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Abstract

Theories of adolescent neurodevelopment have largely focused on group-level descriptions of 

neural changes that help explain increases in risk behavior that are stereotypical of the teen years. 

However, because these models are concerned with describing the “average” individual, they can 

fail to account for important individual or within-group variability. New methodological 

developments now offer the possibility of accounting for both group trends and individual 

differences within the same modeling framework. Here we apply GIMME, a model-based 

approach which uses both group and individual-level information to construct functional 

connectivity maps, to investigate risky behavior and neural changes across development. 

Adolescents (N=30, Mage=13.22), young adults (N=23, Mage=19.19), and adults (N=31, 

Mage=43.93) completed a risky decision-making task during an fMRI scan, and functional 

networks were constructed for each individual. We took two subgrouping approaches: 1) a 

confirmatory approach where we searched for functional connections that distinguished between 

our a priori age categories, and 2) an exploratory approach where we allowed an unsupervised 

algorithm to sort individuals freely. Contrary to expectations, we show that age is not the most 

influence contributing to network configurations. The implications for developmental theories and 

methodologies are discussed.

1. Introduction

A large focus of developmental neuroscience research has been on characterizing what 

features of adolescent neurodevelopment help explain behavioral patterns (e.g., risk taking) 

which can arise during this period. Several influential theories of adolescent 

neurodevelopment (e.g., Steinberg et al., 2008; Casey et al., 2008) have proposed models 

where differences in frontal and subcortical developmental trajectories help explain 

increases in risky behavior seen during the teen years (Kann et al., 2015). These models have 

enjoyed widespread influence, and research across a variety of contexts and tasks have lent 

support to the idea that adolescent neurodevelopment pre-disposes teens to risky or 
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impulsive behavior (McCormick & Telzer, 2017a; McCormick et al., 2018; see Shulman et 

al., 2016 for a review). However, these models can face challenges as they are, by necessity, 

overly simplistic (e.g., Pfeifer & Allen, 2012) and are primarily concerned with describing 

trends in developmental processes that generalize to the population at large. This contrasts 

with the growing theoretical (e.g., Crone & Dahl, 2012; Bjork & Pardini, 2015; Casey 2015) 

and empirical (e.g., Qu et al., 2015; Telzer et al., 2013; Braams et al., 2015; Telzer, 2016; 

McCormick & Telzer, 2017b; Blankenstein et al., 2018) work which has shown that there are 

significant individual differences in adolescents’ neural processing and risk behavior (see 

Foulkes & Blakemore, 2018; Sherman, Steinberg, & Chein, 2017). Even studies which show 

group or continuous age-related differences in risk behavior or subcortical reactivity almost 

always show significant within-group variability (e.g., Hare et al., 2008; Somerville et al., 

2011; Chein et al., 2011; Qu et al., 2015). Thus, one of the key challenges of developmental 

theory and methodology rests in adopting models that can describe group-level effects found 

for this population, as well as the individual-level nuances which underlie them (Foulkes & 

Blakemore, 2018). Incorporating individual differences in population models of adolescent 

neurodevelopment is an exciting new direction for the field and may help to not only create 

more predictive models of adolescent behavior, but also reconcile results across disparate 

samples.

Perhaps the most relevant methodological approach that has prevented this advancement is 

the reliance of developmental neuroimaging analyses on the “average” person (e.g., 

grouping teens to compare to a group of adults; Smith, 2012; Ramsey et al., 2010) where the 

sample mean is assumed to be representative of members within the sample (an implicitly 

the population at large). At a descriptive and statistical level, the average (assuming no 

outliers are present) is an attractive and intuitive metric. For instance, it works well for 

investigations of regional activity. The idea that, on average, brain regions are more or less 

active across task conditions or age is the bedrock of inference in the neuroimaging 

literature. While averages can sometimes be a meaningful construct for drawing conclusions, 

this concept is not well-suited for capturing all characteristics of brain processes. This is 

particularly true when attempting to arrive at an “average” pattern of functional connectivity 

for a sample. Individuals likely differ in the patterns and strengths of their brain connectivity 

(Finn et al., 2015; Lamout et al., 2015). When individuals have this heterogeneity in their 

brain processes, the connectivity patterns obtained from averaging across individuals may 

not even apply to one individual within the sample (Molenaar, 2004). Further complicating 

the analysis of brain processes is that focusing only on between-group differences can mask 

important within-group variability that may be more relevant to the behavior overall than 

group assignment. This can often be relevant when a priori groups (e.g., age groups; clinical 

versus controls) show significant within-group heterogeneity (e.g., Gates et al., 2014). In 

cases where groups show significant within-group variability, the averaging approach can 

mask important differences in connectivity patterns which might distinguish between 

relevant groups in a more data driven analysis.

Fortunately, exciting methodological advances are now available which can address these 

limitations by combining individual and group-level information in the construction of 

models. Several recent papers (Braams et al., 2015; Peters et al., 2017; see Telzer et al. 2018 

for discussion) have utilized mixed effects models to characterize developmental trends in 
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univariate activation across childhood, adolescence, and young adulthood. For functional 

connectivity approaches, new tools such as Group Iterative Multiple Model Estimation 

(GIMME; Gates & Molenaar, 2012) provide promising approaches for producing individual 

and group-level connectivity models from task-based fMRI. The GIMME approach can be 

used to construct directed functional networks by relying on path selection by means of 

improvement to overall model fit, utilizing individual-level information to detect signal from 

noise across the group (i.e., sample), and controlling for autoregressive paths (i.e., how 

activity in a region of interest [ROI] at one time-point predicts that ROI’s activity at the next 

time-point) for each ROI. Furthermore, in conjunction with clustering algorithms, GIMME 

modeling approaches can successfully characterize connectivity features which distinguish 

between subgroups of individuals (e.g., Gates et al., 2014; Gates et al., 2017; Price et al., 

2017). Extending these tools to the field of developmental neuroscience provides the 

exciting opportunity for researchers to better account for individual variability when 

constructing representative connectivity maps across the lifespan.

We explored age-related changes in functional network maps during a risky decision-making 

task in adolescents, young adults, and adults. During an fMRI scan, participants completed 

the Balloon Analogue Risk Task (BART), a sequential risk-taking task which measures 

participants’ willingness to engage in risk behavior to earn rewards. A model-based 

approach (i.e., GIMME) was used to characterize both individual and group level directed 

graphs during risky decisions. We took two subgrouping approaches to assess differences in 

functional network organization during the BART. First, we categorized individuals based on 

their age (i.e., adolescents, young adults, and adults), in order to assess what network maps 

differ between stages of development. Data-driven connectivity maps are optimized using 

GIMME to identify connections that best discriminate between age groups. However, this a 
priori classification might not be the best way to partition variance in the sample. As such, 

we ran a second, unsupervised clustering, which was free to select features which best 

subgrouped individuals without any constraints. Two competing hypotheses were plausible 

based on the current literature. First, in line with theories of adolescence as a time of unique 

sensitivity to risk (e.g., Casey et al., 2008; Steinberg et al., 2008), the unsupervised 

clustering could recover the age groups with some margin for error. This would suggest that 

adolescent neural configurations are significantly distinct from older age groups. 

Alternatively, there might be a more general phenotype that characterizes risky behavior, and 

thus, the amount of risky behavior that participants engage in might be a stronger predictor 

of functional organization. If the unsupervised clustering recovered groups based on risk 

engagement rather than age, this would highlight the importance of considering within age 

variability (i.e., individual differences) when examining the neural processes of risk taking. 

While this approach does not investigate individual differences directly, it allows us to 

account for these differences when investigating developmental effects and investigate 

whether age is the best variable on which to partition the variation in neural connectivity 

during risk taking.
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2. Methods

2.1. Participants

Eighty-four participants (ages 12.44-54.33 years) completed an fMRI scan. Participants 

were grouped into 3 age categories: adolescents (N=30, 15 male; Mage=13.22, SD=.64, 

range=12.44-14.83 years), young adults (N=23, 11 male; Mage=19.19, SD=.35, 

range=18.64-19.85 years), and adults (N=31, 11 male; Mage=43.93, SD=3.80, 

range=35.92-54.33 years). Participants provided written consent and assent in accordance 

with the University of Illinois’ Institutional Review Board.

2.2. Risky Decision-Making Task

Participants completed a version of the Balloon Analogue Risk Task (BART), a well-

validated experimental paradigm (Lejuez et al., 2002; Wallsten et al., 2005) that has been 

adapted for fMRI in developmental populations (Telzer et al., 2014; McCormick & Telzer, 

2017a). The BART measures participants’ willingness to engage in risky behavior in order to 

earn rewards and is associated with real-life risk taking in adolescents (Qu et al., 2015; 

McCormick & Telzer, 2017b) and adults (Lejuez et al., 2002; Wallsten et al., 2005). During 

the scan session, participants were presented with a sequence of 24 balloons that they could 

pump up to earn points. Each pump decision was associated with earning one point but 

increased the risk that a balloon would explode. If participants pumped too many times on a 

balloon, the balloon would explode and participants would lose all the points they had 

earned for that balloon. However, if participants chose to cash out before the balloon 

exploded, the points they earned would be added to the running total of points, which was 

presented on the screen as a points meter. Participants were instructed that their goal was to 

earn as many points as possible during the task. Each event (e.g., larger balloon following a 

pump, new balloon following cashed or explosion outcomes) was separated with a random 

jitter (500-4000 ms). Balloons exploded between 4 and 10 pumps, and the order of balloons 

was presented in a fixed order (after being pseudo-randomly ordered prior to data 

collection), although none of this information was made available to participants. The BART 

was self-paced and would not advance unless the participant made the choice to either pump 

or cash out. Participants were told that they could win a $10 gift card at the end of the 

neuroimaging session if they earned enough points during the task. The point threshold for 

winning this prize was intentionally left ambiguous so that participants were motivated to 

continue earning points throughout the task. In reality, all participants were given a $10 gift 

card after completing the scan session.

2.2.1. Behavioral Modeling.—We explored three standard behavioral metrics in order 

to assess participant performance on the BART. First, participants’ willingness to take risks 

was indexed by the average number of pumps each individual committed on balloons that 

they eventually cash-out out. Based on previous research (Lejuez et al., 2002; McCormick & 

Telzer, 2017a), pumps on balloons that ended in an explosion were not included in this 

metric, as an explosion artificially constrains the individual’s planned risky behavior. 

Secondly, participants’ exposure to negative outcomes was indexed by the number of 

explosions that occurred as a result of their risky behavior. Finally, adaptive outcomes were 

indexed by the total number of points individuals earned on the task.
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2.3. fMRI Data Acquisition and Processing

2.3.1. fMRI data acquisition.—Imaging data were collected utilizing a 3 Tesla Trio 

MRI scanner. The BART included collection of T2*-weighted echoplanar images (EPI; slice 

thickness=3mm; 38 slices; TR=2sec; TE=25ms; matrix=92×92; FOV=230 mm; voxel 

size=2.5×2.5×3mm3). Additionally, structural scans were acquired, including a T1* 

magnetization-prepared rapid-acquisition gradient echo (MPRAGE; slice thickness=0.9mm; 

192 slices; TR=1.9sec; TE=2.32ms; matrix=256×256; FOV=230mm; voxel 

size=0.9×0.9×0.9mm3; sagittal plane) and a T2*-weighted, matched-bandwidth (MBW), 

high resolution, anatomical scan (slice thickness=3mm; 192 slices; TR=4sec; TE=64ms; 

matrix=192×192; FOV=230mm; voxel size=1.2×1.2×3mm3). EPI and MBW scans were 

obtained at an oblique axial orientation in order to maximize brain coverage and minimize 

dropout in orbital regions.

2.3.2. fMRI data preprocessing and analysis.—Preprocessing utilized FSL 

FMRIBs Software Library (FSL v6.0; https://fsl.fmrib.ox.ac.uk/fsl/). Steps taken during 

preprocessing included correction for slice-timing using MCFLIRT; spatial smoothing using 

a 6mm Guassian kernel, full-width-at-half maximum; high-pass temporal filtering with a 

128s cutoff to remove low frequency drift across the time-series; and skull stripping of all 

images with BET. Functional images were re-sampled to a 2×2×2 mm space and co-

registered in a two-step sequence to the MBW and the MPRAGE images using FLIRT in 

order to warp them into the standard stereotactic space defined by the Montreal Neurological 

Institute (MNI) and the International Consortium for Brain Mapping. Preprocessing was 

completed utilizing individual-level independent component analysis (ICA) with MELODIC 

combined with an automated component classifier (Tohka et al., 2008; Neyman-Pearson 

threshold=0.3), which was applied to filter signal origination from noise sources (e.g., 

motion, physiological rhythms).

2.3.3. Time-series processing.—Timeseries were extracted from each voxel within 

each a priori ROI using FSL’s fslmeants, and averaged to create an ROI time-series. Prior to 

modeling time-series associations, we took several steps to reduce the influence of motion, 

which has been shown to be especially problematic for functional connectivity measures 

(e.g., Power et al., 2012; Van Dijk et al., 2012). First, as mentioned previously, we subjected 

each participants’ data to individual-level ICA in order to remove motion-related signal from 

the time-series. We also regressed out 8 nuisance regressors from the original time-series: 6 

motion parameters generated during realignment and the average signal from both the white 

matter and cerebrospinal fluid masks. Finally, slices with greater than 2mm of motion were 

scrubbed from the time-series to remove the effects of large, sudden movements on the 

functional data. No participant exceeded 2.5% of slices being censored (range: 0-2.5%). 

Previous work (see Ciric et al., 2017) has shown that these strategies reduce the influence of 

motion on functional connectivity analyses.

2.4. Time-series Analysis

2.4.1. Regions of Interest.—To assess a neural network of risky decision-making, we 

selected 12 a priori regions of interest (ROIs) based on previous neuroimaging work with the 

BART and other risk-taking tasks. These ROIs included subcortical, salience, and prefrontal 
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regions. Subcortical regions included the bilateral ventral striatum (VS) and dorsal striatum 

(DS), as well as bilateral amygdala (Ernst et al., 2005; van Duijvenvoorde et al., 2014; 

Sesscouse et al., 2013; McCormick & Telzer, 2017a, 2017b). Salience regions included 

those most often found in decision making tasks, the anterior cingulate cortex (ACC) and 

bilateral anterior insula (AI; Schonberg et al., 2012; Qu et al., 2015; McCormick & Telzer, 

2017a). Finally, we included two prefrontal regions, the medial prefrontal cortex (mPFC), 

which has been implicated in feedback processing (van Duijvenvoorde et al., 2014; 

McCormick & Telzer, 2017a,b, c), and the dorsolateral prefrontal cortex (dlPFC), a region 

involved in goal maintenance and cognitive control (Ridderinkoff et al., 2004; McCormick 

& Telzer, 2017a). Masks were defined from a number of sources, including the Harvard-

Oxford (ACC, AI, amygdala; Harvard Center for Morphometric Analysis), Neurosynth (VS; 

Yarkoni et al., 2011), and the WFU PickAtlas (DS, DLPFC, mPFC; Maldjian et al., 2003). 

We utilized multiple sources for ROIs because of the lack of a single template which 

contained well-specified masks of the functional regions commonly involved in risk-taking 

behavior. Ventral striatum masks were constructed by searching “ventral striatum” on 

Neurosynth and thresholding the resulting meta-analytic image at Z=14. The dorsal striatum 

was defined as the caudate head and caudate tail in the AAL using the WFU pickatlas. The 

DLPFC was defined as BA 9, and the mPFC as the medial portion of BA 10 using the WFU 

pickatlas. Masks were evaluated using the Marsbar toolbox in SPM (Brett et al., 2002) and 

FSL to ensure that ROIs did not contain any voxels that overlapped with another mask or 

exceeded the boundaries of the whole-brain mask (see Figure 1). A 3D, navigable image 

containing all masks superimposed onto a single brain map is available on NeuroVault 

(https://neurovault.org/collections/QYLSPBSV/; Gorgolewski et al., 2015).

2.4.2. Group Iterative Multiple Model Estimation (GIMME).—GIMME is a data-

driven search algorithm which utilizes both individual and group-level information to derive 

directed functional connectivity maps (Gates & Molenaar, 2012). GIMME estimates 

connectivity graphs using both unified SEM (uSEM; Gates et al., 2010, Kim et al., 2007) 

and extended unified SEM (euSEM; Gates et al., 2011) to assess whether the presence of a 

path between ROIs significantly improves the overall model fit to the time-series data. 

GIMME estimates both contemporaneous (e.g., ROI1 at t predicts ROI2 at t) and lagged 

(e.g., ROI1 at t-1 predicts ROI2 at t) effects between ROIs, as well as the autoregressive (e.g., 

ROI1 at t-1 predicts ROI1 at t) for each ROI time-series. GIMME assesses directional paths 

by testing whether a given ROI can predict another, controlling for the predicted ROI’s 

autoregressive effect (i.e., establishing Granger Causality) and other potential 

contemporaneous effects (e.g., ROI3 predicts ROI2) that may be present. Simultaneously the 

reciprocal path (ROI2 predicting ROI1) is also tested. GIMME has been developed for both 

block (Gates et al., 2010) and event-related (Gates et al., 2011) fMRI data, and is freely 

available through the open-source R platform (Lane et al., 2016; https://cran.r-

project.org/web/packages/gimme/index.html; version 0.4-1; R version 3.4.4; https://www.r-

project.org/). For a fully explicated model definition, including a representative path 

diagram, see Gates and colleagues (2017; figure 1 and supplemental).

In contrast with many other functional connectivity approaches (e.g., graph theoretical 

approaches), GIMME constructs functional maps through a data-driven, multi-step 
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processing of model building and pruning. First, information across all participants is used 

to derive a common functional network map that is representative of the majority of the 

sample. Group paths are only kept if they are significant for 75% of all individuals. In the 

current sample results remain unchanged if this threshold is varied from 50-75% of the total 

sample suggesting that important effects are not being masked by an overly restrictive 

threshold. Note that this offers an improvement over simply averaging across individuals (as 

is commonly done when using correlation matrices) since results cannot be swayed here by 

individuals who deviate greatly from the sample. Simulations studies have demonstrated that 

using this threshold appropriately detects signal from noise (Gates & Molenaar, 2012) to 

recover true relations in the generated data at rates higher than many competing approaches. 

Importantly, false positives are rarely obtained (Gates & Molenaar, 2012). All autoregressive 

paths are automatically estimated in order to accurately assess directionality in the between-

ROI paths (Lane et al., 2017). Once a group map has been obtained, unnecessary paths are 

pruned at the group level, and additional paths at the individual level are evaluated based on 

improvements to model fit for that individual. Individual-level paths are then pruned if they 

do not significantly improve the fit of the final model. The addition of paths is determined 

by Lagrange multiplier test equivalents (i.e., modification indices; Sörbom, 1989. Non-

significant paths are removed at the individual level, and removed for group and subgroup 

levels if they no longer meet criterion (Gates & Molenaar, 2012). As such, GIMME offers 

the unique advantage of being able to derive a group-level map that should be applicable to 

the majority of the sample, while still allowing for individual-level paths to emerge.

Our task provided two main challenges when measuring neural connectivity. First, our goal 

was to analyze connectivity patterns during risky decisions; however, the BART also 

contains feedback trials (i.e., cash-out decisions, explosions). Secondly, our task was self-

paced and as such, we needed a modeling approach that would allow for individuals to 

possess different amounts of data. To arrive at the time series used in connectivity analysis 

we extracted the measurement occasions (i.e., MR volume acquisitions) wherein the 

participant was engaged only during “risky decisions”. Fortunately, GIMME is capable of 

handling unequal amounts of data between participants, as well as the inclusion of missing 

data (Gates et al., 2014). Missing values are replaced with placeholder NaN values to 

maintain the temporal ordering of scans, and neither contemporaneous nor lagged effects are 

estimated based on missing values. These features make GIMME especially well-suited to 

estimating connectivity graphs for the BART, allowing for the self-paced nature of the task, 

as well as specifically examining connectivity during risk decisions, without considering 

connectivity during outcomes. However, as an additional check, we ensured that effects were 

not driven by differences in the amount of data available across participants because of 

variable reaction times through post-hoc tests. The number of TRs was unrelated to 

subgroup assignment across confirmatory (χ(2, N = 84)
2 = 3.50, p=.174) and exploratory 

analyses (U=677, Z=−1.43, p=.153) using non-parametric tests of mean differences.

2.4.3. Subgroup GIMME.—GIMME can also search for subgroup-specific connectivity 

paths. Subgroup-level analysis can be used in two ways. The first approach, confirmatory 

subgroup GIMME (CS-GIMME), utilizes a researcher-provided vector of subgroup 

assignments. In this case, after the group-level search CS-GIMME identifies which 
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additional paths emerge for the pre-determined subgroups using the same procedures as 

were used for the group-level model building. A second approach, subgrouping GIMME (S-

GIMME) arrives at subgroup assignments in an unsupervised manner by using features of 

individuals’ connectivity maps. In this option, S-GIMME generates a similarity matrix using 

the individual-level estimates of group-level connections, as well as anticipated estimates for 

candidate connections (Gates et al., 2017). In this way the subgroups are based on 

connectivity characteristics such as the presence/absence, strength, sign (positive/negative), 

temporal pattern (contemporaneous/lagged) and directionality (ROI1 → ROI2 versus ROI2 

← ROI1) of paths. This similarity matrix is then subjected to the community detection 

approach Walktrap (Pons and Latapy, 2006; see Gates, Henry, Steinley, & Fair, 2016 for a 

discussion of clustering in the context of fMRI). In short, Walktrap arrives at clusters using 

an entirely data-driven random walk approach to maximize modularity within the sample. 

Walktrap has been shown to be robust to common issues in community detection (e.g., 

unequal sample sizes; Orman and Labatut, 2009; Gates et al., 2016), and can return a single 

“subgroup” solution, avoiding spurious partitions of the data (Gates et al., 2016). Walktrap 

provides a powerful method for partitioning data into representative subgroups without 

relying on significance testing (see Gates et al., 2016), which is notoriously difficult in 

network contexts. We ran both options: CS-GIMME where a vector of age group assignment 

(i.e., adolescent, young adult, adult) was provided, and S-GIMME where Walktrap was 

allowed to freely arrive at an optimal subgroup solution based on the available data. The first 

method reveals which connections best explain differences in the neural representation of 

risk decisions that are dependent on age, while the second approach shows which paths are 

the most important for characterizing variability within the sample. Importantly, this second 

approach is free to cluster individuals on whatever feature is most important for 

discrimination between subgroups, which might be age, engagement in risky behavior, or 

some unknown alternative.

3. Results

3.1. Group-Level Connectivity Graph during Risk Taking

We first assessed the group level connectivity graph that consistently represented 

connectivity patterns interactions during risky decisions across the sample. As shown in 

Figure 2, group paths included paths between bilateral counterparts (e.g., left and right VS), 

as well as cross-region connections, including ACC-mPFC, AI-ACC, AI-DLPFC, and VS-

DS paths. Interesting, at the group level, no regions evidenced paths with the amygdala 

(although the L/R amygdala path was present). For descriptive purposes, we have made the 

univariate main effects available on NeuroVault (https://neurovault.org/collections/

QYLSPBSV/).

3.2. Age-related Behavioral and Connectivity Differences during Risk Taking

3.2.1. Age-Related Behavioral Differences.—We first tested for age-related 

subgroup differences in task behavior (for group means, see Table 1). There was a 

significant difference across age groups in both average number of risk decisions (i.e., 

pumps; χ(2, N = 84)
2 = 17.00, p<.001) and the number of explosions χ(2, N = 84)

2 = 14.49, p=.
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001), but not for total points earned χ(2, N = 84)
2 = 0.02, p=.992; Figure 3). Post-hoc contrasts 

showed that adolescents showed lower average risk decisions (i.e., pumps) than both young 

adults (U=125.5, Z=−4.04, p<.001) and adults (U=287.5, Z=−2.56, p=.010), and that 

adolescents experienced fewer explosions than young adults (U=143.5, Z=−3.76, p=.001), or 

adults (U=310, Z=−2.25, p=.024). Young adults and adults showed no differences in either 

average number of risk decisions (U=255.5, Z=−1.61, p=.108) or number of explosions 

(U=254, Z=−1.64, p=.101). These results show that while young adults and adults engage in 

greater risky behavior, this exposes them to more explosions (where they fail to earn points), 

resulting in equivalent outcomes.

3.2.2. Confirmatory Age-Related Subgroups Connectivity Patterns during 
Risk Taking.—Next, we examined age group differences in the connectivity graphs of 

adolescents, young adults, and adults. In addition to the group-level paths which are shared 

among all participants, adolescents showed additional paths connecting PFC and subcortical 

regions (Figure 4a). Young adults showed a relatively large number of subgroup-specific 

paths, including PFC and insular connections with subcortical regions, insular-PFC 

pathways, and cortical-cortical connections (Figure 4b). Finally, adults showed several 

connections between subcortical regions and both the insula and PFC, as well as a striatal-

amygdala path (Figure 4c). Importantly, young adults show paths which overlap with 

adolescents (i.e., mPFC to left amygdala; see blue paths in Figure 4b) and with adults (i.e., 

mPFC to left DLPFC, left AI to right VS, and right DS to right AI; see green paths in Figure 

4c), which did not overlap between adolescents and adults. Furthermore, young adults 

showed an increased number of subgroup paths compared to the other age groups. Post-hoc 

analyses using the person-specific graphs generated for each participant showed that this 

increase was not driven by young adults showing a greater number of paths at the individual 

level (as compared with adolescents and adults; F(2,81)=0.46, p=.636), suggesting that young 

adults showed more consistency across individuals in the paths which were estimated as 

significant at the individual level. These features suggest a transition from teen to adult 

network states through a hyper-connected young adult configuration.

3.3. Unsupervised Recovery of Subgroups Based on Network Connectivity

3.3.1. Recovery of High- and Low-Risk Subgroups.—Next, we conducted S-

GIMME to perform an unsupervised search for meaningful subgroups. The algorithm 

returned two subgroups from the data. Subgroup 1 was smaller (N=32) and was largely 

composed of young adults and adults (adolescents=4; young adults=14; adults=13), while 

Subgroup 2 was larger (N=52), and composed of a mix of age groups (adolescents=26, 

young adults=9; adults=17). Age group and exploratory subgroup assignment were related 

χ(2, N = 84)
2 = 11.75, p<.003) such that older age groups were overrepresented in Subgroup 1 

relative to teens, but there were no differences in terms of gender between the two subgroups 

χ(2, N = 84)
2 = .25, p=.620). To investigate the alternative hypothesis outlined above, we used 

the generated subgroup assignments to test for differences in risky behavior on the task (for 

group means, see Table 1). Subgroup 1 engaged in higher rates of risk decisions (U=418.5, 

Z=−3.81, p<.001) and exploded more balloons (U=472.5, Z=−3.33, p=.001) than subgroup 

2. Similar to the age-related results, this pattern of overly risky behavior resulted in no 
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differences in the total number of points earned between the two groups (U=824.5, Z=−.069, 

p=.945). Given that age group was also related to the data-driven subgroups, follow-up 

multiple binary logistic regression analyses were conducted to investigate which relations 

remained when including both age and risk taking variables. These results showed that while 

age-group (coded as 1-3) was a significant predictor of group membership when entered as a 

single predictor (B=−.601, SE=.276, p=.030), this effect was not significant when 

controlling for risk behavior (B=−.414, SE=.310, p=.182). In contrast, risk behavior (i.e., 

number of risk decisions) was a significant predictor even when controlling for age group 

(B=−1.064, SE=.327, p=.001). Given this pattern of results, we subsequently refer to 

Subgroup 1 as the high-risk group, and Subgroup 2 as the low-risk group.

3.3.2. Exploratory Subgroups Connectivity Patterns during Risk Taking.—S-

GIMME also generated connectivity maps relating to these high- and low-risk subgroups. 

Paths that characterized the high-risk group included paths from the mPFC to the DLPFC 

and amygdala, the right DS to the right DLPFC and AI, as well as the right VS to the right 

AI (Figure 5a). In contrast, the only paths which characterized the low-risk group were those 

from the left DLPFC to the left DS and the left AI to the R VS (Figure 5b). Interestingly, 

most of the paths used by the Walktrap algorithm to freely group participants were also 

relevant to distinguishing between age groups, with the lone exception of the path between 

right VS and AI (see Figures 4 and 5 for comparison). However, rather than simply 

replicating the age-group connectivity results, the subgroup paths which predicted high- 

versus low-risk individuals were a combination of adolescent-typical and adult-typical paths. 

For instance, even though adolescents as a group were the lowest risk age-group, the mPFC-

amygdala paths that characterizes adolescent connectivity is present in the high-risk 

exploratory subgroup. In the same vein, the path between left AI and right VS, which 

characterizes the two higher-risk age-groups (i.e., young adults and adults) is a characteristic 

of the low-risk exploratory subgroup. These results clearly show that age is not the sole 

source of variance in network configurations during risky decision making, but that 

variability in neural network connectivity that cuts across age can be related more-

powerfully to behavior indicators of interest. Indeed, our results suggest that within-group 

variability was more powerful than between-group differences in our data, as unsupervised 

subgrouping failed to recover age-categories.

4. Discussion

The field of developmental neuroscience has dedicated significant attention to questions 

related to what characterizes adolescent risky decision-making at the neural level, and how 

adolescents differ from other age groups in these decisions (e.g., Casey, 2015; Shulman et 

al., 2016). However, one of the limitations of current methodologies is that they largely rely 

on characterizing the “average” individual within a given group. However, these approaches 

have significant drawbacks since they fail to consider within-group variability, and may 

mask important differences between adolescents (or other age group). Fortunately, the 

development of new methodologies such as multi-level (or mixed-effects; e.g., Braams et al., 

2015; Peters et al., 2017 and GIMME (Gates et al., 2017) models offer an exciting 

opportunity to begin to characterize both within- and between-age variability in behavior 
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and in neural networks. Data-driven connectivity approaches, such as the GIMME set of 

models, have the advantage over other techniques in that they fit a group-level model, but 

then allow individuals’ to be specified uniquely to maximize model fit for each participant. 

Additionally, while clustering results in groups, the exploratory method of S-GIMME allows 

the researcher to investigate whether a priori categorizations (e.g., age, diagnostic category) 

are the only source of variability, or whether important differences in network connectivity 

occur across different axes (e.g., individual differences in behavior).

In contrast with previous work (e.g., Shulman et al., 2016), our results show that adolescents 

in the sample actually make the fewest risk decisions, with both young adults and adults 

showing comparatively heightened risk-taking behavior. Furthermore, despite previous 

suggestions that young adults (ages 18-20) should more-closely resemble adolescents 

(Cohen et al., 2017), we found that young adults were significantly more risky than 

adolescents and showed no significant differences from adults. Interestingly, these age-

related increases in risk behavior did not translate into increases in adaptive outcomes (i.e., 

total points earned), as this elevated risk behavior resulted in an increased rate of explosions. 

Taken together, these behavioral results counter prevailing models which suggest that 

adolescents should be hyper-risky compared with older counterparts (Casey et al., 2008; 

Steinberg et al., 2008). The increase from adolescence to early adulthood is consistent with 

more-recent cross-cultural data on risk-taking propensity (Duell et al., 2018). This may be 

that since the BART (and similar tasks like the Iowa Gambling Task) tend to be more 

predictive of real-world risky behavior (Schonberg et al., 2011), they are necessarily more 

complex and cognitively demanding for participants. However, that adults also take more 

risks than adolescents in this sample is difficult to reconcile with past work. One potential 

difficulty in comparing these results is that we utilized narrow age-ranges, whereas previous 

studies have primarily recruited groups across a wider range of actual ages (see van 

Duijvenvoorde et al., 2016). As such, we interpret these results not as a challenge to these 

oft-replicated trends, but rather as evidence that models of adolescent neurodevelopment 

should be expanded upon to account for those adolescents who (either individually or as a 

subgroup) do not engage in enhanced risk taking.

On the neural level, adolescents and adults both shared age group-specific paths with young 

adults, but did not share any between them. Furthermore, young adults showed the greatest 

number of age-specific paths, although follow-up analyses suggest this is due to a greater 

consistency across subjects in the young adult age group rather than a greater absolute 

number of paths at the individual level. These results suggest a transition in neural 

configuration between adolescents, young adults, and adults. Given that our hypotheses were 

related to age-related changes in network-level configurations of connectivity, and the 

relative scarcity of network findings in adolescent neurodevelopmental research, we avoid 

speculating about each of the specific paths which differed between age- and behaviorally-

related subgroups. As such, the current work should foster more regionally-specific 

hypotheses, which are a clear necessity for furthering our understanding of how neural 

networks vary across individuals and development.

Even more striking than the differences in risk behavior and neural networks as a function of 

age were the results of the exploratory subgrouping approach. Rather than recovering our 
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defined age categories with any appreciable fidelity, the unsupervised algorithm instead 

categorized individuals in the sample by their task behavior, namely their engagement in risk 

behavior (i.e., high versus low). These results suggest that rather than age, the most powerful 

factors that discriminated between neural connectivity patterns in the current study are 

related to task behavior. These results emerged despite the fact that we utilized narrow and 

well-separated age ranges for our three age groups in order to avoid some of the issues 

related to inconsistent age-group definitions of adolescence and (young) adulthood across 

samples (e.g., van Duijvenvoorde et al., 2016). In principle, this approach should reduce 

within-group heterogeneity and maximize the ability to detect developmental differences. 

Given these features of sampling, the fact that the data-driven clustering failed to recover age 

groups is even more remarkable, and suggests that individuals differences in behavior can 

reflect greater variability in network configurations than age alone.

These findings have clear implications for the importance of considering within-group 

variability even when looking across development (e.g., Foulkes & Blakemore, 2018). If 

some adolescents can more-closely resemble young adults and adults at the neural level than 

do their same-age peers, models of adolescent neurodevelopment may need to expand in 

order to address the very real variability that exists in the population. Follow-up work on the 

antecedents and consequences of within-age variability in risk behavior and functional 

network configurations is an exciting new frontier in the field, and can be aided through the 

adoption of methodological techniques which allow us to uncover and characterize both 

within- and between-age differences and the neural states which underlie those differences. 

These methods offer several advantages over traditional techniques, including being robust 

to assumption violations, partitioning variance appropriately to avoid inference fallacies 

(e.g., Curran & Bauer, 2011), and allowing comparisons of variance between samples that 

can help reconcile findings across different populations. With the advent of large-scale 

longitudinal designs becoming available (e.g., the Adolescent Brain and Cognitive 

Development Study; Jernigan et al., 2018), methods that account for multiple sources of 

variable will be crucial for drawing appropriate conclusions about developmental 

trajectories. GIMME could also be implemented on data gathered longitudinally. For 

instance, using the data-driven subgrouping approach, GIMME would identify if individuals 

tend to subgroup with themselves across time or with other individuals measured at the same 

time.

Taken together, the findings of the current study raise several interesting questions for future 

research, as well as introducing a methodological approach which can be used to leverage 

insights on questions central to developmental neuroscience. Utilizing a model-based 

network approach, we investigated age-related differences in functional connectivity 

between a set of task-relevant regions, including subcortical, salience, and prefrontal areas. 

Furthermore, we investigated whether age was in fact the most important factor in 

categorizing individuals based on their network configurations. In contrast with previous 

work, we found that adolescents were the least risky individuals as a group in our sample, 

and that task behavior was a more powerful organizer for neural networks than age. 

Understanding how these, and other results highlighting within-adolescence variability (e.g., 

Braams et al., 2015; Telzer, 2016; McCormick & Telzer, 2017b; Blankenstein et al., 2018) fit 

into the broader literature on adolescent neurodevelopment, especially as it is relevant to risk 
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behavior, requires a broadening of our understanding what characterizes changes during 

adolescent. Specifically, moving away from characterizing what is “average” for 

adolescents, and instead acknowledging and building our developmental models around the 

rich variation that exists between individuals.
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Figure 1: 
ROIs Used for Network Analyses. A) We constructed 12 ROIs of regions previously 

implicated in risky decision-making including the anterior cingulate and medial PFC, as well 

as bilateral dorsal and ventral striatum, anterior insula, amygdala, and dorsolateral prefrontal 

cortex. B) A 3D video showing the ROIs embedded in the brain surface as well as free in 

space.
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Figure 2: 
Group-level Connectivity Map. GIMME estimated a group-level, directed network map. All 

paths were significant for at least 75% of subjects. Autoregressive paths (ROI at t predicted 

by ROI at t-1) are not shown, but were estimated for all regions within the network. All 

between-region paths included in the group-level connectivity maps were contemporaneous 

relationships.

McCormick et al. Page 18

Neuroimage. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Age-related Behavioral Differences. Adolescents showed reduced Average Pumps and 

Number of Explosion compared with young adults and adults. No age group showed an 

advantage in terms of the number of points earned during the task. Median values are 

marked by the thick horizontal line, and box boundaries represent the range from the first to 

third quartiles. Whisker lines extend to 1.5 times the inter-quartile range. * p<.05, **p<.005, 

***p<.001
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Figure 4: 
Neural Connectivity as a Function of Age. Confirmatory subgrouping of neural networks 

revealed age-specific paths in addition to the group-level functional connections. 

Adolescents (blue) and adults (green) showed path overlap with young adults but not with 

each other, suggesting a transition from the youngest to the oldest brain state through a 

hyper-connected transition state. All between-region paths included in the group-level 

connectivity maps were contemporaneous relationships. Unique subgroup paths are in black, 

while group-level paths are in grey.
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Figure 5: 
Recovery of High- and Low-Risk Subgroups. An exploratory subgrouping revealed two 

groups distinguished by their neural connectivity patterns. Rather than recovering age-

related groups, the Walktrap algorithm appears to select subgroup membership more on 

risky behavior in the task. All between-region paths included in the group-level connectivity 

maps were contemporaneous relationships. Unique subgroup paths are in black, while 

group-level paths are in grey.
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Table 1.

Group Descriptions in Task Behavior on the BART

Group Variable M SD Range

Age Groups

 Adolescents

Risk Behavior 4.63 0.83 3.04-6.56

# Explosions 6.39 2.97 0-15

Total Points % 0.51 0.05 0.38-0.61

 Young Adults

Risk Behavior 5.56 0.64 4.42-6.50

# Explosions 9.57 2.64 5-15

Total Points % 0.51 0.07 0.34-0.63

 Adults

Risk Behavior 5.22 1.01 3.31-7.86

# Explosions 8.37 3.69 1-17

Total Points % 0.50 0.07 0.29-0.60

Data-Driven Groups

 High Risk

Risk Behavior 5.59 0.87 4.15-7.86

# Explosions 9.53 3.40 3-17

Total Points % 0.50 0.07 0.29-0.63

 Low Risk

Risk Behavior 4.79 0.83 3.04-7.18

# Explosions 7.00 3.04 0-15

Total Points % 0.51 0.06 0.34-0.62
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