
INTRODUCTION

Serotonin (5-hydroxytryptamine, 5-HT) is best known as a neu-
rotransmitter that modulates neural activity and a wide range of 
neuropsychological process [1]. Until now, seven distinct subfami-

lies of 5-HT receptor, 5-HT1-7 receptors, were found in mammals 
and these are a group of G-protein-coupled receptors (GPCRs), 
except 5-HT3 receptor that is a ligand-gated ion channel [2]. 
Among them, 5-HT6 receptor (5-HT6R) is coupled to a stimula-
tory Gα protein, which increases cAMP formation and then acti-
vates cAMP-dependent protein kinase A (PKA) [3, 4]. 5-HT6R is 
exclusively expressed within the central nervous system (CNS) [4], 
while most other 5-HT receptors are widely expressed throughout 
organs [5, 6]. Recent studies have revealed that 5-HT6R is impli-
cated in the brain functions such as eating behavior, movement, 
cognition and mood [7-9], and selective antagonists of 5-HT6R 
improve cognitive function in aged animals [10, 11] and in pa-
tients with Alzheimer disease [12, 13]. Also, 5-HT6R has high af-
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finity for several antipsychotic and antidepressant drugs [7, 8] and 
modulation of 5-HT6R showed antidepressant and anxiolytic-like 
effects, [14-16] suggesting that it is a potential therapeutic target 
for psychological disorders. However, little is known about the role 
of 5-HT6R in these diseases or normal physiology, except the fact 
that it functions through the binding to Gα protein [4]. Therefore, 
we aimed to identify the binding partners of 5-HT6R to under-
stand the 5-HT6R-mediated physiological responses. In an effort 
for this, our group previously reported that Fyn, a member of the 
Src family of non-receptor protein-tyrosine kinase, Jun activation 
domain-binding protein-1 (Jab1) and microtubule-associated pro-
tein 1B (MAP1B) directly interact with 5-HT6R and play roles in 
5-HT6R-mediated signaling pathways in CNS [17-19]. In present 
study, we identified neuro-oncological ventral antigen 1 (Nova-1) 
as a novel interacting partner of 5-HT6R. 

Nova was first identified as an onconeural antigen in para-
neoplastic opsoclonus-myoclonus ataxia (POMA) patients who 
harbored a high-titer termed Ri antibody [20]. This Ri antigen 
that reacts with Ri antibody was named afterward as Nova, and 
two isoforms, Nova-1 and Nova-2 were identified [21]. Nova-
1 and Nova-2 are expressed only in CNS, but interestingly, their 
expression patterns within CNS are mutually exclusive; Nova-
1 is expressed in hindbrain and spinal cord, whereas Nova-2 is 
expressed in the brain regions where Nova-1 is not present, such 
as neocortex and thalamus [22, 23]. Nova-1 is a member of RNA 
binding proteins (RBPs) and has three typical RNA binding do-
mains, so called K homology (KH) motif [24-26]. The consensus 
binding sequences of Nova-1 are well-defined as YCAY element 
[27-30], and among RNA metabolism, Nova-1 regulates pre-
mRNA splicing and produces mature mRNA. Especially, through 
alternative splicing of pre-mRNA, Nova-1 contributes to proteome 
complexity and functional diversity [31]. Pre-mRNA targets of 
Nova-1 are mainly proteins involved in synapse formation or 
synaptic transmission, including inhibitory GABAA receptor γ2 
(GABAARγ2), glycine receptor α2 (GlyRα2) [27-31]. Nova also ac-
tively shuttles from nucleus to cytoplasm, as far as synaptic contact 
in dendrites, along its target RNAs, where Nova may contribute to 
mRNA localization [29]. This result implies that the role of Nova-
1 can extend beyond the established boundary of RNA splicing. 
Although Nova-1 and 5-HT6R belong to a different functional 
category with distinct subcellular localization, we demonstrated 
that Nova-1 directly binds to 5-HT6R both in vitro and in vivo. In 
particular, overexpression of 5-HT6R reduced the splicing activity 
of Nova-1 and triggered the translation of Nova-1 from nucleus 
to cytoplasm. In contrast, overexpression of Nova-1 weakened the 
activity and stability of 5-HT6R via promoting the proteasomal 
degradation of 5-HT6R.

MATERIALS AND METHODS

Plasmid constructs 

A human brain cDNA library in the GAL4 activation domain 
vector pACT2 was purchased from BD biosciences (Palo Alto, 
CA). Full-length non-tagged and HA-tagged human 5-HT6R 
cDNA in pcDNA3.1 were purchased from UMR cDNA Resource 
Center (Miner Circle Rolla, MO). The Myc-tagged 5-HT6R plas-
mid was constructed by recloning the human 5-HT6R cDNA into 
pCMV-Tag3B vector (Stratagene, La Jolla, CA). cDNA fragment 
encoding the carboxyl terminus of 5-HT6R (6RCT) was subcloned 
into pGBKT7 (Clontech, Palo Alto, CA). GST-6RCT was kindly 
provided by Dr. Y. G. Yu (Kookmin Univ., Korea). His-tagged 6RCT 
was constructed by subcloning the 6RCT into pET28a (+) vector. 
The CTs of 5-HT4R and 5-HT7BR (4RCT and 7BRCT) were cloned 
into pGEX4T-1 (Amersham, Piscataway, NJ) to express them in 
a GST-fusion form. The primer sequences used were as follows: 
4RCT (Fw, 5’-GAATTCCCGAGACGTGCCTTCCTC TC-3’; Rv, 
5’-CTCGAGAGTGTCACTGGGCTGAGCAG-3’) and 7BRCT 
(Fw, 5’-GAATTCCCGGACCTGAGGACCACCTATC-3’; Rv, 
5’-CTCGAGCAGCACAAACTCAGGTC-3’). Full length human 
Nova-1 in pCMV6-XL5 was purchased from Origene (Rockville, 
MD). Flag-tagged Nova-1 was constructed by recloning into pC-
MV-Tag2B (Stratagene). GST-Nova239-419 (239-419 amino acids 
of mouse Nova-1) and GST-KH3 (KH3 domain, 420-507 amino 
acid of mouse Nova-1) were constructed by subcloning from full 
length Nova-1 into pGEX4T-1 vector. Nova-1 full length, Nova-1-
ΔKH1 and Nova-1-ΔKH1/2 constructs were generated by fusing 
a HA tag to either full length or partially truncated human Nova-1 
constructs.

Yeast two-hybrid assay 

The yeast two-hybrid assay was performed using the Matchmak-
er GAL4 two-hybrid system 3 (Clontech). The bait plasmid, pG-
BKT7/CT of 5-HT6R, was stably expressed in yeast strain AH109 
and did not have a self-transcriptional activity. The prey plasmid, 
human brain cDNA library/pACT2, was transformed into yeast 
strain Y187. All yeast two-hybrid screening was performed as de-
scribed previously [17].

Cell culture and transfection

GT1-1, NIH3T3, and HEK293 cells were maintained in Dul-
becco’s modified Eagle’s medium supplemented with 10% fetal 
bovine serum (GenDEPOT) and 100 units/ml penicillin/strep-
tomycin (Gibco) in a humidified atmosphere containing 5% CO2 
at 37°C. HEK293 cell lines stably expressing the human 5-HT6R 
(HEK293/6R cells) were selected and maintained with 800 μg/ml 
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and 400 μg/ml of G418, respectively. For the transient transfection, 
cells were plated in 6-well plates and grown to 70-90% confluence 
in 1 day. The cells were transfected with plasmid DNA using Lipo-
fectamine PLUS reagent (Invitrogen). Six hours after transfection, 
the medium was changed with complete medium. For the trans-
fection into GT1-1 cells, Lipofectamine reagent was treated for 4 h. 
The cells were analyzed after 24 h of recovery in normal medium.

GST pull-down assays

GST-mediated pull-down assay was performed using the Pro-
found Pull-down GST Protein:Protein Interaction kit (Pierce, 
Rockford, IL). GST and GST-6RCTs plasmids were transformed 
into bacterial strain BL21 (DE3) and their protein expres-
sions were induced by adding 0.5 mM isopropyl 1-thio-β-D-
galactopyranoside (IPTG, Sigma) at 25°C during mid-log phase. 
GST and GST-6RCTs proteins were immobilized by glutathione 
gel. To prepare prey protein, Flag-Nova-1 plasmid was transfected 
into HEK293 cells and cell lysates were harvested after 24 h of 
transfection. For GST pull-down assay using rat brain lysates, the 
lysates were prepared from age- and weight controlled adult male 
SD rats (60-70 days old, 230-260 g) as previously described [17]. 
Prepared cell or brain lysates were incubated with immobilized 
GST proteins. Bound proteins were eluted by boiling for 10 min at 
95°C in SDS sample buffer followed by immunoblotting with anti-
Nova-1 (Upstate Biotechnology Inc., Lake Placid, NY) and anti-
GST antibodies (Novagen, Madison, WI).

Co-immunoprecipitation

Co-immunoprecipitation was performed as described by Yun 
et al. [18]. Soluble HEK293 cell lysates were precleared with 50 μl 
of ImmunoPure immobilized protein G Plus (Pierce) and 2 μg of 
rabbit normal IgG for 1 h. Precleared lysates were incubated with 4 
μg of anti-Myc, anti-HA (Cell Signaling Technology, Beverly, MA), 
or anti-Flag (Sigma-Aldrich, St. Louis, MO) antibodies overnight 
at 4°C. Then the lysates were added with 50 μl of ImmunoPure 
immobilized Protein G Plus and incubated for 4 h at 4°C and 
washed three times with lysis buffer. Immune complexes were 
eluted by boiling for 5 min at 95°C in SDS sample buffer, followed 
by Western blot analysis. For co-immunoprecipitation using rat 
brain lysates, the lysates were immunoprecipitated with 10 μg of 
anti-5-HT6R antibody (GeneTex Inc., San Antonio, TX).

RT-PCR analysis

Total RNA was extracted using Easy-spin total RNA extraction 
kit (Intron biotechnology, Korea). To eliminate possible DNA 
contamination, 1 μg of RNA samples were treated with 0.2 units 
of DNase I (NEB, Beverly, MA) for 10 min at 37°C. Then the 

RNA was heated for 10 min at 75°C to inactivate DNase I and 
reverse-transcribed using random hexamers. The primers used 
for RT-PCR were as follows: 6R E1-F, 5’-TGTCTGCTTTGGAC-
CGCCTT-3’; 6R IA-F, 5’-GCTTCAGCTGGGGATCAGTCAA-3’; 
6R E2-R, 5’-ATGCTGGCCACAAAGAAGGG-3’. The primers for 
GnRH E1-up, IA-up, and E3-dn were synthesized referring to the 
sequences previously described [32]. The primer sequences used 
are as follows: E1-up, 5’-GGAAGACATCAGTGTCCCAGA-3’; 
IA-up, 5’-TACCTCTGCAGTTTCTGTGA-3’; E3-dn, 5’-GAAGT-
GCTGGGGTTCTGC-3’. GAPDH was used as an internal control 
for semi-quantitative RT-PCR. The GAPDH primers were for-
ward primer 5’-CTCTCCAGAACATCATCCCTG-3’ and reverse 
primer 5’-CACCCTGTT GCTGTAGCCAAA-3’.

Western blot analysis

For immunoblotting, proteins were resolved on 12% SDS-
polyacrylamide gels and transferred to nitrocellulose membrane 
(Millipore, Bedford, MA). The membrane was blocked with Tris-
buffered saline containing 5% skim milk (BD Difco) and 0.1% 
Tween 20 (Sigma) for 1 h at room temperature (RT). Then, the 
membranes were incubated with the respective primary antibod-
ies overnight. After three washes, the membranes were incubated 
with horseradish peroxidase-conjugated secondary antibodies 
(Jackson ImmunoResearch, West Grove, PA) for 1 h at RT. The im-
mune complexes were visualized with an ECL detection kit (Mil-
lipore). The following antibodies were used for western blot: anti-
5-HT6R (GeneTex Inc., San Antonio, TX); Anti-Nova-1 (Novus 
Biologicals, USA); anti-HA (Cell Signaling Technology, Beverly, 
MA); anti-Actin (sigma); anti-β-Tublin (Cell Signaling Technol-
ogy); anti-histone H3 (Cell Signaling Technology); anti-phospho-
ERK (Cell Signaling Technology); and anti-ERK (Cell Signaling 
Technology).

Immunofluorescence

HEK293, GT1-1 cells or cortical neurons were grown on cover-
slips (Corning, Corning, NY). Twenty four hours after transfection, 
the cells were fixed with 4% paraformaldehyde in PBS for 20 min 
at RT. The cells were washed with PBS and permeabilized with 0.2% 
Triton X-100 (Sigma) for 15 min. Then the cells were blocked with 
3% bovine serum albumin (GenDEPOT) for 1 h at RT and incu-
bated overnight with rabbit anti-HA (Sigma) and mouse anti-Flag 
antibodies (1:500) at 4°C. After three washes, the cells were incu-
bated with anti-rabbit IgG (FITC) and anti-mouse IgG (rhoda-
mine) secondary antibodies (1:400; Jackson ImmunoResearch) for 
2 h at RT. The cells were washed three times and counter-stained 
with DAPI (Sigma) for 10 min. After mounting on glass slide using 
ProLong Antifade reagent (Invitrogen), the cells were examined 
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with a FluoView® Confocal Laser Scanning Microscope (Olympus, 
Japan).

Nuclear/cytoplasmic fractionation

Twenty four hour after transfection, HEK293 cells were har-
vested by centrifugation at 600 × g for 5 min at 4°C. Nuclear and 
cytoplasmic fractions were separated using the Nuclear/Cytosol 
Fractionation Kit (BioVision, Mountain View, CA), following the 
manufacturer’s protocol.

Assay of 5-HT6R activity using an FDSS6000 system

5-HT6R activity was measured using an FDSS6000 96-well fluo-
rescence plate reader (Hamamatsu Photonics, Japan) as previously 
described [18, 33]. Briefly, HEK293/6R stable cells were transiently 
transfected with Gα15 protein using Lipofectamine Plus (Invitro-
gen). After 6 h, the cells were transferred into 96-well black wall/
clear bottom plate and cultured overnight. The cells were loaded 
with Ca2+ indicator dye Fluo-4-AM (5 μM) and 0.001% Pluronic 
F-127 (Molecular Probes, Eugene, OR) and incubated in a HEPES-
buffered solution (150 mM NaCl, 5.4 mM KCl, 0.8 mM MgCl2, 10 
mM HEPES, 13.8 mM glucose and 2 mM CaCl2, pH 7.4) for 1 h at 
37°C. After three washes, 10 μM of 5-HT (Sigma) was added to the 
cells and Ca2+ response was measured at 480 nm. All data were col-
lected and analyzed using the FDSS system and related software 
(Hamamatsu Photonics).

Statistical analysis

The intensity of bands was measured with Image J software (Na-
tional Institute of Health, Bethesda, MD) and analyzed using the 
GraphPad Prism Version 4 (GraphPad Software Inc., San Diego, 
CA). All numeric values are represented as the mean±S.E.M. Data 
were analyzed by Student’s t-test, one-way analysis of variance 
(ANOVA) followed by Duncan’s post-hoc tests or two-way ANO-
VA followed by Newman-Keuls post hoc tests. 

RESULTS

Nova-1 directly binds to the 5-HT6R in vitro and in vivo 

Our group reported previously that Fyn, Jab1 and MAP1B 
directly interact with 5-HT6R in vitro  and in vivo and play roles 
in 5-HT6R-mediated signal transduction [17-19]. In this study, 
we also identified Nova-1 as a new binding protein of 5-HT6R, 
through a yeast two-hybrid screening assay using the C-terminal 
(CT) region of human 5-HT6R (bait) and the human brain cDNA 
library. We confirmed this specific interaction by a separate yeast 
two-hybrid assay in which the CT of 5-HT6R (bait) and full-length 
Nova-1 cDNA (prey) were transformed in the AH109 and Y187 

yeast strains, respectively (Fig. 1A), and a blue color colony was 
detected after mating the two strains (Fig. 1B). GST pull-down as-
say also verified the direct binding between Nova-1 and 5-HT6R. 
GST-fused to the CT of 5-HT6R (GST-6RCT) bound to the Flag-
tagged-Nova-1 (Flag-Nova-1), but GST protein did not (Fig. 1C), 
indicating that 5-HT6R directly binds to Nova-1 via the CT region. 
However, given that this interaction occurred with partial frag-
ment of 5-HT6R outside cells, we attempted to determine whether 
full-length 5-HT6R binds to Nova-1 in a specific manner in mam-
malian cells using co-immunoprecipitation. After full-length Myc-
tagged 5-HT6R (Myc-5-HT6R) and Flag-Nova-1 or empty vector 
(Flag-V) were transiently transfected into HEK293 cells, cell lysates 
were prepared, immunoprecipitated with anti-Flag antibodies, 
and subsequently immunoblotted with anti-Myc antibodies. Myc-
5-HT6R band was visible only in the HEK293 lysates containing 
Flag-Nova-1 protein (Fig. 1D). When co-immunoprecipitation 
was performed in reverse with anti-Myc antibodies followed by 
immunoblotting with anti-Flag antibodies, Myc-5-HT6R immu-
noprecipitated with Flag-Nova-1 protein (Fig. 1E). These results 
confirm the direct interaction between Nova-1 and 5-HT6R in 
mammalian cells. 

Next, we examined whether the interaction between 5-HT6R 
and Nova-1 occurs in vivo using the rat brain lysates. As previously 
reported, 5-HT6R was widely expressed in the brain while Nova-
1 was preferentially expressed in the brainstem and hypothalamus 
(Fig. 1F). Similarly to the GST pull-down assay in HEK293 cells, 
GST-6RCT pulled down Nova-1 in the rat brain lysate, but GST 
protein did not (Fig. 1G). We further confirmed this interaction in 
vivo using co-immunoprecipitation assay. Rat whole brain lysates 
were immunoprecipitated with anti-5-HT6R antibody and subse-
quently immunoblotted with anti-Nova-1 antibody. As shown in 
Fig. 1H, endogenous Nova-1 signal was selectively detected in the 
sample immunoprecipitated with anti-5-HT6R. These results con-
sistently showed that 5-HT6R interacts with Nova-1 under physi-
ological conditions. To prove the specific binding between Nova-
1 and 5-HT6R, we also examined whether Nova-1 interacts with 
other types of serotonin receptors. Among several 5-HT receptors, 
we chose 5-HT4R and 5-HT7BR given that these both receptors be-
long to the Gαs-family similar to 5-HT6R, and used their intracel-
lular domain CT regions as bait proteins for GST pulldown assay. 
As in Fig. 1I, CT of 5-HT4R (4R) and CT of 5-HT7BR (7BR) did 
not bind to Nova-1 protein, while CT of 5-HT6R (6RCT) showed 
the distinct binding signal to Nova-1. Taken together, these results 
suggest that the 5-HT6R selectively and directly binds to Nova-1 in 
vitro and in vivo.  
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Identification of binding domain of Nova-1 that interacts 

with 5-HT6R 

Then, we tried to identify the binding sites of Nova-1 protein that 
interact with 5-HT6R. Nova-1 has three KH domains that recog-
nize and bind to target RNA [24-26]. On the basis of KH domains, 
three different Nova-1 constructs were generated in HA- and ve-
nus C-terminal (VC)-tagged form; full length Nova-1 (amino acid 
1-507), Nova-1-ΔKH1 (amino acid 118~507, including KH2 and 
KH3 domains), and Nova-1-ΔKH1/2 (amino acid 239~507, in-
cluding KH3 domain) (Fig. 2A). These constructs were transiently 
transfected into HEK293 cells and then their expressions were 
analyzed by immunoblotting with anti-HA antibody (Fig. 2B). 
To identify which domain binds to 5-HT6R, HEK293 cell lysates 
containing HA-VC-tagged full length or truncated Nova-1 pro-
teins were incubated with GST or GST-6RCT, and then GST pull-
down assay was performed. As shown in Fig. 2C, CT of 5-HT6R 
interacted with all three different Nova-1 proteins (full length and 
two kinds of truncated Nova-1 proteins). Also, when immunopre-
cipitation was carried out using anti-HA antibody, full length and 

two truncated Nova-1 proteins pulled down GST-6RCT protein 
(Fig. 2D). To verify the interaction between three different Nova-
1 constructs and 5-HT6R in vivo, immunoprecipitation with anti-
5-HT6R antibody was performed between rat brain and HEK293 
lysates containing full length or truncated Nova-1 proteins. As 
seen in Fig. 2E, endogenous 5-HT6R in the brain bound to all HA-
VC-tagged full length and truncated Nova-1 proteins, whereas 
control IgG showed no binding signal. Taken together, these results 
suggest that 5-HT6R is likely to interact with KH3 domain or up-
stream flanking region of KH3 because these domains are present 
in all of three Nova-1 constructs.

To further narrow down the specific binding site of Nova-1, 239-
507 aa of Nova-1 was divided into two fragments, 239-419 aa and 
KH3 domain (420-507 aa) in a GST-fusion form (Fig. 2F, left ). 
Then, we examined which domain binds to the 5-HT6R using GST 
pull-down assay. GST-fused Nova-1 protein fragments and His-
tagged 6RCT were expressed in E. coli  and protein-protein inter-
action was examined. As a result of GST pull-down, CT of 5-HT6R 
bound to only KH3 domain of Nova-1 while no signal was detect-

Fig. 1. Nova-1 interacts with 5-HT6R in vitro and in vivo. (A) Schematic diagrams showing the structure of 5-HT6R, the CT (carboxyl-terminus) of 
5-HT6R as bait and complete Nova-1 protein as prey. (B) When the AH109 strain with 5-HT6R CT and the Y187 yeast strain with Nova-1 were mated, 
a blue color was detected. (C) GST pull-down assay showed that Flag-Nova-1 specifically interacted with GST-fused CT of 5-HT6R (GST-6RCT). (D) 
Full-length Myc-tagged 5-HT6R (Myc-5-HT6R) signal was detected in the immunoprecipitation with anti-Flag. (E) Flag-Nova-1 signal was detected in 
the immunoprecipitation with anti-Myc. (F) Western blot with anti-5-HT6R or anti-Nova-1 antibody showed the expression patterns of 5-HT6R and 
Nova-1 in the rat brain. (G) GST-6RCT interacted with endogenous Nova-1 in the rat brain. (H) Co-immunoprecipitation assay confirmed the interac-
tion between endogenous 5-HT6R and Nova-1 in the rat brain. (I) When GST pull-down assays were performed between Nova-1 and CTs of several 
serotonin receptors (GST-4RCT, GST-6RCT and GST-7BRCT), Nova-1 only interacted with 6RCT but not 4RCT and 7BRCT. GAL4, galactose-respon-
sive transcription factor GAL4; BD, binding domain; AD, activation domain; C, Cortex; Hi, Hippocampus; S, Striatum; B, Brainstem; Hy, Hypothalamus.
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ed in control GST and GST-239-419 (Fig. 2F, right). These results 
indicate that 5-HT6R binds to Nova-1 via KH3 domain.

Translocation of Nova-1 from nucleus to cytoplasm by 

5-HT6R overexpression 

Based on evidence for a physical interaction between 5-HT6R 
and Nova-1 and, we next examined whether the function of Nova-
1 is affected by 5-HT6R. Nova-1 is a neuron-specific RNA binding 
protein and regulates RNA splicing [27]. Therefore, we investigated 
whether there is any change in splicing activity of Nova-1 when 
5-HT6R is overexpressed, using gonadotropin-releasing hormone 
(GnRH) transcript that was reported as a splicing target of Nova-1 
[32]. GnRH minigene and Nova-1 DNA were transiently trans-
fected into NIH3T3 cells, and after 24 h, competitive RT-PCR was 

performed using three primers to evaluate the relative amount of 
spliced intermediates of target pre-mRNA (Fig. 3A). As described 
previously [32], Nova-1 facilitated the rate of intron A excision 
of GnRH pre-mRNA (Fig. 3B). However, when 5-HT6R DNA 
was co-transfected with Nova-1, splicing activity of Nova-1 was 
significantly suppressed (8.0±1.1% of control at 1 μg of 5-HT6R 
DNA, Fig. 3C). Meanwhile, truncated 5-HT6R (5-HT6RΔCT) 
lacking the CT region, a binding domain of 5-HT6R with Nova-
1, did not affect Nova-1-mediated intron A excision of GnRH, 
implying that binding of two proteins via CT region regulates 
the splicing activity of Nova-1 (Fig. 3D). In GT1-1 cells in which 
GnRH and Nova-1 are endogenously expressed, a consistent pat-
tern of splicing intermediates was observed. As seen in Fig. 3E and 
F, 5-HT6R overexpression suppressed the splicing activity of Nova-

Fig. 2. The KH3 domain of Nova-1 is responsible for 5-HT6R binding. (A) Schematic diagram of HA- and venus C-terminal (VC)-tagged full length 
and truncated Nova-1 constructs (top). GST-tagged CT of 5-HT6R (GST-6RCT) (bottom). (B) The expression of HA-VC-tagged full length or truncated 
Nova-1 constructs was identified by immunoblotting with anti-HA antibody. (C) GST pull-down assay showed that GST-6RCT interacted with all three 
different Nova-1 constructs. (D) Specific interaction between GST-6RCT and three different Nova-1 constructs was validated by co-immunoprecipita-
tion. (E) Co-immunoprecipitation assay showed that endogenous 5-HT6R interacted with all three different Nova-1 constructs. (F) 5-HT6R CT inter-
acted with GST-KH3 but not with GST-Nova-1 (239-419 aa). 
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Fig. 3. The 5-HT6R overexpression attenuates the splicing activity of Nova-1 centered on the excision of GnRH intron A. (A) The structure of the 
GnRH gene and positions of the primers (top). A standard curve was constructed to analyze the quantitative ratio of 1234 and 1A234 cDNAs by com-
petitive PCR using 10 pg of the 1A234 and serial dilutions of the 1234 gene (bottom). (B) Nova-1 increased the rate of intron A excision of GnRH gene 
in dose-dependent manner when GnRH minigene and Nova-1 were transiently transfected into NIH3T3 cells (F(3, 8)=29.79, p=0.0001; Dunnett’s post 
hoc test: ***p<0.001). (C) 5-HT6R decreased the splicing activity of Nova-1 in dose-dependent manner (F(4,10)=18.92, p=0.0001; Dunnett’s post hoc 
test: **p<0.01, ***p<0.001). (D) C-terminal truncated 5-HT6R (5-HT6RΔCT) did not affect the splicing activity of Nova-1 (F(3, 8)=0.4302, p=0.7371). 
(E) 5-HT6R dose-dependently decreased the splicing activity of Nova-1 in GT1-1 neuronal cell line in which GnRH and Nova-1 are endogenously ex-
pressed (F(4, 10)=12.69, p=0.0006; Dunnett’s post hoc test: **p<0.01). (F) The splicing activity of Nova-1was not affected by 5-HT6RΔCT in GT1-1 neuro-
nal cell line (F(4. 5)=0.194, p=0.9314). Data are expressed as means±S.E.M. (n=3 per group).
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1 (25.7±10.4% of control at 2 μg of 5-HT6R DNA), but truncated 
5-HT6R (5-HT6RΔCT) did not affect the intron A excision rate of 
GnRH. Taken together, these results suggest that the increased in-
teraction between Nova-1 and 5-HT6R induced by overexpression 
of 5-HT6R hampers the splicing activity of Nova-1, and the CT 
region of 5-HT6R plays a critical role in mediating this interaction 
as well as the regulation of Nova-1 function.

Translocation of Nova-1 from nucleus to cytoplasm by 

5-HT6R overexpression 

We next examined how interaction with 5-HT6R could affect 
the splicing function of Nova-1. At first, we assessed whether total 
protein levels of Nova-1 were changed by 5-HT6R expression in 
GT1-1 cells, and found that the expression levels of Nova-1 re-
mained unchanged, regardless of 5-HT6R expression levels (Fig. 

4A). Interestingly, however, Nova-1 was translocated from nucleus 
to cytoplasm when co-expressed with 5-HT6R. In contrast, Nova-
1 remained in nucleus when the control empty vector was co-
transfected (Fig. 4B). This translocation of Nova-1 by 5-HT6R ex-
pression was observed in HEK293 cells as well (Fig. 4C). Moreover, 
nuclear/cytoplasmic fractionation result also demonstrated that 
Nova-1 was mainly located in nucleus (183.4±2.3% compared by 
cytosol), but when co-expressed with 5-HT6R, the cellular distri-
bution of Nova-1 was significantly changed from nucleus to cyto-
plasm (nucleus, 38.9±10.2% compared by cytosol, Fig. 4D). Taken 
together, these results suggest that overexpression of 5-HT6R inter-
feres with the proper subcellular localization of Nova-1 to execute 
its function.

Fig. 4. The subcellular localization of Nova-1 is shifted from nucleus to cytoplasm upon 5-HT6R overexpression. (A) Overexpression of 5-HT6R in 
GT1-1 cells did not affect the expression levels of Nova-1 (F(4, 5)=0.8457, p=0.5520). (B) Translocation of Nova-1 (red) to cytoplasm was detected in GT1-
1 when co-expressed with 5-HT6R (green). (C) Translocation of Nova-1 to cytoplasm was confirmed in HEK293 cells. (D) Nova-1 was transported from 
nucleus to the cytoplasm fraction when co-expressed with 5-HT6R (F(3, 9)=18.31, p=0.0004; Dunnett’s post hoc test: **p<0.01). β-Tubulin and histone H3 
were used as cytoplasmic and nuclear markers, respectively. Data are expressed as means±S.E.M. (n=3 per group).
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The effect of Nova-1 overexpression on 5-HT6R activity and 

its total protein levels

We then examined whether overexpression of Nova-1 has an ef-
fect on 5-HT6R activity. We previously developed the assay system 
to assess the activity of 5-HT6R [34]. In this assay system, co-trans-
fected promiscuous Gα15 along with 5-HT6R facilitates coupling 
of GαS–coupled receptors to phospholipase C and subsequent 
intracellular Ca2+ release, which is detected using an FDSS6000 96-
well fluorescence plate reader [34]. Using this system, the effect of 
interaction with Nova-1 on the activity of 5-HT6R was examined. 
Twenty-four hours after transfection of 5-HT6R and promiscuous 
Gα15 into HEK293 cells, 5-HT-induced Ca2+ increases via 5-HT6R 
were measured with FDSS6000 system. Fluorescence peaked 

within 20-30 s after 5-HT treatment and gradually decreased 
with time. Compared to control, when Nova-1 was co-expressed, 
5-HT-induced Ca2+ signal was significantly reduced (48.5±7.2% of 
control, n=10, Fig. 5A, B). This reduction of Ca2+ release by Nova-
1 co-expression was not observed when 5-HT4R or 5-HT7BR was 
co-expressed with Nova-1 (Fig. 5C). As an alternative method to 
detect 5-HT6R activity, we measured 5-HT-induced phosphory-
lation of extracellular signal-regulated kinase 1/2 (ERK1/2) via 
5-HT6R in HEK293/6R stable cells, given that activated 5-HT6R 
phosphorylates ERK1/2 to mediate signal transduction [17, 33]. 
5-HT-induced ERK1/2 phosphorylation levels were decreased 
as the levels of Nova-1 were increased (38.7±3.4% of control at 4 
μg on Nova-1 DNA, Fig. 5D). In addition, the expression levels of 

Fig. 5. Nova-1 overexpression decreases functional activity of 5-HT6R. (A) Overexpression of Flag-Nova-1 (open circle) suppressed the Ca2+ responses 
induced by 5-HT (10 µM) compared to control (closed circle). F  is the fluorescent intensity, and F0 is the initial fluorescent intensity at 480 nm. Inset , The 
average of ratio (F/F0) measured at the indicated time (#) was significantly reduced by Nova-1 (t=9.834, ***p<0.001; n=10 per group). (B) Expression of 
Nova-1 reduced 5-HT-induced Ca2+ responses (effect of treatment, F(1, 96)=131, p<0.0001; effect of 5-HT concentration, F(11, 96)=106.8, p<0.0001; interac-
tion between treatment and 5-HT concentration, F(11, 96)=7.91, p<0.0001; n=12 per group). (C) Nova-1 did not affect 5-HT4R (t=1.237, p=0.2224; n=24 
per group) and 5-HT7BR-mediated Ca2+ responses (t=0.9698, p=0.3386; n=19 per group). (D) Expression of Nova-1 decreased 5-HT-induced ERK phos-
phorylation levels in a dose-dependent manner (F(5, 12)=6.523, p=0.0037; Dunnett’s post hoc tests, *p<0.05, **p<0.001; n=3 per group). Data are expressed 
as means±S.E.M. .
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5-HT6R were inversely correlated with Nova-1 expression levels 
both in HEK293/6R cells and in GT1-1 cells (HEK293/6R cells, 
14.5±2.5% of control at 4 μg of Nova-1 DNA; GT1-1 cells, 4.5±0.5% 
of control at 4 μg of Nova-1 DNA, Fig. 6A, B). Thus, these results 
suggest that the activity and expression levels of 5-HT6R are in-
versely related to the expression of Nova-1. To examine whether 
the reduction in 5-HT6R levels upon overexpression of Nova-1 is 
mediated by proteasome-mediated protein degradation, its total 
protein levels were measured in the presence of proteasome in-
hibitor, MG132. Interestingly, the reduction of 5-HT6R in the pres-
ence of Nova-1 overexpression was rescued by MG132, indicating 
that overexpression of Nova-1 seems to make 5-HT6R unstable 
and vulnerable to degradation via proteasome (Fig. 6C). Interest-
ingly, Nova-1 is also subject to proteasomal degradation. However, 
upon the degradation of 5-HT6R, Nova-1 is likely to shuttle back 

to the nucleus from cytoplasm (Fig. 4D), thus potentially making 
Nova-1 less sensitive to proteasome activity. Taken together, these 
results suggest that the Nova-1 causes the 5-HT6R degradation 
and overall decrease of 5-HT6R function. 

DISCUSSION

Although previous studies reported the implication of 5-HT6R 
in eating behavior, movement, cognition and mood [7-9], the 
mechanisms underlying how 5-HT6R-mediated signal pathway is 
involved in these functions remain elusive. Previously, our group 
demonstrated that Fyn, Jab 1, and MAP1B directly interact with 
CT of 5-HT6R [17-19]. In this study, we also revealed Nova-1 as 
a novel binding protein of 5-HT6R. Physical interaction between 
Nova-1 and 5-HT6R was confirmed both in vitro and in vivo. Par-

Fig. 6. Nova-1 overexpression decreases the expression levels of 5-HT6R. (A, B) 5-HT6R levels were reduced upon overexpression of Nova-1 in 
HEK293/6R stable cells (F(4, 5)=3.959, p=0.0818; Dunnett’s post hoc test: *p<0.05; A) as well as in GT1-1 cells (F(4, 5)=12.62, p=0.008; Dunnett’s post hoc 
test: *p<0.05, **p<0.01; B). (C) Reduced 5-HT6R expression caused by Nova-1 was rescued by MG132, a proteasome inhibitor (effect of MG132, F(1. 

12)=0.9567, p=0.0281; effect of Nova-1, F(2, 12)=0.9567, p=0.4116; interaction between MG132 and Nova-1, F(2, 12)=10.85, p=0.0020; Student-Newman-
Keuls post hoc test: *p<0.01, **p<0.01). Data are expressed as means±S.E.M. (n=3 per group).
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ticularly, Nova-1 bound to the CT of 5-HT6R, but not to those of 
5-HT4R and 5-HT7BR that are known to belong to the Gαs-family 
like to 5-HT6R [8]. Nova-1 has three KH domains, and among 
them, the KH3 domain is necessary for binding pre-mRNA tar-
gets and for mediating alternative RNA splicing [26, 35]. We found 
that KH3 domain of Nova-1 is required for binding to the CT of 
5-HT6R. These findings indicate the direct and specific interaction 
between Nova-1 and 5-HT6R. 

Previous studies have demonstrated that Nova-1 regulates RNA 
splicing such as GABAARγ2, GlyRα2, and GnRH pre-mRNAs [27, 
32, 35]. Consistent with previous findings, we showed that Nova-
1 increases the rate of intron A excision of GnRH pre-mRNA. 
Surprisingly, this splicing activity of Nova-1 was suppressed by 
overexpression of 5-HT6R. Thus, to the best of our knowledge, this 
work is the first report to show that overexpression of 5-HT6R can 
lead to the loss of Nova-1 activity. 

Nova-1 is primarily localized to the nucleus, but is also found 
within cytoplasm and dendrites [29]. In addition, Nova-1 contains 
nuclear localization sequences (NLS; 25-40 aa) and nuclear export 
sequences (NES; 318-335 aa) which regulate its cellular localiza-
tion [29]. In present study, we observed that Nova-1 is mainly 
expressed in the nucleus. However, overexpression of 5-HT6R 
changed the subcellular localization of Nova-1 from the nucleus 
to cytoplasm without affecting the expression levels of Nova-1. 
Although yet to be proved, translocation of Nova-1 into the cy-
toplasm could attenuate the binding to its RNA splicing targets 
in the nucleus, implying that suppression of Nova-1 function is 
related to its translocation from the nucleus to cytoplasm induced 
by 5-HT6R overexpression. 

The expression levels of Nova-1 also influence the 5-HT6R func-
tion. Firstly, overexpression of Nova-1 decreased 5-HT-induced 
Ca2+ via 5-HT6R and ERK 1/2 phosphorylation that is known to 
be activated by 5-HT6R, indicating that Nova-1 regulates the activ-
ity of 5-HT6R. These results suggest that Nova-1 makes 5-HT6R 
vulnerable to degradation, and consequently total protein levels 
and activity of 5-HT6R are decreased. Although Nova-1 is known 
to regulate RNA splicing, it is not clear whether Nova-1 is impli-
cated in protein degradation pathways. Further study is required 
to determine the mechanisms underlying how Nova-1 induces the 
degradation of 5-HT6R. 

We observed that physical and function interaction between 
Nova-1 and 5-HT6R. However, the functional significance of 
this interaction in the CNS remains to be established. Nova-1 is 
a member of RNA binding proteins that regulate RNA splicing. 
Interrupting the function of a RNA binding protein can signifi-
cantly influence the post-transcriptional processing of its target 
RNAs which is crucial to modulate the expression and function 

of proteins [36, 37]. Recent genetic and proteomic studies have 
found that aberrant functions of RNA binding proteins are associ-
ated with a wide range of human disorders including neurologic 
disorders, muscular atrophies and cancer [36-38]. In POMA, 
autoantibodies generated by cancer cells recognize Nova-1 as 
an antigen which prompts an autoimmune response and conse-
quently induces attacks of neurons expressing Nova-1. POMA 
patients suffer from movement dysfunctions and show neural cell 
death in the brainstem and spinal cord where Nova-1 is mainly 
expressed [36, 37]. Nova-1 null mice die postnatally and display 
apoptotic neuronal death and splicing defects of GABAARγ2 [27] 
and GlyRα2 [28]. In addition, we previously reported 5-HT6Rs are 
involved in cell survival [18]. Based on these findings and our data, 
dysfunction of Nova-1 caused by 5-HT6R overexpression might 
influence neural cell survival and inhibitory synaptic transmission. 
Our previous studies identified 5-HT6R-associated partners such 
as Fyn, Jab1, and MAP1B which activate 5-HT6R function [17-19], 
which are implicated in cognition, neurodevelopment, and neu-
rodegeneration [8, 39-42]. Thus, it is possible that impaired func-
tion of 5-HT6R by Nova-1 can affect 5-HT6R-mediated pathways 
and might be associated with neurological diseases. Although we 
induced overexpression of 5-HT6R or Nova-1 to examine the ef-
fects of their interaction on the function of the other, it remains 
to be determined which conditions induce increased expression 
levels of 5-HT6R or Nova-1. Previous studies have shown that 
disturbances of hypothalamic-pituitary-adrenal (HPA) axis could 
influence the expression levels of 5-HT6R and Nova-1[32, 43, 44]. 
In a condition of decreased glucocorticoid levels, such as adre-
nalectomy, up-regulation of the 5-HT6R mRNA expression was 
observed in the hippocampus [43, 44]. In addition, the treatment 
of dexamethasone, a synthetic glucocorticoid, reduced mRNA 
and protein levels of Nova-1 in GT1-1 cells [32]. Based on these 
reports, we can speculate that expression levels of 5-HT6R and 
Nova-1 could be improperly regulated under dysfunction of HPA. 

In conclusion, we demonstrate that Nova-1 directly interacts 
with 5-HT6R, and that dysregulated expression of Nova-1 or 
5-HT6R interferes with the function of the other. Although the 
precise pathophysiological significance of the interaction between 
Nova-1 and 5-HT6R remains to be determined, this study pro-
vides new evidence on the important role of Nova-1 in regulating 
5-HT6R-mediated signaling events. 
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