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ABSTRACT

Objective: Clinical research data warehouses are largely populated from information extracted from electronic

health records (EHRs). While these data provide information about a patient’s medications, laboratory results,

diagnoses, and history, her social, economic, and environmental determinants of health are also major contrib-

uting factors in readmission, morbidity, and mortality and are often absent or unstructured in the EHR. Details

about a patient’s socioeconomic status may be found in the U.S. census. To facilitate researching the impacts of

socioeconomic status on health outcomes, clinical and socioeconomic data must be linked in a repository in a

fashion that supports seamless interrogation of these diverse data elements. This study demonstrates a method

for linking clinical and location-based data and querying these data in a de-identified data warehouse using In-

formatics for Integrating Biology and the Bedside.

Materials and Methods: Patient data were extracted from the EHR at Nebraska Medicine. Socioeconomic varia-

bles originated from the 2011-2015 five-year block group estimates from the American Community Survey.

Data querying was performed using Informatics for Integrating Biology and the Bedside. All location-based data

were truncated to prevent identification of a location with a population <20 000 individuals.

Results: We successfully linked location-based and clinical data in a de-identified data warehouse and demon-

strated its utility with a sample use case.

Discussion: With location-based data available for querying, research investigating the impact of socioeco-

nomic context on health outcomes is possible. Efforts to improve geocoding can readily be incorporated into

this model.

Conclusion: This study demonstrates a means for incorporating and querying census data in a de-identified

clinical data warehouse.
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BACKGROUND AND SIGNIFICANCE

Clinical research data warehouses are often populated with de-

identified patient data extracted from an electronic health record

(EHR). With the continuing advancement and adoption of EHRs,

the amount of information available for reuse in clinical research

continues to rise.1–4 However, for complete patient characterization,

these data need to be linked to other sources. For instance, while a

patient’s race, gender, and smoking status are often well-

documented in the EHR, other elements of socioeconomic status

(SES) and a patient’s social context are often unstructured or absent

from the clinical record and unavailable for incorporation into a re-

search data warehouse. These nonclinical elements describing a
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patient’s social, economic, and environmental determinants of

health (healthypeople.gov) are a major contributing factor in

readmission, morbidity, and mortality5 and EHRs provide an im-

portant opportunity to integrate such data into research.6

With the paucity of data in the EHR related to SES, researchers

have relied on insurance type as a proxy for this measure.7 Insurance

type has been demonstrated to be potentially related to area depriva-

tion, however, these estimates are not synonymous.8 Additionally, state

and gender differences may exist in Medicaid and other insurance cov-

erage, hampering studies crossing state lines. Data elements related to a

patient’s neighborhood SES may reliably be obtained from extra-EHR

sources such as American Community Survey (ACS) data from the

U.S. Census Bureau. Neighborhood resources have robust effects on

health9–12 because of their correlation with individual SES and as an in-

dependent source of influence. The demographic composition of resi-

dential areas also has important links to health behaviors and health

outcomes.13–16 Linking measures of the local residential context to

clinical data from the EHR can provide insights into these socioeco-

nomic and demographic correlates of health for researchers.

Using geographic information system (GIS) software, a patient’s

physical address can be linked to a variety of location-based datasets

such as the Environmental Protection Agency’s Air Quality System17

or the ACS (https://www.census.gov/programs-surveys/acs/). While

efforts are being made to integrate these elements directly into the

EHR, to date, no EHR has demonstrated widespread integration of

such “community vital signs.”18 Implementing this linkage for clini-

cal research with an EHR-agnostic approach introduces additional

challenges related to patient privacy and data standardization. The

Health Information Portability and Accountability Act (HIPAA) pri-

vacy rule, the Health Information Technology for Economic and

Clinical Health Act of 2009, and the Federal Policy for the Protec-

tion of Human Subjects are designed to safeguard protected health

information (PHI), including street address and geocodes.19 These

safeguards may prohibit researchers from sharing the information

required for geocoding with an academic or business partner third

party, hampering the ability to link clinical and SES data within an

institutional review board (IRB)–approved process. Additionally,

data that would identify a patient’s location with too much granu-

larity may not be displayed in a de-identified data warehouse. For

instance, HIPAA requires zip codes be obfuscated if the population

is below 20 000 for that area. Many details are available from the

ACS for significantly smaller populations, requiring obfuscation be-

fore being made available in a de-identified system.

One approach to maximize sample population while maintain-

ing patient privacy is to participate in a distributed research net-

work. PCORnet (National Patient-Centered Clinical Research

Network) and its participating Clinical Data Research Networks il-

lustrate how patient data may be stored locally and federated

queries may be shared across the network.20–22 However, interoper-

ability of research queries across a CDRN is challenging, as variabil-

ity may be introduced into a collaborative study if geocoding is

performed independently at each site with disparate methods.23–25

This variability may affect analysis and conclusions in healthcare

studies.26 As clinical and socioeconomic data are linked, successful

collaboration and data analysis is dependent on a means of querying

these data from each site for a variety of studies.

OBJECTIVE

In this manuscript, we provide a model for combining socioeco-

nomic and clinical data while maintaining patient privacy and

allowing rapid querying in a de-identified data warehouse.

We describe an algorithm for extracting neighborhood socioeco-

nomic data from the ACS, geocoding patient data without involving

a third party, and combining these data within an Informatics for In-

tegrating Biology and the Bedside (i2b2) framework for interroga-

tion. Due to the volume and variety of data within the ACS, we

extracted only elements to calculate a validated socioeconomic in-

dex,5 similar to many neighborhood SES indices. We demonstrate

not only the data integration, but, also the metadata development

requisite to allow querying of the data within the i2b2 framework.

The utility of the resulting data in the i2b2 context is demonstrated

with a sample use case evaluating the correlation of SES and emer-

gency department (ED) utilization previously described in the litera-

ture.27 The approach we describe may be fully deployed at other

sites and will allow for collaborative research and federated queries

while keeping PHI secure.28

MATERIALS AND METHODS

Clinical data
Patient data were extracted from a research copy of the EHR data

warehouse at the University of Nebraska Medical Center. This sys-

tem contains data originating from multiple hospitals and clinics in

urban, suburban, and rural Nebraska. Clinical and demographic

data are extracted, standardized based on Office of the National Co-

ordinator–recommended vocabularies, and transformed for use

within an i2b2 clinical data warehouse.29,30 Data are transformed

and staged on an identified server and then de-identified and made

accessible to researchers via i2b2 in a fully de-identified database on

a separate server (Figure 1). This data extraction and use in a de-

identified data warehouse was approved by the IRB at the University

of Nebraska Medical Center (IRB #132-14-EP).

Geocoding process
Current and historic patient address information was extracted from

the EHR and stored on a secure server. TIGER/Line Shapefiles and

other location-based files needed for geocoding were obtained via

File Transfer Protocol from the U.S. Census Bureau and loaded onto

the server alongside patient address data. These files were for year

2017 and for the states of Nebraska and Iowa. Using these data,

PostGIS version 2.431 geocoding software running on PostgreSQL

version 10.1 (https://www.postgresql.org/) was used to identify the

longitude and latitude for each patient address. Subsequently, the

U.S. Census block group for each successfully geocoded address was

determined via PostGIS. For this study, we geocoded only patient

addresses for Nebraska and Iowa. In the extraction, we eliminated

post office box addresses and those addresses with null or invalid

street addresses (Figure 2). Invalid street addresses were defined as

those consisting of all alpha or all numeric characters, consisting of

a single character, or containing variants of the words unknown or

invalid.

We compared demographic data for the geocoded population

relative to those patients we excluded from analysis. Rural versus ur-

ban location was based on U.S. Department of Agriculture Rural Ur-

ban Commuting Area (RUCA) codes mapped to zip codes.32,33

Because no direct measure of the patient’s financial class was avail-

able, we used the primary insurance category listed on the patient’s

account in the EHR as a proxy. Age was calculated based on the

date of the data extract (December 2017).
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Census variable extraction and socioeconomic index

calculation
Many similar contextual measures of socioeconomics are available.

We selected a parsimonious validated index (1) with all variables

available at the block group level of geography, (2) that did not in-

clude the demographic makeup of the local area (to keep the racial

composition of the neighborhood conceptually distinct from the so-

cioeconomic characteristics), and (3) that was validated on a nation-

ally representative sample of adults. This method could be used with

a wide variety of similar indices with little modification. Many indi-

ces have been tested (see Messer et al34 for an example of the range

of contextual variables in use) that cover similar domains to those in

the Bird index (education, employment, poverty, public assistance,

family structure, and income).

Using the index and variables described by Bird et al,5 a set of

equivalent variables which could be computed from the U.S. Census

Bureau’s annual ACS were identified. Table 1 identifies the Bird var-

iables from the 2000 decennial census and the field and computation

employed from the 2011-2015 five-year estimates from the ACS. Us-

ing the U.S. Census Bureau application programming interface, ACS

estimates for each variable for each block group in the United States

were extracted and stored locally. These raw estimates were trans-

formed and normalized for all Nebraska and Iowa block groups to

have a mean of 0 and an SD of 1 as described by Bird et al.5 The

Bird index is computed as the sum of the standardized values for

each of the 6 variables, where the standardized values are multiplied

by �1 for variables in which a higher positive value indicates lower

SES. This method results in higher Bird index values corresponding

to a higher SES. There were 88 missing values across the 6 variables

included in the scale. Missing values on any of the 6 variables were

imputed in Stata 15 (StataCorp, College Station, TX), using an im-

putation model that predicts the value of the missing variable based

on the other, nonmissing values. We did not impute values for the 2

block groups that had missing values for all 6 variables and an esti-

mated population reported as 0. Standardized values for the 6

variables as well as the Bird index were stored for all block groups

within Nebraska and Iowa.

Identifying patient SES and i2b2 fact creation
Patient addresses from Nebraska and Iowa were linked to census

block groups.35 Patient identifiers were linked to the Bird index and

standardized ACS variables associated with their block group. Data

were de-identified and loaded into the database on the de-identified

server used by i2b2. De-identification included using a randomly

generated patient number, shifting all dates for each patient ran-

domly by �1 to �365 days, and excluding any HIPAA identifiers.

For each block group, we used the block group estimated population

reported in the ACS to ensure the level of granularity of the reported

SES index could not be used to identify a population smaller than

20 000 individuals. For each patient, 7 records were inserted into

the database: the Bird index and the 6 standardized variables neces-

sary for its computation.

Metadata creation and i2b2 querying
The demographics portion of the i2b2 ontology cell was updated to

support interrogation of ACS-based facts (Figure 3). A folder for

neighborhood SES was added with subfolders for the Bird SES index

and the 6, standardized variables of interest. The c_basecode in the

metadata table used to reference rows in the fact table was based on

the field name specified in the ACS for each variable. The c_name

and c_tooltip, specifying what will be visible in the user interface,

contained both a human readable description and a standardized

reference for each ACS variable. For the Bird index and each compo-

nent variable, metadata XML was created.

Example use case
ED Utilization: All patients with a computed Bird neighborhood

SES index who were seen in any Nebraska Medicine affiliated hospi-

tal or clinic between January 2013 and December 2017 were

Figure 1. Overview of integration of clinical and location-based data. Patient data was extracted from Nebraska Medicine’s electronic health record (EHR). Loca-

tion-based data for geocoding and for socioeconomic variables were obtained from the U.S. Census Bureau. All identified data were stored on a secure server.

De-identified data and the Informatics for Integrating Biology and the Bedside (i2b2) platform to allow researcher querying of the data were housed on a separate,

de-identified server. ACS: American Community Survey; API: application program interface; CRC: Clinical Research Chart or Data Repository Cell; FTP: File Trans-

fer Protocol; IRB: institutional review board; SDH: Social Determinants of Health.
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identified. We estimated a logit model where visiting an ED during

this time was the dependent variable (compared with 0 visits) and

the key independent variable was the blurred Bird neighborhood

SES index. ED visits included encounters with any resulting dis-

charge disposition, including hospital admission or expiration. The

model was estimated in Stata 15, and controlled for the age, race,

gender, and insurance type of the patients, as well as how rural their

residential area was. In addition, for patients with at least 1 ED en-

counter, we estimated a negative binomial regression of the number of

visits, also controlling for the same variables. A total of 64 patients

were dropped from the analyses due to missing data on gender.

RESULTS

Metadata creation
The demographics folder of the i2b2 hierarchy was updated to allow

for integration of SES variables and indices. A subfolder for ACS

variables was added. This currently contains the 6 variables neces-

sary to compute the Bird SES index. These variables are referenced

both by a human readable description and the ACS variable refer-

ence to allow for interoperability. A second subfolder was added for

SES. This currently contains only the Bird index. Each of these fold-

ers may be expanded in the future to allow for integration of addi-

tional variables and further indices. For all included items in the

i2b2 hierarchy, metadata XML was developed and deployed to al-

low users to specify values or ranges of interest to query.

Geocoding
We geocoded only patients with a Nebraska or Iowa address, repre-

senting the majority (507 586 of 534 735 [94.9%]) of Nebraska

Medicine patients. Patients were excluded from analysis if (1) The

patient address failed to geocode or have a block group assigned

(1330), (2) the patient street address was unknown or invalid

(28 893), or (3) the geo-rating assigned by PostGIS was >10, indi-

cating a low confidence in the geocode assignment (81 179). The fi-

nal geocoded population consisted of 396 913 patients who have

had an encounter at Nebraska Medicine, a well-geocoded address,

and a block group assigned (Figure 2).

Table 2 illustrates the comparison of the included versus the ex-

cluded population for analysis. The percentage of the excluded pop-

ulation living in a rural zip code was 23.7% compared with only

9.8% of the included population. The racial composition of the in-

cluded and excluded populations were very similar, with each dem-

onstrating a majority white (78.9% and 80.8% of included and

excluded populations, respectively) with a lower percentage of black

(9.5% and 7.6% of included and excluded populations, respec-

tively) and other races (11.7% and 11.6% of included and excluded

populations, respectively) in both populations. The populations

Figure 2. Overview of patients with successfully geocoded addresses linked

to a census block group. Patients with missing or invalid addresses, post of-

fice (PO) boxes, and addresses that could not be geocoded with high confi-

dence were excluded. EHR: electronic health record; IA: Iowa; NE: Nebraska;

UNMC: University of Nebraska Medical Center.

Table 1. Description of neighborhood socioeconomic status com-

putations

Description ACS Variable Computation

Percent of adults older than 25 with

less than a high school education

B15003 R16
i¼2

HD01 VDi

HD01 VD01

Percent male unemployment B23022 HD01 VD26
HD01 VD02

Percent of households with income

below the poverty line

B17017 HD01 VD02
HD01 VD01

Percent of households receiving pub-

lic assistance

B19057 HD01 VD02
HD01 VD01

Percent of female-headed households

with children

B23007 HD01 Vdi

HD01 VD01

Median household income B19013 HD01 VD01

Note: The variables reported by Bird et al were mapped to the American

Community Survey (ACS). Variables to compute the Bird index were calcu-

lated from the ACS 5-year estimates at the block group level

Figure 3. Incorporation of American Community Survey socioeconomic varia-

bles and summary index into the demographics folder of an Informatics for

Integrating Biology and the Bedside (i2b2) hierarchy.
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demonstrated little difference in gender proportion (54.7% and

52.7% women [inclusion and exclusion populations, respectively]).

The included population had a higher percentage of private or com-

mercial insurance (48.09% vs 45.44% excluded population) while

having a slightly lower Medicare percentage (16.5% vs 20.1% ex-

cluded population). The included population had a lower age rela-

tive to the excluded population (mean 42.1 6 23.6 years vs 44.6 6

24.0 years).

Neighborhood SES variables
We computed a Bird index for 4261 of 4263 (99.96%) of all block

groups in Nebraska and Iowa. The 2 block groups dropped from

analysis had no data for any of the variables reported as well as hav-

ing a population estimate reported as 0 within the ACS.

ED utilization
Using the i2b2 data warehouse, 360 947 patients were identified

as being seen in any Nebraska Medicine hospital or clinic between

January 2013 and December 2017 who also had an assigned Bird

index. The first model in Table 3 shows that, controlling for the

patient’s age, gender, race, insurance status, and rurality, each unit

increase in the Bird neighborhood SES index is associated with a

13% decline in their odds of visiting an ED during this time. Fig-

ure 4 shows how the predicted probability of visiting an ED

declines as the SES index rises from the 10th percentile to the

90th percentile, holding all other variables in the model at their

means.

For the 78 990 patients who visited an ED during this time, the

number of visits is also significantly associated with neighborhood

SES, as we see in the second model in Table 3. The negative bino-

mial model estimates the count of visits, and shows that higher

neighborhood SES is significantly associated with fewer ED visits.

Figure 5 shows how the predicted number of visits (again holding all

other factors in the model constant) declines as the SES index rises

from the 10th to the 90th percentile.

Table 2. Comparison of included and excluded populations

Included % Excluded %

Sex Male 179 750 45.3 52 675 47.3

Female 217 098 54.7 58 677 52.7

Unknown 65 0.0 50 0.0

Race White 312 964 78.8 90 061 80.8

Black 37 599 9.5 8425 7.6

Other/Unknown 46 350 11.7 12 916 11.6

Age, y 0-18 72 167 18.2 17 794 16.0

19-34 92 750 23.4 24 372 21.9

35-49 73 325 18.5 19 318 17.3

50-64 78 767 19.8 23 298 20.9

65-79 55 955 14.1 18 300 16.4

801 23 949 6.0 8320 7.5

Financial Class Private/commercial 190 509 48.1 50 529 45.4

Medicare 65 246 16.5 22 349 20.1

Medicaid 38 219 9.6 9626 8.7

Self-pay/none 66 343 16.7 20 708 18.6

Other/unknown 35 846 9.0 7997 7.2

Rurality Urban (RUCA 1-6) 358 007 90.2 84 707 76.0

Rural (RUCA 7-10) 38 900 9.8 26 392 23.7

No zip code 6 0.0 392 0.4

Total 396 913 111 402

Note: Data represent the demographic characteristics for patients with suc-

cessfully geocoded addresses relative to those excluded as described in Figure 2.

RUCA: Rural Urban Commuting Area.

Table 3. Results of logistic regression analysis for all patients and

negative binomial analysis for all patients visiting the ED

Logit: ED visit Negative binomial

Odds ratio Number of ED visits

Blurred bird neighborhood SES 0.874* �0.063*

(0.003) (0.003)

Female 1.096* 0.101*

(0.009) (0.006)

Age in years 1.022* 0.018*

(0.001) (0.001)

Age2 1.000* �0.000*

(0.000) (0.000)

White (reference)

Black 1.684* 0.064*

(0.022) (0.009)

Any other race 0.756* �0.093*

(0.011) (0.011)

Private insurance (reference)

Medicaid 2.200* 0.379*

(0.033) (0.010)

Medicare 1.695* 0.378*

(0.025) (0.010)

Other insurance 1.927* 0.129*

(0.033) (0.013)

No insurance/self-pay 1.465* 0.217*

(0.017) (0.009)

Rurality scale 0.731* �0.080*

(0.002) (0.003)

Constant 0.180* 0.631*

(0.003) (0.014)

Observations 395 518 78 990

Note: Standard error values are listed in parentheses.

ED: emergency department; SES: socioeconomic status.

*P< .01.

Figure 4. Logistic regression model demonstrating the predicted probability

of visiting the emergency department (ED). The probability of visiting the ED

increases as the socioeconomic status (SES) decreases, holding race, age,

gender, insurance type, and rurality constant.
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DISCUSSION

Limitations
This study is limited by only including patients from Nebraska and

Iowa. Additionally, the clinical data utilized do not encompass all

hospitals and clinics patients may visit. Integrating health informa-

tion exchange data would enhance the clinical picture and facilitate

studies investigating readmission.

This study is also limited by the quality of data available in the

EHR. For instance, 28 893 of 508 315 (5.68%) of all addresses

were unable to be geocoded as they were recorded as some variant

of unknown, were null, or were post office boxes rather than a phys-

ical address of a residence. In addition, there is varying quality of

confidence in the results returned by the geocoding software, with

81 179 of 508 315 (15.97%) having a geo-rating with low confi-

dence (PostGIS geo-rating >10). As addresses are nonuniform and

may contain errors, some may not geocode accurately. By excluding

patients and potentially mismapping a small portion of the patient

population, the potential for bias is introduced. While race and gen-

der showed no significant difference between the included and ex-

cluded populations, as is evidenced in other studies, rural locations

had a lower percentage of successful geocoding.36 Differences in

these populations were also seen for age (included population

slightly younger) and financial class (Medicare patients more likely

to be excluded). Recognizing these population differences is essen-

tial, as they may impact analyses when future studies rely on these

data.37 While the geocoding for this study did not reach 100% com-

pleteness or 100% accuracy, results were comparable with other

first-pass geocoding efforts.36,38–43

Future research
To demonstrate reproducibility and extend the results demonstrated

in this paper, collaborations to implement this data integration ap-

proach will occur in an existing distributed research network

(Greater Plains Collaborative [GPC]). Within the GPC, sites have

implemented de-identified data warehouses on an i2b2 platform.

Elements of the methodology described in this paper may be imple-

mented at novel sites with varying levels of resource commitment.

At sites with i2b2 deployed, the metadata we displayed to make

data queryable in the i2b2 hierarchy may be readily incorporated

with minimal investment. Creating the data facts at a novel site may

be accomplished by following the pattern we outlined; however, per-

sonnel would need to be in place who are competent in geocoding.

Of note, any geocoding process the institution has confidence in

may be employed and readily incorporated into the pipeline we de-

scribe. Thus, creating i2b2 metadata and obtaining ACS data may

be achieved by directly following the pattern we outline and geocod-

ing may be accomplished in an institution-specific manner and in-

corporated into the pattern illustrated. While resource investment is

requisite, the pattern we describe illustrates a functional workflow

and sufficient detail for metadata creation.

Future efforts will also address incorporating additional depriva-

tion indices and ACS variables into the de-identified clinical data

warehouse.34,44,45 As demonstrated in this study, a standard ap-

proach to identifying these indices and component variables within

an i2b2 ontology will be maintained for interoperability. Integration

of additional indices will allow both the comparison of the efficacy

of indices in a variety of contexts as well as the application of vali-

dated indices within many disease phenotypes.

Future research may also address some limitations imposed by

the geocoding process. A refinement of this process may reduce this

bias and increase confidence of results relying on the generated data.

While perfecting geocoding is beyond the scope of the current dem-

onstration, an enhanced geocoding process could readily be inte-

grated into this model for incorporating census data into a

de-identified data warehouse. Future research may focus both on al-

ternative geocoding software which may be used locally as well as

appropriate methods to improve the quality and accuracy of address

information extracted from the EHR.

Finally, a limitation of this work is using a single, static address

for each patient. We used only a patient’s most current recorded ad-

dress we were able to confidently geocode. We recognize that

patients move over time, and this may impact their neighborhood

SES. While research has shown the majority of moves from mobile

patients have little impact on SES, future work will focus on associ-

ating a valid time period for each address recorded.46 In this way,

researchers could use a patient’s current SES or the SES for the time

period of a historic event.

CONCLUSIONS

With evidence of the impact of environmental factors on health, fa-

cilitating comparative effectiveness clinical research incorporating

social determinants of health is paramount.47 Advances in geoinfor-

matics make it possible to link patient location to data provided by

the U.S. Census Bureau. We demonstrated an approach to link social

determinants of health data from the ACS to clinical data in a de-

identified data warehouse. All elements of this approach may be

completed at individual sites, avoiding the need to send PHI to a

third party. When sites utilize the same geocoding and linkage pro-

cess, collaborations are possible without introducing unnecessary

variability between sites. Institutions who implement this approach

using i2b2 may share federated queries across networks such as

PCORnet and the GPC, to increase the patient sample size for analy-

sis.48 Facilitating this research will inform efforts to incorporate

location-based census data directly into the EHR and future clinical

decision support at the point of care.

This study is an example using only a single contextual socioeco-

nomic index. While many similar indices have been published to

estimate SES, we selected Bird et al’s5 model because it is

well-validated and fully reproducible using data elements from

Figure 5. Negative binomial analysis of number of emergency department

(ED) visits. For all patients who visited the ED, the frequency of visits

increases as socioeconomic status (SES) decreases while holding age, gen-

der, race, insurance type, and rurality constant.
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the ACS.34,45,49–51 Future work includes incorporating other well-

validated models based on extant ACS data using the process de-

scribed in this manuscript. These may readily be incorporated into

the database within the ontology cell of i2b2. The process for creat-

ing each metadata row and developing appropriate XML for this

metadata is described in this manuscript and readily applicable to

novel indices and novel ACS variables. We demonstrated the effi-

cacy of querying these data with a use case based on evidence from

prior studies. We noted both a higher proportion and more frequent

per patient utilization of the ED for patients living within areas of

lower SES relative to patients from areas with a greater SES.
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