using a sample of 

patients with malignant melanoma receiving IFN-α therapy over the course of four weeks: 

not only was dorsal striatal glucose metabolism enhanced following IFN-α treatment, but 

this effect was also significant within ventral striatal regions. Relatedly, Capuron and 

colleagues (2012) found that IFN-α therapy for patients with HCV resulted in increased 

uptake of dopamine neurotracer 18F-Dopa and decreased 18F-Dopa turnover within ventral 

and dorsal striatal regions, reflecting significant changes in presynaptic striatal dopamine 

function as a result of treatment. Specifically, these changes are indicative of decreased 

dopamine synthesis and release. Together these preclinical and clinical findings demonstrate 

the potential for inflammatory responses to alter dopaminergic activity within neural reward 

circuitry (see Figure 1), and thereby impact animal and human reward and motivational 

behavior.

Finally, some of the strongest documented links between immune dysfunction and reward-

oriented behaviors have been illustrated in studies of individuals exposed to inflammatory 

stimuli (Eisenberger et al., 2010) or those undergoing immunotherapy to treat medical 

illness (Capuron et al., 2002; Capuron et al., 2012). Following an endogenous or 

experimentally-induced immune response, individuals in these studies have repeatedly 

exhibited symptoms collectively referred to as “sickness behavior”. Sickness behavior is a 

set of vegetative, somatic, and psychological responses that are considered to be adaptive in 

recovery to illness (Dantzer, O'Connor, Freund, Johnson, & Kelley, 2008). Behavioral 

presentation is characterized by low appetite, fatigue, social withdrawal, and generally low 

motivation (Dantzer & Kelley, 2007). Following exposure to a single administration of low-

dose endotoxin, Eisenberger et al. (2010) reported that healthy adult participants displayed 

significantly greater levels of sickness behavior compared to placebo-treated participants. 

These symptoms of sickness behaviors were also accompanied by increased endorsement of 

symptoms of depression and anhedonia, conditions that are characterized by and diagnosed 
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based on impaired responses to pleasure and decreased motivation (Nestler & Carlezon, 

2006). These findings have been corroborated in patients receiving IFN-α treatments, who, 

compared to patients administered placebo medications, reported increased sickness 

behavior and depressed mood (Capuron et al., 2002; Capuron et al., 2007; Capuron et al., 

2012).

8) Evidence of Neuroinflammation in ASD

A. Maternal Immune Activation and ASD Risk

Some of the strongest etiologic evidence of neuroinflammatory processes in ASD derive 

from studies of maternal immune activation (MIA). These studies highlight that immune 

dysregulation in ASD may be triggered as early as during fetal development by innate 

maternal antibodies, as well as maternal infection during pregnancy. Because the blood-

brain barrier is increasingly permissive during gestation (Adinolfi, Beck, Haddad, & Seller, 

1976), maternal immune cells are capable of accessing the developing fetal brain, making 

these developing neural networks more susceptible to harm (Karpiak & Rapport, 1975). 

Maternal infection during pregnancy has shown deleterious effects and hospital admissions 

to maternal viral infection in the first trimester or bacterial infection within the second 

trimester significantly increased the risk of offspring developing ASD (Atladóttir et al., 

2010; Estes & McAllister, 2016). During maternal infection, children who go on to develop 

ASD may be exposed in utero to maternal anti-brain antibodies (Immunoglobulin G (IgG); 

Edmiston, Ashwood, & Van de Water, 2017). These antibodies appear to respond in a 

heightened manner to fetal brain tissue (i.e., fetal brain tissue is treated as a foreign 

pathogen), resulting in neurotoxic effects that increase the risk for developing ASD 

(Braunschweig & Van de Water, 2012; Zimmerman et al., 2007). Consistent with this 

framework, there are elevated rates of autoimmune disorders (e.g., Lupus, rheumatoid 

arthritis, celiac disease, hypothyroidism) in mothers of children with ASD (Comi, 

Zimmerman, Frye, Law, & Peeden, 1999; Keil et al., 2010), and children born to mothers 

with autoimmune disorders are 34% more likely to be diagnosed with ASD (Chen et al., 

2016).

B. Autoimmune Anti-Brain Antibodies in ASD

Anti-brain antibodies are not only present in mothers of children with ASD but are also 

present in children and adults with ASD (Hoffmann et al., 2016). These anti-brain 

autoantibodies target a variety of neural components (Connolly et al., 1999; Singh, Singh, & 

Warren, 1997; Singh, Warren, Odell, Warren, & Cole, 1993) and are significantly more 

prominent in individuals with ASD (Goines et al., 2011; Wills et al., 2009). In addition, 

these antibodies appear to be most significantly elevated in ASD within brain regions 

associated with reward processing, including the dorsal striatum, prefrontal cortex (PFC) and 

anterior cingulate gyrus (ACG), as well as the cerebellum (Singer et al., 2006). In a study 

investigating the effects of human-derived serum antibodies on rodent brain proteins using 

immunoblotting with specific antigens for myelin basic protein and glial acidic fibrillary 

protein, Zimmerman and colleagues (2007) showed that sera from ASD children were 

significantly more reactive to rodent brain proteins than sera antibodies of unaffected 

siblings and their parents. This finding highlights the potentially neurotoxic effects of 
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human-derived serum antibodies. In some instances, these anti-brain antibodies have also 

been associated with more severe cognitive, motor, adaptive, language and developmental 

impairments in individuals with ASD (Piras et al., 2014).

C. Aberrant Cytokine Concentrations in ASD

Glial cells (i.e., astrocytes and microglia) provide structural support and nutrients for 

neurons and play a critical role in phagocytosis, and there is evidence of increased glial 

activation in ASD. Upregulated glial activation has been shown to be directly related to 

alterations in peripheral and central cytokine expression in ASD (for review see Masi et al., 

2017; Masi et al., 2015). This aberrant cytokine profile in ASD is evidenced by both 

increased pro-inflammatory responses (Ashwood et al., 2011b; Chez, Dowling, Patel, 

Khanna, & Kominsky, 2007) and decreased anti-inflammatory responses (Ashwood et al., 

2008; El Gohary, El Aziz, Darweesh, & Sadaa, 2015; Okada et al., 2007), contributing to a 

largely pro-inflammatory profile in ASD. Altered cytokine concentrations have been 

associated with more severe behavioral features of the disorder, including: increased 

stereotypies, greater impairments in communication and daily living skills, increased 

hyperactivity, and increased overall ASD symptom severity (Ashwood et al., 2012; Ashwood 

et al., 2011b; El Gohary et al., 2015; Piras et al., 2014), as well as greater nonverbal and 

verbal developmental disruption (Careaga et al., 2017). Ashwood and colleagues (2011b) 

reported significant differences in cytokine concentrations between individuals with ASD 

who did and who did not experience regression, such that children with regressive ASD 

exhibited increased cytokine levels relative to children with no history of regression. These 

findings have provided support for the use of immunological markers in exploring 

endophenotypic subtypes of ASD and suggest a heightened inflammatory environment in 

some individuals with the disorder (Bryn et al., 2017).

Finally, increased lethargy in individuals with ASD has been associated with increases in 

eotaxin, IL-8, and IL-12p40, whereas greater stereotypy has been associated with increases 

in eotaxin, IL-1β, IL-6, IL-8, and IL-12p40 (Ashwood et al., 2011a, 2011b). More severe 

nonverbal communication impairments in individuals with ASD have been linked with 

enhanced concentrations of IL-4 (Ashwood et al., 2011b). Finally, increased hyperactivity 

and worsened cognitive and adaptive ability in ASD have been shown to accompany 

increased IL-8 levels (Ashwood et al., 2011b). Individuals with ASD with heightened 

proinflammatory profiles displayed greater impairment in social affect, as well as cognitive, 

language, and motor development, compared to individuals with ASD with relatively 

attenuated proinflammatory profiles (Careaga et al., 2017).

9) Effect of Neuroinflammation on Reward Behaviors and Dopaminergic 

Circuitry in ASD

A. Preclinical Findings

There is a growing literature examining the effects of experimentally-induced 

neuroinflammation on reward-related behaviors and associated mesocorticolimbic brain 

dopamine function in preclinical models. However, there is inconsistency with respect to the 

directionality of this disruption, perhaps due at least in part to the specific immunological 
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stimuli administered. For example, both polyinosinic:polycytidylic acid (poly I:C) and 

lippopolysaccaride (LPS) have been administered to pregnant rodents to mimic viral and 

bacterial infections, respectively. Offspring of these immune-challenged mothers have 

repeatedly shown significant dysregulation in striatal and prefrontal brain regions, and they 

serve as ASD preclinical models of inflammation. Adult and peripubertal offspring of LPS-

exposed rodents demonstrate consistently attenuated dopamine activity (measured by 

dopamine directly as well as its metabolites, DOPAC and homovanillic acid (HVA)) within 

striatal and thalamic brain regions (see Table 1; Kirsten & Bernardi, 2017; Kirsten, Taricano, 

Flório, et al., 2010; Soto et al., 2013). An exception to this trend includes a report of 

increased dopamine concentrations within the nucleus accumbens of adult rats born to LPS-

exposed mothers (Romero, Guaza, Castellano, & Borrell, 2010). This same study reported a 

developmentally-mediated interaction between MIA and striatal dopamine levels such that 

peripubertal rats showed decreased striatal dopamine whereas adult rats showed increased 

striatal dopamine relative to saline-exposed offspring.

Alternatively, offspring of poly I:C-exposed rodents primarily show a more variable 

dopamine profile that appears to be developmentally mediated (see Table 1; Meyer, Engler, 

et al., 2008; Meyer, Nyffeler, et al., 2008; Ozawa et al., 2006; Vuillermot et al., 2010; 

Zuckerman et al., 2003). Much like peripubertal rodents exposed to bacterial LPS in utero, 

peripubertal rodents born to viral poly I:C-exposed mothers show decreased levels of 

dopamine markers, including diminished tyrosine hydroxylase (TH) and dopamine 

transporter (DAT) expression within the NAcc and dorsal striatum (Vuillermot et al., 2010). 

Respectively, these proteins are tasked with dopamine biosynthesis and reuptake (Daubner, 

Le, & Wang, 2011; Vaughan & Foster, 2013). Poly I:C-induced alterations in dopamine 

binding have also been observed, although findings are mixed. D2 receptors in adult rodents 

downregulate binding in the striatum and PFC in response to prenatal poly I:C 

administration (Meyer, Nyffeler, et al., 2008; Ozawa et al., 2006) whereas the pattern for D1 

receptors is less uniform. Vuillermot and colleagues (2010) reported increased D1 receptor 

binding within the dorsal striatum and the NAcc shell as a result of prenatal exposure to poly 

I:C, yet this pattern differed with previous findings that showed no difference between 

striatal D1 binding in rodents exposed to poly I:C in utero (Ozawa et al., 2006). This 

discrepancy may be attributed to differences in dopamine receptor function, as each receptor 

projects its output to unique neural regions via distinct pathways. Broadly, it has been 

suggested that these receptors interact in both synergistic and opposing fashions (Keeler, 

Pretsell, & Robbins, 2014). In addition, these receptor-specific responses may reflect D1 

receptor tendencies to respond to phasic (i.e., more acute) dopamine activity, whereas D2 is 

more sensitive to tonic (i.e., extended) dopamine release (Dreyer, Herrik, Berg, & 

Hounsgaard, 2010). The precise timing of the prenatal immunological insult may also 

account for the observed difference in dopamine receptor response. Specifically, 

immunological insults presented earlier in gestation may result in hyperactive striatal DA, 

whereas insults encountered later in pregnancy may be associated with hypoactive striatal 

dopamine (Meyer, Yee, & Feldon, 2007).

Additionally, prenatal endotoxin exposures lead to increased maternal inflammatory 

response and enhanced cytokine concentrations in the offspring of affected mothers. For 

example, adult offspring of immune-challenged rodents showed significantly greater serum 
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cytokines levels including: IL-1β, IL-2, IL-6, and TNF-α (Borrell, Vela, Arévalo-Martin, 

Molina-Holgado, & Guaza, 2002; Kirsten, Lippi, Bevilacqua, & Bernardi, 2013; Romero et 

al., 2010). This finding corroborates results describing increased inflammatory profiles in 

individuals with ASD and indicates that prenatal exposure to immunological insults may 

have lifelong impacts on neuroinflammatory profiles. Additionally, such inflammation-

induced disruptions are associated with impairments in rodent social behaviors (Kirsten, 

Taricano, Maiorka, Palermo-Neto, & Bernardi, 2010) and restricted and repetitive behaviors, 

such as self-grooming (Kirsten & Bernardi, 2017). Discrepancies within the preclinical 

literature between broader neuroinflammation-induced dopamine dysregulation and ASD-

specific immune activated models may reflect differences in the effect of MIA and post-natal 

immunological disruptions on dopamine function. It appears that the developmental stage in 

which the immunological disturbance occurs significantly influences the effect of distinct 

inflammatory stimuli on dopamine functioning. Although previous studies have noted 

significant impacts of direct LPS administration in adult rodents and adult offspring of LPS-

treated mothers, it is unclear how these inflammation-induced dopamine disruptions differ 

from one another as a function of the timing of immunological insult (Dunn, 2006), 

highlighting the importance of a developmental framework to understand the impact of 

neuroinflammation on dopamine neural pathways.

B. Clinical Findings

Evidence of linkages between mesolimbic dopamine dysfunction and neuroinflammation in 

ASD is supported by the presence of anti-brain antibodies, heightened microglial activation, 

and increases in cytokine concentrations in mesocorticostriatal neural networks in ASD (see 

Table 2; Morgan et al., 2010; Singer et al., 2006; Vargas, Nascimbene, Krishnan, 

Zimmerman, & Pardo, 2005).

A study of 68 children with ASD and 30 typically developing children revealed that the 

serum from 49% of children with ASD contained anti-brain antibodies in the caudate 

nucleus, and another 18% of the ASD group had antibody-positive sera within the cerebral 

cortex, whereas no one within the TDC group presented with anti-brain antibodies within 

the caudate nucleus (Singh & Rivas, 2004). A study using western immunoblotting found 

increased serum antibodies in the caudate nucleus, putamen, and PFC in individuals with 

ASD (Singer et al., 2006), and subsequent enzyme-linked immunosorbent assay (ELISA) 

optical density readings replicated these findings within the putamen. Post-mortem studies 

have revealed evidence of hyperactive microglia and astroglia in ASD, a pattern that may 

lead to neuronal alternations mediated by the secretion of inflammatory cytokines. Vargas 

and colleagues (2005) described significant increases in anti-inflammatory cytokine tumor 

growth factor-β1 (TGF-β1) within the MFG, ACG, and white matter of the post-mortem 

brains of 11 individuals with ASD. Since this seminal finding, other studies have also 

reported increased microglial activation, as well as enhanced microglial volume, in the brain 

tissue of individuals with ASD (Morgan et al., 2012; Morgan et al., 2010; Suzuki et al., 

2013). Other cytokines such as interleukin-10 (IL-10) and interleukin-6 (IL-6) are also 

increased in the ACG in individuals with ASD. Investigations of the broader cerebral 

cortices of individuals with ASD corroborated this finding of significantly enhanced IL-6 

levels and also reported increased concentrations of tumor necrosis factor-α (TNF-α) and 
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interferon-γ (IFN-γ; Li et al., 2009). In some cases, immunocytochemical staining analyses 

have revealed the cellular sources of these cytokine increases. For example, IL-6 was shown 

to be prominently expressed within activated astrocytes in cortical, cerebellar and subcortical 

white matter regions, whereas TGF-β1 showed expressions within both activated microglia 

and astrocytes in cerebellar regions only (Vargas et al., 2005).

There is a single molecular imaging study assessing binding potential of the 18-kdopamine 

translocator protein (formerly peripheral benzodiazepine receptor), a putative measure of 

microglial activation during neuroinflammation, in ASD. Using ([11C](R)-PK11195 

positron emission tomography (PET) imaging, Suzuki and colleagues (2013) reported 

hyperactive microglia in the ACG, MFG, and OFC in adults with ASD. Finally, though not a 

direct measure of neuroinflammation, it is noteworthy that two large-sample studies have 

reported elevated extra-axial cerebrospinal fluid in 6-24 month old infants who developed 

ASD in a manner that predicted the severity of ASD symptoms (Shen et al., 2017; Shen et 

al., 2013). Given the central role that extra-axial cerebrospinal fluid plays in beta-amyloid 

clearance (Xie et al., 2013), paravenous drainage of inflammatory cytokines (Iliff et al., 

2012), and meningeal immune surveillance (Louveau et al., 2015), extra-axial cerebrospinal 

fluid elevations in infants who develop ASD is consistent with a neuroinflammatory model 

of ASD.

Taken together, we propose that neuroimmune dysregulations may contribute to the etiology 

and maintenance of ASD by preferentially disrupting mesocorticolimbic dopamine, and 

thereby impacting reward behaviors in individuals with the disorder. In addition, the 

preclinical work in this area suggests that this effect may be developmentally mediated.

10) Future Directions

Although research to date broadly supports that neuroinflammation impacts dopamine 

circuitry functioning in ASD, there are still important considerations that require further 

examination. First, few studies have used molecular imaging (i.e., PET and single-photon 

emission computed tomography (SPECT)) in ASD to directly measure dopamine 

functioning. FMRI studies in ASD have largely established a profile of underactive 

mesolimbic responses within corticostriatal areas to reward stimuli; however, little is known 

about dopamine and dopamine metabolite activity and binding in ASD (Zürcher, Bhanot, 

McDougle, & Hooker, 2015). Although the field has a breadth of preclinical work 

examining dopamine and its metabolites in ASD-models, this lack of clinical findings makes 

it difficult to compare results across mammalian samples. The few human studies that have 

examined dopamine and dopamine metabolite binding in ASD have reported results of both 

increased (Ernst, Zametkin, Matochik, Pascualvaca, & Cohen, 1997) and decreased 

(Nieminen-von Wendt et al., 2004) presynaptic dopamine activity in ASD within prefrontal 

cortical regions. This discrepancy may be attributed to methodological differences, including 

the use of anesthesia for sedation which decreases striatal dopamine release in preclinical 

models (Schulte et al., 2000). Similarly, mixed results have been reported regarding DAT 

binding in ASD. Results from PET and SPECT imaging studies have provided varied 

findings including increased DAT binding in OFC in ASD (Nakamura et al., 2010), as well 

as no significant differences (Makkonen, Riikonen, Kokki, Airaksinen, & Kuikka, 2008). 
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Future ASD molecular imaging studies will be needed to clarify the impact of 

neuroinflammation on dopamine functioning and behavior in individuals with ASD with 

emphasis on contextual and environmental factors that influence neuroinflammation.

In addition, PET and SPECT imaging may help to address some of the current limitations of 

post-mortem neuroinflammation studies. Although post-mortem analyses of inflammatory 

responses yield important findings across varied developmental and functional levels, these 

analyses are limited in their ability to connect these inflammatory profiles with behavioral 

functioning as they rely exclusively on retroactive reports of diagnoses and symptom 

expression. Metabolic imaging, on the other hand, allows researchers to link in vivo 
dopamine activity to current behavior. To date, many ASD post-mortem studies examining 

neuroinflammation have been limited in scope based on a priori regional brain hypotheses. 

Although there is clear evidence of enhanced neuroinflammatory profiles in cortical regions 

in ASD, only a small number of studies have examined neuroinflammation in the striatum 

and broader midbrain in ASD. In addition, it is difficult to disentangle whether the observed 

neuroimmunological state of post-mortem tissue represents a consequence of the disorder or 

an etiological factor contributing to the development of the condition.

Future research should also address the correspondence in ASD between peripheral 

measures concentrations of cytokine levels in serum or cerebrospinal fluid (CSF) and central 

measures of cytokine profiles. Findings from several studies have reported discrepancies 

between peripheral and central inflammatory markers, calling into question the potential 

validity of peripheral measures (Hannestad et al., 2013; Sandiego et al., 2015). Molecular 

imaging and post-mortem analyses provide direct measures of central cytokine levels and 

microglial activation, and this may be used to provide more accurate measures of 

neuroinflammatory signatures, as well as potentially validate findings from studies of 

peripheral measures concentrations of cytokine levels in ASD. In addition, a more nuanced 

understanding of the mediating (pro-) or suppressing (anti-) inflammatory responses of 

specific cytokines should be addressed. Although ASD is typically characterized as a pro-

inflammatory condition (Haroon, Raison, & Miller, 2012), this categorization is not wholly 

consistent within the literature (Krakowiak et al., 2015; Molloy et al., 2006), and may, 

therefore, be too simplistic given the multiple functions of specific cytokines (Cavaillon, 

2001).

Neuroinflammatory profiles in ASD provide a promising opportunity to better understand 

the heterogeneous presentations and biological mechanisms of heterogeneous reward-

oriented behaviors in individuals with ASD. Researchers have begun to evaluate the 

potential of inflammatory markers, particularly cytokines, to serve as viable biomarkers of 

treatment response to ASD pharmacological interventions (for review see Masi et al., 2017), 

but more research is still needed to understand the how these immune signatures might 

characterize individual behavioral presentations, and, in turn, guide diagnostic decisions and 

treatment planning in ASD (Colburn et al., 2001). Although there are strong theoretical 

linkages between neuroinflammation and impaired reward processing in ASD, to date no 

research has empirically examined this association. Future research will be needed to 

directly assess the influence of neuroinflammation on reward-oriented behaviors and neural 

processes in individuals with ASD. More broadly, it will be vital to understand what 
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differentiates neuroimmunological disruptions that result in ASD from those that predispose 

to other psychiatric disorders, which have also been linked to immune dysregulation (e.g., 

schizophrenia, major depression). Differentiating the role immunology plays in the etiology 

of different psychiatric disorders may provide insights into the behavioral impact of specific 

neuroinflammatory aberrations. To date, the literature suggests a complex interaction 

between maternal and fetal genotype and heightened immune responsivity determines risk 

for the development of ASD (Traglia et al., 2018). As previously mentioned, it is also 

possible that the timing, duration, and severity of the immunological insult may result in 

unique behavioral presentations. Because both timing and development appear crucial in 

accurately understanding the mechanisms by which these immunological disruptions take 

effect, future studies should continue to employ a developmental framework and examine 

the long-term impacts of acute and prolonged immune dysregulation.

An additional future line of research should address the effects of neuroinflammation and 

subsequent nigrostriatal dopamine dysregulation on motor systems in ASD, given the strong 

influence of neuroinflammation on motor systems (Felger & Treadway, 2017). Motor 

disturbances are present in many individuals with ASD, and these impairments represent 

some of the earliest indicators of dysfunction in the disorder (Fatemi et al., 2012; Gowen & 

Hamilton, 2013). Notably, much of the neuroinflammation literature in ASD points to 

significant inflammation-induced impairment in the cerebellum (Vargas et al., 2005), a brain 

region critically-involved in sensorimotor control and perception (Manto et al., 2012).

Clearly, neural systems mediated primarily by non-dopaminergic mechanisms influence 

neuroinflammation and ASD symptom expression. For example, one such candidate system 

is serotonergic (5-HT) pathways: 5-Hydroxytryptamine produces inflammation via the 5-

HT2A receptor (Pierce, Xie, Peroutka, Green, & Levine, 1995), serotonin antagonists reduce 

the severity of acute inflammatory episodes (Harbuz et al., 1996), and serotonin depletion 

reduces inflammation (Harbuz, Marti, Lightman, & Jessop, 1998). It is noteworthy in this 

regard that modulation of the release of 5-HT from dorsal raphe neurons in the nucleus 

accumbens bidirectionally modifies sociability in a mouse model (16p11.2 deletion mice) of 

ASD (Walsh et al., 2018). Additionally, chronic administration of 5-HT agents increase 

dopamine D3 receptor gene expression in the shell of the nucleus accumbens (Lammers, 

Diaz, Schwartz, & Sokoloff, 2000a, 2000b) and nonclinical studies in humans have 

demonstrated that 5-HT acts as a modulator of positive affect (Zald & Depue, 2001). 

Although no studies to date have assessed the effects of 5-HT agents on neuroinflammatory 

and reward processes in ASD, molecular imaging studies have documented 5-HT 

abnormalities in ASD (Chandana et al., 2005; Chugani, 2002) and 5-HT agents have been 

shown to improve ASD symptoms in some (Williams, Wheeler, Silove, & Hazell, 2011) but 

not all (King et al., 2009) studies, suggesting that agents that impact 5-HT systems remain a 

promising avenue for future drug development in ASD (Veenstra-VanderWeele et al., 2012).

In summary, emerging evidence suggests dysregulation of the neuroimmune system in ASD 

may provide insight into the etiology, maintenance, and heterogeneity of the disorder across 

development. These heightened neuroinflammatory responses in ASD appear to 

preferentially impact corticostriatal, and particularly mesolimbic, dopamine functioning, and 

may, therefore, represent a mechanistic account of reward processing deficits in ASD. Future 
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research is needed to better understand the complexities of immune dysfunction in ASD and 

its relation to dopamine dysregulation, particularly over the course of development. 

Continued empirical investigations of these linkages will help researchers and clinicians 

better understand the heterogeneous presentation of reward processing impairments in ASD 

and may serve to improve diagnosis, treatment selection, and treatment response monitoring 

for individuals with the disorder.
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Highlights

• Brain inflammation has been observed in individuals with autism

• Brain inflammation impacts reward-related behaviors and dopamine 

functioning.

• This review suggests that brain inflammation impairs reward processing in 

autism.

• This linkage, suggests anti-inflammatory treatments should be investigated to 

treat autism.
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Figure 1. 
Activated microglia produce inflammatory cytokines, which contribute to impaired 

dopaminergic functioning within midbrain and corticostriatal regions (for a review see 

Felger & Treadway, 2017). ACG = anterior cingulate gyrus, DA = dopamine, DS = dorsal 

striatum, NAcc = nucleus accumbens, PFC = prefrontal cortex, SN = substantia nigra, VTA 

= ventral tegmental area. Brain art adapted from illustrations created by Patrick Lynch, 

medical illustrator, and C. Carl Jaffe, MD, cardiologist (available at https://

commons.wikimedia.org/wiki/File:Brain_human_lateral_view.svg and https://

commons.wikimedia.org/wiki/File:Brain_human_sagittal_section.svg) and licensed under a 

Creative Commons Attribution 2.5 Generic License, 2006 (CC BY 2.5).
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