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Abstract

Hyaluronan (HA), an extracellular matrix glycosaminoglycan, is implicated in the pathogenesis of 

both type 1 diabetes (T1D) as well as type 2 diabetes (T2D) and has been postulated to be 

increased in these diseases due to hyperglycemia. We have examined the serum and tissue 

distribution of HA in human subjects with T1D and T2D and in mouse models of these diseases 

and evaluated the relationship between HA levels and glycemic control. We found that serum HA 

levels are increased in T2D but not T1D independently of hemoglobin-A1c, C-peptide, body mass 

index, or time since diabetes diagnosis. HA is likewise increased in skeletal muscle in T2D 
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subjects relative to non-diabetic controls. Analogous increases in serum and muscle HA are seen 

in diabetic db/db mice (T2D), but not in diabetic DORmO mice (T1D). Diabetes induced by the β-

cell toxin streptozotozin (STZ) lead to an increase in blood glucose but not to an increase in serum 

HA. These data indicate that HA levels are increased in multiple tissue compartments in T2D but 

not T1D independently of glycemic control. Given that T2D but not T1D is associated with 

systemic inflammation, these patterns are consistent with inflammatory factors and not 

hyperglycemia driving increased HA. Serum HA may have value as a biomarker of systemic 

inflammation in T2D.
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Introduction

Hyaluronan (HA) is an extracellular matrix (ECM) polymer and glycosaminoglycan [1]. It is 

a long, unbranching polymer made of repeating disaccharides (glucuronic acid and N-acetyl-

glucosamine). In healthy tissues, HA is produced by a diverse range of cells and tissues and 

is incorporated into tissues such as joints [2], basement membranes and the vitreous of the 

eye [3]. At these sites, it contributes to lubrication, acts as a structural component, and space 

filler [4]. HA bound within tissues interacts with a number of proteins that modify its 

function and longevity [1, 5–7].

In inflamed tissues, the amount of HA is greatly increased [3]. Cellular HA production in 
vitro is increased in response to a variety of pro-inflammatory cytokines [8, 9], microbial 

products [9, 10], hyperglycemia [11, 12], and other triggers [10, 13], and the presumption is 

that these factors also drive HA synthesis in vivo. HA undergoes extensive catabolism 

mediated by endogenous hyaluronidases, by bacterial hyaluronidases, by mechanical forces, 

and by oxidative stress [14]. Together, this increased synthesis and catabolism lead to the 

accumulation of HA fragments within inflamed tissues and tumors [15–19]. Increased HA 

may contribute to local inflammatory processes. HA fragments promote cellular activation, 

migration, and proliferation [1, 3, 20–24] via interactions with its receptors [25], including 

RHAMM [26], CD44 [27], and Toll-like receptors 2 and/or 4 [28].

Upon the resolution of inflammation HA fragments are cleared while in the setting of 

chronic inflammation, HA accumulates [29]. Abundant local HA characterizes chronic 

inflammation in many tissues including liver cirrhosis, asthma, and other diseases [30–33]. 

Reflecting this, serum HA is used as a biomarker of liver cirrhosis [34] and primary 

sclerosing cholangitis [35]. The amount and size of HA at sites of inflammation may thereby 

provide contextual information that reflects the stage of injury and its stage of resolution 

[17, 36].

HA has been implicated in the pathogenesis of autoimmune, type 1 diabetes (T1D). In 

healthy islets, HA is a normal component of the peri-islet and intra-islet regions adjacent to 

micro-vessels [37]. The development of autoimmune insulitis is associated with substantial 

changes in the islet ECM and deposition of intra-islet HA [38, 39]. In human T1D tissue 
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samples from cadaveric organ donors obtained through the JDRF nPOD program, HA 

deposits were found to be present in islets from recent-onset T1D donors but not in non-

diabetic controls [40]. Further, HA deposits were both temporally and anatomically 

associated with autoimmune insulitis in both T1D and in the DORmO mouse model of the 

disease. The DORmO mice are the offspring of DO11.10 and RIPmOVA transgenic mice. 

They carry a T-cell receptor transgene specific for OVA (emulating auto-reactive CD4+ T-

cells) while simultaneously expressing OVA in conjunction with the insulin gene promoter 

on pancreatic b-cells (emulating the auto-antigen) [41]. In diabetic humans and mice the 

amount and distribution of HA closely tracked with the infiltration of CD3+ T-cells and the 

disappearance of insulin staining. HA was not increased within neighboring islets without 

active insulitis [41]. We and others have reported that interventions that clear HA or prevent 

its synthesis can prevent autoimmune diabetes in mice [41–44].

HA is also implicated in the pathogenesis of type 2 diabetes (T2D). HA deposition in T2D 

has been noted in skeletal muscle [45], adipose tissue [46, 47], and other tissues of obese 

and diabetic animals [48–52] as well as at sites of diabetes-associated pathology, such as 

vascular lesions [51, 53]. The T2D mouse model the db/db mice are leptin receptor deficient 

and uniformly exhibit severe obesity and hyperglycemia [54]. In humans and mice serum 

HA levels are likewise increased in T2D [51]. HA in peripheral tissues has been implicated 

in insulin resistance, as treatment with a recombinant hyaluronidase [45] or anti-CD44 

antibodies [46] improve insulin sensitivity.

The finding that HA contributes in different ways to the pathogenesis of both T1D and T2D 

raises basic questions about the tissue distribution of HA, the role of hyperglycemia in this 

accumulation, and the specificity of serum HA as a biomarker for T2D versus T1D.

Here, we have asked how T1D and T2D status and glycemic control impact tissue deposition 

of HA. For these assessments, we have studied serum and skeletal muscle from human 

subjects with T1D, T2D or non-diabetic controls, as well as the analogous tissues collected 

from mouse models of these diseases.

Results

Serum and muscle HA concentrations are not increased in a mouse model of T1D

We first compared serum HA in the DORmO mouse model of T1D versus healthy, strain 

matched controls. At 15 weeks of age, DORmO mice had blood glucose levels over 250 

mg/dL and were considered diabetic (Fig. 1A). At 10 weeks of age, we observed a 

significant increase in HA accumulation in the pancreatic islets of DORmO mice compared 

to BalbC controls (Fig. 1B,C).

We further examined the skeletal muscle of 15 week old mice for HA content and found no 

significant difference between the DORmO and BalbC mice in histologic muscle sections 

stained for HA (Fig. 1D,E) or biochemically when determining the HA content of the 

muscle (Fig. 1F). The muscle HA content of the DORmO mice was 17.3 +/− 1.8 ng HA/mg 

muscle versus 19.6 +/− 0.9 ng HA/mg muscle for the BalbC controls (Fig. 1F).
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We also collected serum from these animals and examined their HA content. We found that 

serum HA levels were not significantly elevated in 15 week old DORmO mice (514.0 +/

− 71.1 ng/mL) compared to BalbC controls (384.5 +/− 31.6 ng/mL) (Fig. 1G).

These data indicate that serum and muscle HA are not increased in a mouse model of T1D 

but that HA is increased at the primary site of inflammation in this disease - the pancreatic 

islet.

Serum and muscle HA concentrations are increased in a mouse model of T2D

We next asked whether serum HA was elevated in the db/db mouse model of T2D compared 

to strain matched C57Bl6 controls. By 6 weeks of age db/db mice had blood glucose levels 

over 250 mg/dL and were considered diabetic (Fig. 2A). We then collected serum from these 

animals and examined the HA content. Serum HA levels were significantly higher in 16 

week old db/db mice (854.3 +/− 37.1 ng/mL) compared to their C57Bl6 controls (304.8 +/

− 68.6 ng/mL) (Fig. 2B).

In skeletal muscle tissues from 16 week old db/db and control mouse muscle sections 

stained for HA we found that HA was increased in the db/db mice. This was seen by 

histologic assessments (Fig. 2C,D) as well as by biochemical measurements (Fig. 2E). The 

muscle HA content of the db/db mice was with 108.1 +/− 14.5 ng HA/mg muscle 

significantly higher than the muscle HA content of the C57Bl6 control mice with 48 +/− 7.7 

ng HA/mg muscle (Fig. 2E).

Together these data indicate that serum and muscle HA are increased in a mouse model of 

T2D but not in a mouse model of T1D.

STZ treatment induces hyperglycemia in mice but HA serum levels are not significantly 
elevated

We also asked whether serum HA was elevated in C57Bl6 mice after treatment with STZ, a 

β-cell specific toxin. After administration of two consecutive high doses (200 mg/kg) of 

STZ, mice were diabetic within one week. Seven days after STZ administration we observed 

that blood glucose level were significantly increased (307.4 +/− 10.5 mg/dL) in the STZ 

treated group compared to the untreated controls (91.4 +/− 8.4 mg/dL) (Fig. 3A).

We also saw a significant increase of pancreatic islet HA after STZ treatment compared to 

the non STZ treated mice (Fig. B,C). Serum HA level on the other hand remained 

unchanged after STZ treatment (220.7 +/− 18.1 ng/mL for controls vs 252.1 +/− 15.0 ng/mL 

for STZ treated mice) (Fig. 3D).

These data suggest that hyperglycemia does not immediately result in serum HA elevation.

Serum HA concentrations are not elevated in T1D patients

We next sought to determine whether our findings in mouse models of diabetes would be 

mirrored in human subjects with T1D or T2D. For these studies, blood samples were drawn 

from a total of 60 patients (n = 20 T1D patients, n = 20 T2D patients and n = 20 non-

diabetic controls). Groups were matched for age (all between 20–45 years), gender (each 
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group had n = 10 male and n = 10 female patients), and HbA1c (mean 7.5 % (T1D) - 7.1 % 

(T2D). Mean C-peptide levels were 3.7 ng/mL for the T2D patients; for the T1D subjects C-

peptide data were not available. The body mass index (BMI) from non-diabetic controls 

(BMI 27.9) was found to be between T1D (BMI 22.8) and T2D (BMI 32.7) patients. None 

of the patients had any comorbidity. These data are shown in Table 1.

We observed that serum HA levels in T1D subjects (219.4 +/− 18.5 ng/mL) were no 

different from those in non-diabetic controls (216.6 +/− 17.3 ng/mL) (Fig. 4A)(Table 2). 

There was no correlation between serum HA levels and HbA1c in T1D patients (Fig. 4B). 

We did observed a slight decrease of HA with increasing BMI in T1D patients (Fig. 4C). 

There was no correlation between serum HA levels and duration of T1D (Fig. 4D).

Together these data mirror our findings in the serum of mice with autoimmune diabetes and 

these data strongly refute the hypothesis that serum HA reflects long-term hyperglycemia. In 

regards to HA at other sites, we previously reported that islet HA is increased in human 

subjects with T1D within 1 year of diagnosis with the disease but not in T1D subjects with 

long standing (> 1 year) disease [40]. Unfortunately, it was not possible to obtain muscle 

tissue from individuals with T1D.

HA levels are elevated in the serum and muscle of individuals with T2D

We observed that serum HA levels were significantly higher in T2D subjects (330.6 +/− 24.7 

ng/mL) than in non-diabetic controls (216.6 +/− 17.3 ng/mL)(Fig. 5A). However, we found 

no correlation between HA levels and HbA1c in T2D patients (Fig. 5B). We also found no 

correlation between HA levels and C-peptide levels (Fig. 5C), BMI (Fig. 5D), or the 

duration of T2D (Fig. 5E) in these subjects.

We next sought to determine whether HA in muscle tissue was increased in T2D patients. To 

this end, we examined discarded surgical biopsy specimens collected from individuals with 

or without T2D following amputations of lower extremity tissues due to peripheral vascular 

disease. We found that the percentage area positive for HA was significantly increased in 

T2D patients relative to non-diabetic controls (Fig. 5G).

Together, these data indicate that both serum and muscle HA are elevated in human and 

mouse T2D (Table 2).

Discussion

We report three notable findings from these studies. First, HA is increased in the serum and 

muscles of humans with T2D as well as in the db/db mouse model of the disease. This 

corroborates previous reports linking increased tissue HA to T2D [45, 51, 55] and extends 

this finding to human skeletal muscle, the major tissue type involved in glucose uptake.

Second, we report that HA is not increased in the serum of individuals with T1D or in the 

DORmO mouse model of the disease. HA has been implicated in a number of autoimmune 

diseases like lupus [56], inflammatory bowel disease [57–60], autoimmune hepatitis [61] 

and others [62–64]. More recent studies show, that the local tissue environment is thought to 

contribute to immune regulation and the development of T1D [65–67], and that T1D is 
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associated with substantial changes in the islet ECM and deposition of intra-islet HA [68]. 

Together with our previous report that autoimmune insulitis in T1D was associated with 

islet-specific deposition of HA [40, 41], the data presented here suggest that HA 

accumulates at the primary site of inflammation in T1D – the pancreatic islet – but not in 

distant sites, such as the serum or skeletal muscle. This pattern is consistent with T1D being 

a disease of local, isletspecific inflammation.

Third, we report that HA levels in muscle and tissue are not correlated with hyperglycemia, 

as measured by HbA1c. Serum HA levels in T2D are also not correlated with insulin levels, 

as measured by C-peptide, obesity, as measured by BMI, or with age, gender, or duration of 

disease.

It has been shown, that the total amount of serum HA in individuals with diseases like 

arthritis [69] and cancer [70, 71] is elevated [72]. We also know, that not only the total 

amount of HA is important but also its size. HA size has been called a natural biosensor for 

the state of tissue integrity [14]. For instance, it was discovered, that low molecular mass 

serum HA can be used to differentiate metastatic and non-metastatic breast cancer [73]. 

Also, the serum of healthy individuals usually contains low molecular mass between 100–

300 kDa [74], and it is reported that even lower molecular mass HA, <50 kDa, is found in 

the serum of cancer patients [73]. Furthermore, it is known that HA breakdown products 

predominate during injury and inflammation [20]. These findings are in line with the 

elevated human serum HA data found in the inflammatory setting of T2D.

Together, these data suggest that serum and tissue HA may be elevated in diabetes in 

response to inflammation rather than hyperglycemia. In light of this, serum HA levels may 

have value as a potential biomarker for systemic inflammation in T2D independent of 

glycemic control.

We and others have previously reported that a great diversity of inflammatory factors, 

including cytokines and microbial products, drive HA synthesis [8, 9, 75]. The specific 

factors that promote HA synthesis in T2D and T1D are unknown but will be important to 

identify given reports linking HA and its receptors in the pathogenesis of these diseases [46, 

47, 76].

In conclusion, these data support the use of circulating HA as a biomarker in T2D and 

suggest that its elevation may reflect inflammatory aspects of the disease that are distinct 

from glycemic control, insulin production, or BMI.

Methods

Human tissue donors and tissue procurement

Serum samples from 20, auto-antibody positive, T1D patients aged between 20 and 45 years, 

with disease duration of less than 1 year were collected. C-peptide data were not available 

from those T1D patients. Serum samples were also collected from 20 T2D patients aged 

between 20 and 45 years, and 20 age-matched autoantibody-negative healthy individuals. 

These samples were obtained with informed consent, under the auspices of a research 
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protocol approved by the Benaroya Research Institute institutional review board. Clinical 

characteristics of donors are presented in Table 1.

Human muscle tissues were obtained from de-identified, discarded surgical specimens 

collected from T2D subjects or controls. These were provided through the Stanford 

Pathology Department in the form of formalin-fixed, paraffin-embedded histologic 

specimens. This study was carried out with the approval of the Institutional Review Board of 

Stanford University.

Mice

All animals were bred and maintained under specific pathogen-free conditions, with free 

access to food and water, in the vivarium at Stanford University. DO11.10 transgenic mice 

were purchased from The Jackson Laboratory (Bar Harbor, ME) and bred with BalbC mice 

expressing RIPmOVA (available at the Benaroya Research Institute) to generate the 

DORmO double-transgenic mice. Both C57Bl6 mice and Leptin receptor-deficient, db/db 

mice were purchased from The Jackson Laboratory (Bar Harbor, ME). All experiments and 

animal use procedures were approved by the Animal Care & Use Committee at Stanford 

University Medical School.

Weight and diabetes monitoring were performed on these mice. DORmO and db/db mice 

were weighed weekly as well as bled via the tail tip for the determination of their blood 

glucose level (BG) using a Contour blood glucose meter and blood glucose monitoring strips 

(Bayer Healthcare, Tarrytown, NY). When two consecutive blood glucose readings of 250 

mg/dL were recorded, animals were considered diabetic.

C57Bl6 mice were treated two times with STZ at 200 mg/kg intraperitoneally. STZ was 

administered within 10 min of its dissolution. Mice in the untreated control group received 

citrate buffer (vehicle) alone. Blood glucose in those experimental groups was monitored 

daily. Mice were sacrificed following the development of hyperglycemia.

Serum, pancreas and skeletal muscle samples were collected. Serum samples were collected 

through cardiac puncture from deceased mice immediately after euthanization with CO2. 

Murine skeletal muscle was isolated from the quadriceps tissue and immediately transferred 

into methyl carnoys (MC) fixation. Tissue for paraffin embedding was processed using a 

Leica ASP300 Tissue Processor (Leica Microsystems Inc., Buffalo Grove, IL).

Measurement of serum levels of HA

Both human as well as murine serum samples were thawed and subsequently assayed for 

HA levels using a modified HA Enzyme-Linked Immunosorbent Assay (ELISA) [77]. Each 

sample was analyzed in triplicate with a mean value obtained for each individual.

Histologic staining of skeletal muscle and pancreas tissues for HA

For both human and murine muscle and murine pancreas tissue, 5 μm thick sections were 

cut on a Leica RM 2255 Microtomes (Leica Microsystems Inc.). All staining steps were 

performed on a Leica Bond Max™ automated immune histochemistry (IHC) stainer (Leica 

Microsystems Inc.). For HA affinity histochemistry (AFC) the Bond Intense R Detection kit, 
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a streptavidin-horse radish peroxidase (HRP) system, (Leica Microsystems, Inc.) was used 

with 4 μg/mL biotinylated-HABP in 0.1 % BSA-PBS as the primary. The Bond Polymer 

Detection Kit was used for all other immunohistochemistry. This detection kit contains a 

goat anti-rabbit conjugated to polymeric HRP and a rabbit anti-mouse post primary reagent 

for use with mouse primaries.

All images were visualized using a Leica DMIRB inverted fluorescence microscope 

equipped with a Pursuit 4-megapixel cooled color/monochrome charge-coupled device 

camera (Diagnostic Instruments, Sterling Heights, MI). Images were acquired using the Spot 

Pursuit camera and Spot Advance Software (SPOT Imaging Solutions; Diagnostic 

Instruments). Image analysis was performed using Image J (NIH), as described previously 

[40].

Biochemical Quantification of HA in skeletal muscle

Tissues were first lyophilized and weighed, then digested with proteinase K (250 μg/mL) in 

100 mM ammonium acetate pH 7.0 overnight at 60°C. After digestion, the enzyme was 

inactivated by heating to 100°C for 20 minutes. Total amount of HA was determined by a 

modified competitive ELISA in which the samples to be assayed were first mixed with 

biotinylated HA-binding protein (b-HABP) and then added to HA-coated microtiter plates, 

the final signal being inversely proportional to the level of hyaluronan added to the 

biotinylated HABP [78].

Statistical analysis

Data are expressed as means +/− SEM of n independent measurements. Significance of the 

difference between the means of two or three groups of data was evaluated using the Mann-

Whitney U test or one-way Anova, respectively. The statistical significance of differences in 

serum hyaluronan levels between T1D, T2D and healthy donors was calculated by the 

Kruskal-Wallis test. Correlation analysis was performed using the non-parametric Spearman 

correlation test. A p value less than <0.05 was considered statistically significant.
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Highlights

Hyaluronan (HA) is an extracellular matrix polymer that has been implicated in the 

pathogenesis of both type 1 diabetes (T1D) and type 2 diabetes (T2D). In T1D, HA 

accumulates at sites of autoimmune insulitis and has been implicated in local immune 

dysregulation. In T2D, HA is increased in multiple tissues and has been linked to insulin 

resistance. In vitro, hyperglycemia is one pro-inflammatory factor that drives HA 

synthesis by multiple cell types raising the possibility that increased tissue HA in these 

diseases is a consequence of poor glycemic control. We have asked how glycemic control 

and T1D and T2D status impact tissue deposition of HA. We report that HA is increased 

in the serum and muscles in T2D but not in T1D. We find no relationship between serum 

HA and glycemic control, insulin production, or BMI. Together these results suggest that 

inflammatory factors rather than hyperglycemia drive local HA accumulation in diabetes. 

These data support the use of circulating HA as a biomarker in T2D and suggest that its 

elevation occurs independently of glycemic control, insulin production, or BMI.
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Figure 1: Serum and muscle HA concentrations are not increased in a T1D mouse model.
A: Blood glucose of DORmO and BalbC mice from 4 to 20 weeks of age. B: Representative 

images of pancreatic islets from DORmO and BalbC mice stained for HA, in brown. C: 
Quantification of HA accumulation in pancreatic islets from IHC images. D: Representative 

images of skeletal muscle images from DORmO and BalbC mice stained for HA, in brown. 

E: Quantification of HA accumulation in skeletal muscle from IHC images. F: 
Quantification of HA content of skeletal muscle from DORmO and BalbC mice. G: Serum 

HA level from DORmO and BalbC mice. N = 5–10 mice per group. Data represent mean +/

− SEM, *P < 0.05 vs the respective control by unpaired t test.
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Figure 2: Serum and muscle HA concentrations are significantly elevated in a T2D mouse model.
A: Blood glucose of db/db and C57Bl6 mice from 4 to 20 weeks of age. B: Serum HA level 

from db/db and C57Bl6 mice. C: Representative images of skeletal muscle images from 

db/db and C57Bl6 mice stained for HA, in brown. D: Quantification of HA accumulation in 

skeletal muscle from IHC images. E: Quantification of HA content of skeletal muscle from 

db/db and C57Bl6 mice. N = 5–10 mice per group. Data represent mean +/− SEM, *P < 0.05 

vs the respective control by unpaired t test.
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Figure 3: STZ treatment induces hyperglycemia in mice but HA serum levels are not 
significantly elevated.
A: Blood glucose of C57Bl6 mice with and without STZ treatment. B: Representative 

images of pancreatic islets from C57Bl6 mice with and without STZ treatment. C: 
Quantification of HA accumulation in pancreatic islets from IHC images. D: Serum HA 

measurements from STZ treated C57Bl6 mice and their untreated controls. N = 5–10 mice 

per group. Data represent mean +/− SEM, *P < 0.05 vs the respective control by unpaired t 

test.
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Figure 4: Serum and muscle HA concentrations are not elevated in T1D patients.
A: Serum HA measurements in T1D and healthy control subjects. B: Relationship between 

serum HA and HbA1c. Mean serum HA values for each individual in the study are shown in 

conjunction with the HbA1c level measured for that given individual at the time of blood 

draw. C: BMI and (D) days from diagnosis are shown in correlation with HA. N = 1720 per 

group. Data in A represent mean +/− SEM, data in B-D are shown as regression plots. *P < 

0.05 vs control by unpaired t test.
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Figure 5: Serum and muscle HA concentrations are elevated in T2D patients.
A: Serum HA measurements in T2D and healthy control subjects. B: Relationship between 

serum HA and HbA1c and (C) c-peptide. Mean serum HA values for each individual in the 

study are shown in conjunction with the HbA1c and c-peptide level measured for that given 

individual at the time of blood draw. D: BMI and (E) days from diagnosis are shown in 

correlation with HA. N = 17–20 per group. F: Representative images of muscle sections 

from healthy donors and T2D patients stained for HA, shown in brown. G: Quantification of 

HA muscle staining shown as % area fraction. N = 5 individuals per group. Data in A and G 

represent mean +/− SEM, data in B-E are shown as regression plots. *P < 0.05 vs control by 

unpaired t test.
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Table 1:
Characteristics of the subjects from whom serum was collected.

Blood was drawn from a total of 20 patients per group. The group consisted of n = 10 male and n = 10 female 

patients. The age at time of blood draw was between 20–45 years. For the T1D and T2D patients the days 

since diagnosis, the HbA1c and C-peptide serum level as well as BMI were reported. None of the patients had 

any comorbidity. Data are represented as mean +/− SEM.

Healthy Controls (n=20) T1D (n=20) T2D (n=20)

Sex (M/F) 10/10 10/10 10/10

Age (years) 20–45 20–45 20–45

Days since diagnosis N/A 60 ± 32 645 ± 547

HbA1c (%) N/A 7.5 ± 1.5 7.1 ± 1.3

C-peptide (ng/mL) N/A N/A 3.7 ± 0.4

BMI 27.9 ± 1.1 22.8 ± 0.7 32.7 ± 1.3

Comorbidity (i.e. renal failure, retinopathy) None None None
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Table 2:
Overview of HA accumulation at different diabetic sites in human and mouse.

The HA content in human and mouse T1D is elevated in pancreatic islets. In T2D HA in human and mouse is 

elevated in the serum and muscle. STZ treatment in mice increased the islet HA content, but did not 

significantly change the HA content in serum.

HA content T1D T2D STZ (toxin)

Serum ↔ ↑ ↔

Muscle ↔ ↑ N/A

Islets ↑ N/A ↑
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