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Abstract

Motivation: Many biological processes are guided by receptor interactions with linear ligands of

variable length. One such receptor is the MHC class I molecule. The length preferences vary de-

pending on the MHC allele, but are generally limited to peptides of length 8–11 amino acids. On

this relatively simple system, we developed a sequence alignment method based on artificial neu-

ral networks that allows insertions and deletions in the alignment.

Results: We show that prediction methods based on alignments that include insertions and dele-

tions have significantly higher performance than methods trained on peptides of single lengths.

Also, we illustrate how the location of deletions can aid the interpretation of the modes of binding

of the peptide-MHC, as in the case of long peptides bulging out of the MHC groove or protruding at

either terminus. Finally, we demonstrate that the method can learn the length profile of different

MHC molecules, and quantified the reduction of the experimental effort required to identify poten-

tial epitopes using our prediction algorithm.

Availability and implementation: The NetMHC-4.0 method for the prediction of peptide-MHC class

I binding affinity using gapped sequence alignment is publicly available at: http://www.cbs.dtu.dk/

services/NetMHC-4.0.

Contact: mniel@cbs.dtu.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A large number of biological processes are guided by receptor inter-

actions with linear ligands (Gould et al., 2010). Proteins involved in

interactions with a linear component include membrane receptors (e.g.

the MHC molecules), enzymes (e.g. kinases and phosphatases) and

carriers of peptide-recognition domains (e.g. SH3, PDZ, WW).

Characterizing the specificity of such interactions is essential for our

understanding of the underlying biological process and for the design

of interventions aimed at altering or controlling the behavior of these

processes. We have previously proposed an artificial neural network-

based algorithm, NNAlign, for the identification of binding motifs in

large-scale quantitative peptide datasets (Andreatta et al., 2011).

However, this approach can only generate un-gapped sequence align-

ments and is therefore limited to the detection of motifs of a fixed

length. In many cases, experimental data are derived using libraries of

peptides that are longer than the basic receptor binding core. While

still a linear problem, the number of residues directly involved in the

interaction with the same receptor may generally vary for different

ligands.

A prominent example of receptor that interacts with linear ligands

of variable length is the MHC system. Major Histocompatibility

Complex (MHC) class I molecules bind peptides derived from intracel-

lular proteins and present them on the cell surface to CD8þ T cells.
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MHC molecules exist in numerous allelic variants with different physi-

cochemical properties of their binding cleft. Consequently, the peptide

repertoire recognized by different MHC molecules is very diverse,

with marked allele-specific amino acid preferences. The major deter-

minants of such amino acid preferences are found at the so-called an-

chor residues, generally corresponding to positions P2 and P9 of the

minimum nine amino acid binding core (Rammensee et al., 1993). In

some cases other positions play a crucial role: for instance HLA-

B*08:01 has a strong preference for positively charged amino acids at

P5, and HLA-A*01:01 for aspartic acid at P3 (Rapin et al., 2010).

Constraints within peptides and intrapeptide contacts may also, to

some extent, play a role in presentation and T-cell recognition

(Theodossis et al., 2010).

MHC class I molecules exhibit preferences also with regard to

the length of the peptides they can bind. Outside of a few exceptions

where super-bulging peptides of up to 14 amino acids have been

observed to bind to the MHC (Burrows et al., 2006), the closed con-

formation of the MHC class I binding cleft limits the length of

bound peptides to 8–11 amino acids. Recent elution studies have at-

tempted to quantify the length distribution of naturally processed

and presented peptides (Bassani-Sternberg et al., 2015; Eichmann

et al., 2014) and found that generally 9mer peptides were

optimal. However, allele-specific preferences exist, for instance in

the relatively high fraction of 8mer peptides found in complex with

HLA-B*18:01 (Eichmann et al., 2014). Similarly, the murine allele

H-2-Kb is known to have a comparable preference for 8 and 9mers

(Deres et al., 1992) and HLA-B*44:03 a relative tendency toward

longer peptides such as 10 and 11mers (Rist et al., 2013).

Considerable efforts have been dedicated to the development of

accurate methods for the prediction of peptide binding to MHC

molecules, applying many different approaches including similarity

matrices (Kim et al., 2009), linear regression (Wang et al., 2015)

and artificial neural networks (Hoof et al., 2009; Koch et al., 2013;

Kuksa et al., 2015), among others. Of these methods, NetMHC

(Nielsen et al., 2003) has been shown in several benchmark studies

to be a state-of-the-art predictor for peptide–MHC binding affinity

(Lundegaard et al., 2008; Peters et al., 2006). NetMHC was trained

on MHC peptide binding data contained in the Immune Epitope

Database (IEDB) (Vita et al., 2015). The IEDB has a large bias to-

ward peptides of length nine (>72% of the data are for 9mers,

whereas <3% of the data are for peptides of length 11). As the

amount of available training data is crucial for the generation of ac-

curate prediction models, the performance of data-driven predictors

such as NetMHC will in general be limited for lengths different

from nine. We have previously suggested a simple approximation

approach that uses neural networks trained on 9mer data to ex-

trapolate predictions for peptides of lengths other than nine

(Lundegaard et al., 2008). This approximation was used in

NetMHC to generate predictions for peptides of lengths 8, 10 and

11 for alleles with scarce binding affinity data. A more extreme ap-

proach has been taken for the development of the NetMHCpan

method, which was trained only on 9mer peptides (Nielsen et al.,

2007a). While these strategies have proven highly successful, they

have the great limitation that they simply ignore all available data

not conforming to the canonical 9mer peptide motif length.

In this article, we extend the NNAlign method to overcome this

limitation and generate pan-length artificial neural networks trained

on peptides of variable length. We demonstrate the performance of

the method on a large set of MHC class I binding data, and show

that it outperforms methods trained on single lengths and extrapola-

tions from networks trained on 9mers only. Also, we addressed how

the predicted location of deletions can aid the interpretation of the

modes of binding of peptide-MHCs, as in the case of long peptides

bulging out of the MHC groove or extending at either terminus.

Finally, we analyzed to what degree the peptide length distribution

of binders of the pan-length networks reflect the length preferences

of different MHC class I alleles, and how such length preferences

can potentially reduce the cost burden involved in rational epitope

discovery.

2 Methods

2.1 Datasets
The prediction method for MHC class I affinity prediction was

trained on a large set of quantitative peptide-MHC class I affinity

measurements from the IEDB (Vita et al., 2015). We generated pre-

diction models for all MHC class I molecules with at least 20 data

points, of which at least four have IC50 affinity <500 nM, resulting

in a set of 118 MHC class I (86 human, six murine, 26 primate) al-

leles. For several molecules, there were few or no measured data for

certain peptide lengths. We introduced 100 random natural peptides

for each of the lengths 8, 9, 10 and 11 as artificial negatives for each

allele, to ensure the networks were exposed to a sufficiently diverse

set of negative examples. Adding random data points with assumed

weak affinity values was previously shown to have beneficial effects

on ANN performance (Nielsen et al., 2007a). These random se-

quences were only used for training and were excluded from all

evaluations.

As an external validation set, we extracted a set of 1540 ligands

from SYFPEITHI (Rammensee et al., 1999) of length 8–11 that

were not included in the training set, together with the complete se-

quence of the antigenic protein from which they were derived.

2.2 Neural network architecture
The method was implemented as a feed-forward artificial neural net-

work ensemble with a single hidden layer as previously described

(Nielsen and Lund, 2009). The amino acid sequence of training ex-

amples was encoded with 20 values for each position in the optimal

nine amino acids binding core. We used both Blosum encoding,

where these 20 values correspond to the BLOSUM matrix scores

vector (Henikoff and Henikoff, 1992), and sparse encoding, where

the 20 inputs are all set to a value of 0.05 except for the input cor-

responding to the observed amino acid which is set to 0.90. For pep-

tides longer than nine amino acids, all possible consecutive deletions

are applied to the primary sequence to reconcile the peptide to a

core of nineamino acids. These include both deletions at the end ter-

minals and internal consecutive deletions in all positions of the pep-

tide. For peptides of length 8, the wildcard amino acid X (encoded

as a vector of zeros) is inserted at each possible position to extend

the peptide to a 9mer core. The sequence with the deletion or inser-

tion that returns the highest predicted score with the current config-

uration of the neural network is taken as the optimal binding core

(Fig. 1).

Other features of the training examples were encoded as input to

the neural networks. They include the length of the deletion/inser-

tion, the length and the composition of the peptide flanking regions

in the case of a predicted extension at either the N- and C-terminus

of the peptide with respect to the binding core. The length L of the

peptide was encoded with four input neurons, corresponding to the

four cases L�8, L¼9, L¼10, L�11. Encoding of the peptide

length and eventual insertions/deletions enables the neural networks

to learn the length preferences of a given MHC class I molecule.
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The hidden layer of the networks consisted of five hidden neu-

rons and the output layer of one neuron having as target value the

binding affinity of the training example rescaled between 0 and 1

using the relationship 1� log(aff)/log(50 ;000), where ‘aff’ is the

IC50 affinity value in nM units (Nielsen et al., 2003).

2.3 Nested cross validation
In order to minimize the peptide overlap between training and test-

ing data, the binding data for each molecule was partitioned into

five subsets using a clustering approach as previously described

(Nielsen et al. 2007b). Neural network training was performed

using a nested cross-validation setup: three of the five subsets were

used as training set and the fourth subset as a “stopping set”; net-

work training was stopped when it reached the highest performance

on this set, preventing over-fitting on the training set; all four com-

binations of the subsets were used to train and stop, resulting in an

ensemble of four neural networks; these four networks were then

applied on the fifth subset thus far excluded from the analysis as a

test set; the process was repeated five times rotating the test subset

to generate a complete cross-validated list of predictions. This setup

ensures an unbiased evaluation of predictive performance, minimiz-

ing over-fitting on the training data.

2.4 Single length networks and L-mer approximation
Neural networks trained on all peptide lengths (allmer networks)

were compared with the conventional approach of training individ-

ual networks for each peptide length. Where enough data was avail-

able (>20 data points and >3 binders), we trained length-specific

networks using the same nested cross-validation strategy described

above. In this case, the length of the binding core corresponds to the

length of the peptides and no insertions/deletions are necessary.

A successful strategy employed in NetMHC-3.0 made use of an ap-

proximation algorithm (Lundegaard et al., 2008) to extrapolate predic-

tions for peptide lengths different from nine. The L-mer approximation

relies on networks trained only on 9mers, inserting/deleting amino

acids at non-anchor positions in shorter/longer query peptides to con-

form the peptides to a series of 9mers and then averaging the predic-

tions of the 9mer sequences. This approach was also considered for

comparison to our approach trained on peptides of all lengths.

2.5 Validation on SYFPEITHI ligands
As an independent evaluation set, we extracted 1540 unique MHC

class I ligands of length 8–11 from the SYFPEITHI database

(Rammensee et al., 1999), excluding all peptide sequences found in the

training set (SYF1 dataset). As previously discussed (Jørgensen et al.,

2014; Trolle and Nielsen, 2014), SYFPEITHI contains a substantial

number of sequences that do not match the canonical binding motif of

the annotated MHC restriction element. We generated a filtered evalu-

ation set (SYF2) by removing all peptide-MHCs with a predicted

NetMHCpan rank>2%, resulting in a set of 1242 MHC ligands.

The source protein sequence of each validated ligand was

scanned with a sliding window of 8–11 amino acids to generate all

possible 8, 9, 10 and 11mers contained in the protein. These over-

lapping peptides were then ranked by the binding affinity predicted

by our method, and for each protein we measured the relative rank

of the validated ligand in the list of affinity predictions. The rank of

the known ligand measures the fraction of peptides in the protein

that would have to be tested before identifying the actual positive

and can be used as a metric of predictive performance.

Fig. 1. Examples of insertion and deletion applied to sequences of length dif-

ferent from nine. (a) Insertion: the wildcard amino acid X (encoded as a vector

of zeros) is inserted in each possible position to complete the peptide to a

9mer core. The sequence with the insertion that returns the highest predicted

score (in this case an insertion at P4) is taken as the optimal binding core. (b)

Deletion: long peptides are reconciled to a 9mer amino acid core either by an

extension at the terminals (first and last peptides in the example), or by delet-

ing amino acids within the sequence. In this example a single deletion at P6

in the 10mer was found to be optimal

Fig. 2. Difference in PCC (Pearson Correlation Coefficient) between networks trained on data for all peptide lengths (allmer) and networks trained on single

lengths (nmer). Points above the baseline indicate alleles for which networks trained on all lengths give higher performance, and the deviation from the baseline

shows the extent of the difference in terms of PCC. For 8mer peptides, allmer networks have higher performance in 32/38 alleles (p¼1�10�5), for 9mers in 85/

118 alleles (p¼9� 10�7), for 10mers in 60/63 alleles (p¼4� 10�15), for 11mers in 36/37 alleles (p¼ 3�10�10)
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3 Results

3.1 Improved predictive performance by enrichment

with peptides of different lengths
The extension of NNAlign implementing deletions and insertions

was adapted to the MHC system and used to train the NetMHC-4.0

algorithm as described in the “Methods” section. For each MHC

class I allele in the dataset, NetMHC-4.0 consists of an ensemble of

neural networks trained on all peptides of lengths between 8 and 11.

Networks trained on peptides of all lengths (allmer networks)

showed significantly higher performance compared with networks

trained on single lengths (Fig. 2, complete results in Supplementary

Table S1). The improvement was particularly important for mol-

ecules where few data points were available for a given length, dem-

onstrating how binding information can be learned across different

peptide lengths. For example, there were only 61 affinity measure-

ments for 8mer peptides to HLA-B*44:02 in the dataset, of which

five had IC50<500 nM. A prediction method constructed on such

small dataset performed close to random (PCC¼0.13). However,

the dataset contains over 2000 measured 9- 10- and 11-mers for this

molecule (including 429 binders); networks trained on this larger set

of sequences of all lengths reach a PCC of 0.68 for the prediction of

8mers. Even on 9-mer peptides, where there are in most cases a

fairly large number of measurements, including affinity data for

other peptide lengths improved the predictive performance for 85

out of 118 alleles (p¼9�10�7, binomial test). The most extreme

differences in PCC were observed when very limited data were avail-

able for all peptide lengths. For instance, the four alleles with highest

gain in performance in favor of the allmer networks for the predic-

tion of 9mers (second plot in Fig. 2) had an average of 86 data

points (median 81), of which 31 were binders (median 22).

Similarly, the four alleles with highest drop in performance had an

average of 55 measured peptides (median 54), of which 29 binders

(median 15). In contrast, the complete set of 118 MHC molecules

contained an average number of data points per allele of 1 496 (me-

dian 807), of which on average 404 were measured binders (median

183).

The L-mer approximation algorithm (Lundegaard et al., 2008)

relies on networks trained only on 9mers to extrapolate predictions

for peptide lengths different from nine. For details on the L-mer ap-

proximation refer to the “Methods” section. Networks trained on

all lengths gave higher PCC compared to the L-mer approximation

with high significance for 10-mers (p¼8�10�12), and with lower

but still significant P-values for 8-mers (P¼0.003) and 11-mers

(P¼0.05) (see Fig. 3). A summary of the performance values of the

networks trained on all peptide lengths compared with single lengths

and the L-mer approximation is shown in Table 1.

3.2 Learning the peptide length preferences of MHC

molecules
In addition to the peptide primary sequence, the networks in the

NetMHC-4.0 ensemble encode additional information including the

length of the peptide and possible deletions/insertions with reference

to the nine amino acid core. Depending on the amount of measured

data points available to the networks for a given length, and the

relative number of measured binders on the total number of data

points, the neural networks can learn the length preferences of dif-

ferent MHC class I molecules.

In order to explore this aspect of network learning, we generated

predictions for 400 000 random natural peptides (100 000 for each

length between 8 and 11) for each allele, and analyzed the distribu-

tion of peptide lengths among the top 1% predicted peptides. An

average profile over the 118 MHC class I molecules in the dataset

shows a clear preference for 9mer peptides (54% of the top pre-

dicted binders), followed by 10mers (24%), 11mers (15%) and

8mers (6.5%). Such length distribution closely resembles the length

Fig. 3. Difference in PCC between networks trained on data for all peptide lengths (allmer) and networks trained only on 9-mers with the L-mer approximation

(Lmer). Points above the baseline indicate alleles for which networks trained on all lengths give higher performance, and the deviation from the baseline shows

the extent of the difference in terms of PCC. For 8mer peptides, allmer networks have higher performance in 28/38 alleles (p¼ 0.003), for 10mers in 57/63 alleles

(p¼8�10�12), for 11mers in 24/37 alleles (p¼0.05)

Table 1. Summary of the performance (in PCC and AUC) of differ-

ent prediction methods on the IEDB dataset

PCC AUC

Length 8 9 10 11 8 9 10 11

Alleles* 38 118 63 37 38 118 63 37

allmer 0.717 0.717 0.744 0.706 0.895 0.884 0.882 0.888

nmer 0.524 0.702 0.672 0.488 0.775 0.875 0.845 0.775

Lmer 0.664 0.702 0.699 0.670 0.871 0.875 0.860 0.868

*For each length, only alleles with >20 data points and >3 binders are con-

sidered for validation.

allmer is the method trained on peptides of all lengths; nmer refers to net-

works trained only on peptides of length n; L-mer refers to networks trained

on 9-mers and applied to peptides of different length using the L-mer approxi-

mation. Note that the L-mer approximation for 9mer reduces to the nmer

method.
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profile of known ligands in the SYFPEITHI database (Rammensee

et al., 1999), where about two-thirds of validated ligands are 9mers

(Fig. 4a). In comparison, the L-mer approximation algorithm cannot

account for peptide length preferences and returns a nearly flat pro-

file of lengths.

At the level of individual alleles, the length preferences learned

by NetMHC-4.0 follow roughly the distribution of the data used to

train the neural networks. For example, both for HLA-A*02:01 and

HLA-B*07:02, �30% of the 9mer and 10mer peptides in the dataset

are measured binders (IC50<500 nM), whereas very few 8mers and

11mers have high measured affinity for these molecules (see sum-

mary of the dataset in Supplementary Table S2). Among the 407

validated HLA-A*02:01 ligands in SYFPEITHI, 74% are 9mers,

13% 10mers, 7% 11mers, 3% 8mers and the remaining 3% are lon-

ger than 11. Similarly, a recent study of naturally presented peptides

reported that 68% of 41 ligands restricted to HLA-A*02:01 were

9mers, 24% 10mers and only a handful had different length

(Kowalewski et al., 2015). The murine allele H-2-Kb has a known

preference for 8mers and 9mers (Moutaftsi et al., 2006) and a large

number of measured binders in the training set have these lengths,

a preference that reflects in the top predicted binders by the

neural networks (Fig. 4b). Only 17 peptides are annotated as ligands

to H-2-Kb in SYFPEITHI, and they all have length 8. For other al-

leles where very few or no affinity data are available for lengths

other than 9 (e.g. HLA-B*35:01 and HLA-C*04:01), the predicted

length profile has a marked preference for 9mer peptides. There are

only two HLA-B*35:01 ligands in SYFPEITHI, both 9mers, and

nearly all reported HLA-C*04:01 ligands are 9mers (50 out of 52),

with the exception of one 8mer and one 10mer ligand.

3.3 Gapped alignment suggests modes of

peptide-MHC binding
As described in the “Methods” section, insertions and deletions can

reconcile sequences of different lengths to a common alignment core.

In the context of peptide–MHC binding, the location of deletions

may elucidate which positions of long peptides are involved in

interactions with the dominant binding pockets of the MHC. Because

bound peptides are deeply embedded in the MHC class I and the pep-

tide-binding groove appears closed at both ends, peptides longer than

nine amino acids are normally accommodated by bulging out from

the middle of the groove. However, there is extensive evidence of an

alternative mechanism of binding that involves protrusion of the pep-

tide at either the N or C terminus rather than central bulging (Collins

et al., 1994; Stryhn et al., 2000).

Based on the binding core predictions of NetMHC-4.0, we found

that among the 10mers and 11mers in the IEDB dataset predicted to

be binders (%rank�2), about 88% are expected to bulge out of the

MHC pocket, 7% protrude from the C-terminal and 5% from the

N-terminal. Importantly, the 12% of the data with such protruding

non-canonical mode of binding cannot be accounted for by other

prediction methods such as the L-mer approximation described

above and NetMHCpan (Nielsen et al., 2007a).

Fig. 4. Peptide length distributions predicted by NetMHC-4.0. (a) Length distribution for networks trained on peptides of all lengths and for the L-mer approxima-

tion networks, compared with the length distribution of ligands in the SYFPEITHI database. The allmer and L-mer profiles were calculated by running 400 000 ran-

dom natural peptides through the predictors and calculating the relative number of peptides of different lengths among the top 1% predicted binders. (b)

Predicted length distributions for selected alleles. For H-2-Kb the networks learn a preference for 8mers and 9mers, HLA-A*02:01 has a slight preference of 9mers

over 10mers, HLA-B*07:02 favors 10mers and to a lesser extend 9mers, HLA-B*35:01 and HLA-C*04:01 have a strong preference for 9mer peptides

Fig. 5. 3D structures for two MHC class I molecules with bound peptides lon-

ger than 9 amino acids (PDB references 2CLR and 4JQX). (a) The 10mer pep-

tide MLLSVPLLLG bound to HLA-A*02:01 extends at the C terminus with a

glycine (G) amino acid. The residues at the anchor positions P2 (L) and P9 (L)

are highlighted. (b) The 12mer EECDSELEIKRY bound to HLA-B*44:03 has an-

chors at its second (E) and last (Y) positions and bulges out from the middle

of the MHC binding groove
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In Figure 5, two three-dimensional structures of MHC molecules

with a bound peptide from the Protein Data Bank (Rose et al., 2015)

that illustrate these two mechanisms of binding are shown. The 10mer

peptide MLLSVPLLLG bound to HLA-A*02:01 (PDB 2CLR) has its

second (L) and ninth (L) residues in the two main pockets of the MHC

molecule, with the extra Glycine (G) protruding at the C-terminus.

NetMHC-4.0 correctly predicts the C-terminus extensions, placing the

9mer core at MLLSVPLLL with a deletion at the terminus

(MLLSVPLLLG). In contrast, the 12mer peptide EECDSELEIKRY

bound to HLA-B*44:03 (PDB 4JQX) shown in Figure 5b bulges out

from the middle of the MHC binding groove and does not extend at

any of the termini. The prediction of NetMHC-4.0 places a three-

amino acid deletion after P5 (EECDSELEIKRY) with a minimal amino

acid core of EECDSIKRY.

3.4 Estimating the workload required to identify new

epitopes
A typical bioinformatics-aided T cell epitope discovery study requires

scanning protein sequences in search of potential epitopes, and select

epitope candidates based on the predicted binding affinity to the

MHC. A useful metric to assess the quality of an epitope predictor is

the fraction of peptides in a given protein that would have to be tested

before identifying the actual positive. On a set of 1242 proteins for

which a known ligand is annotated in SYFPEITHI (SYF2 set),

NetMHC-4.0 was applied to rank all peptides of length 8–11 that can

be generated from the corresponding source protein, measuring the

relative rank of the known ligand in the list of ordered predictions.

Figure 6 shows that in 485 out of 1242 proteins (34%), the known

ligand is the top predicted peptide by NetMHC-4.0; only one peptide

per protein would have to be tested to identify the actual positive in

these proteins. For 54% of the proteins the actual ligand is among the

top three predicted peptides, and for 71% among the top seven pep-

tides. In comparison, using networks trained only on 9-mer peptides

and the L-mer approximation, the known ligand has the highest pre-

dicted binding affinity in only 25% of the cases, is within the top

three predicted peptides in 46% of the proteins and within the top

seven peptides in 63% of the proteins. In practical terms these num-

bers translate into at least a 25% reduction in the experimental effort

and cost involved in rational epitope discovery based on peptide-bind-

ing prediction. On the unfiltered set SYF1 the curves converge more

slowly toward 100% ligands identified, but the relative gain using

NetMHC-4.0 is preserved (Supplementary Fig. S1).

4 Discussion

The machine-learning algorithm presented here stems from our pre-

vious work on sequence alignment based on artificial neural net-

works, namely the NNAlign method (Andreatta et al., 2011;

Nielsen and Lund, 2009). By bringing together the training ex-

amples onto a common window of fixed length, the NNAlign train-

ing procedure effectively generates a multiple sequence alignment

representing the minimal binding core of each peptide. The main in-

novation of the algorithm is the introduction of insertions and dele-

tions into the NNAlign learning framework, essentially enabling the

creation of gapped sequence alignments.

In the context of the MHC class I system, where the length of lig-

ands is usually variable, insertions and deletions allow reconciling

peptides of different lengths to a binding core of a common size. We

demonstrated that models trained on all peptide lengths are superior

to models made on individual lengths, especially for molecules with

few measured experimental data of a given peptide length. These

models also have higher performance than extrapolations from

models constructed on 9mer peptides only.

Moreover, prediction of the core location can provide insight on

the binding mode of linear peptides to their receptor, such as in the

case of binders bulging out from the middle of the MHC groove or

non-canonical binders protruding at the termini.

A further advantage of using a single model trained on peptide of

all lengths is that the length preferences of the receptor can be

learned by the method. We observed that for several MHC class I

molecules the length distribution of the top predicted binders fol-

lows the known preferences for the different MHC alleles. If

NetMHC-4.0 is used for a proteome scan in search for potential T

cell epitopes, peptides of optimal length for the alleles of interest are

therefore inherently prioritized. We quantified the experimental ef-

fort that can be saved by a bioinformatics-based selection of poten-

tial epitopes on a set of known ligands contained in the SYFPEITHI

database, and found that on average the experimental effort and

cost in identifying actual ligands could be reduced by at least 25%

when using the prediction models trained with the pan-length

algorithm.

The applications of the proposed machine-learning algorithm

are not limited to the MHC class I system. The method is equally

well suited to the identification of binding motifs in other peptide

datasets characterized by a linear component, and we expect future

applications will include MHC class II binding, pan-specific MHC

class I and class II binding, and peptide interactions with PDZ, SH2

and SH3 domains.

Fig. 6. Number of peptides per protein that should be tested to identify known

ligands in the SYFPEITHI dataset. Antigenic proteins were digested into all

possible peptides of length 8–11 as described in the text, which were then

ranked by NetMHC-4.0 predicted affinity. The plot depicts the maximum num-

ber of peptides that would have to be tested for each protein before detecting

the known ligand in the ranked list. The inset graph is a zoomed-out version

of the curves of the main graph, showing eventual convergence to 100% iden-

tified ligands
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Deleted Text: Fig. 5. 3D structures for two MHC class I molecules with bound peptides longer than 9 amino acids (PDB references 2CLR and 4JQX). a) The 10mer peptide MLLSVPLLLG bound to HLA-A*02:01 extends at the C terminus with a glycine (G) amino acid. The residues at the anchor positions P2 (L) and P9 (L) are highlighted in red. b) The 12mer EECDSELEIKRY bound to HLA-B*44:03 has anchors at its second (E) and last (Y) positions (in red) and bulges out from the middle of the MHC binding groove.
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The NetMHC-4.0 method for the prediction of peptide–MHC

class I binding affinity is publicly available as a webserver at http://

www.cbs.dtu.dk/services/NetMHC-4.0.
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