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A B S T R A C T

Background: Many observational studies have reported an association between vitamin D and non-skeletal
health outcomes. The D-Health Trial was launched to determine if supplementing the older population with high
monthly doses of Vitamin D can prevent cancer and premature mortality. The intervention is ongoing but here
we provide a detailed statistical analysis plan for the primary and secondary outcomes of the D-Health Trial.
Methods/design: The D-Health Trial is a double-blind, randomized, placebo-controlled trial. Between February
2014 and May 2015, 21,315 people were randomized in a 1:1 ratio to receive monthly doses of either 60,000 IU
of cholecalciferol (vitamin D3) or placebo for five years. The primary outcome is all-cause mortality and the
secondary outcomes are total cancer incidence and colorectal cancer incidence. These will be ascertained via
linkage to death and cancer registries. The primary analysis for each outcome will follow an intention-to-treat
approach; we will use flexible parametric survival models to investigate the association between supple-
mentation and time to an event. We describe in detail sophisticated secondary analyses that consider non-
compliance and contamination due to off-study supplementation.
Conclusions: Publication of this statistical analysis plan in advance of the intervention's completion, and ad-
herence to it, will avoid data-driven analyses of the primary and secondary outcomes and ensure robust re-
porting of outcomes.
Clinical trial registration number: Australian New Zealand Clinical Trials Registry: ACTRN12613000743763.
Registered on 4 July 2013.

1. Introduction

Many observational studies have reported inverse associations be-
tween serum 25-hydroxy vitamin D (25(OH)D) concentration (used as a
measure of vitamin D status) and risk of non-skeletal health outcomes
such as cancer, cardiovascular disease, diabetes and mortality [1,2].

However, findings from observational studies may be a result of reverse
causality or uncontrolled confounding, so cannot be used to reliably
infer that increasing 25(OH)D concentrations in the population
(through supplementation or food fortification) would be beneficial.

In randomized controlled trials, vitamin D supplementation has not
reduced the incidence of cancer [1,3–7]. The largest of these trials, the
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Table 1
Tertiary outcomes of the D-Health Trial and the data sources used to derive them.

Outcome All participants Random sample of participants

Annual
surveya

MBS
databaseb

PBS databaseb Hospital
datac

Phone
interview

Diary Blood
sample

Newly diagnosed health conditionsd

Anxiety X X
Arthritis X X
Depression X X
Diabetes X X
Hypercalcemiae X
Hypercholesterolemia X X
Hyperparathyroidism X X X
Hyperthyroidism X X X
Hypothyroidism X X
Kidney disease X X
Osteoporosisf X X X
Parkinson's disease X X X
Psoriasis X X X
Sarcoidosis X X
Glaucoma X X
Insomnia X X
Sleep apnea X X
Non-alcoholic fatty liver disease X X
Polymyalgia rheumatica X
Dementia/cognitive impairment/Alzheimer's disease X X X
Emphysema/chronic obstructive pulmonary disease/bronchiectasis X X X

Number of hospitalisations X
Acute eventsg

Kidney stones X X
Cataract removal X X
Broken bones X X X
Joint repair or replacement X X
Gall stones/Cholecystectomy X X
Hysterectomy X X

Cardiovascular outcomes
Arrhythmiad X X X
Cerebrovascular diseaseg,h X X
Coronary artery diseasei X X X
Hypertensiond X X
Thrombosisg X X X

Quality of life/health and well-being (12-item Short Form Health Survey; 5-
point Likert scale for overall health status, quality of life, memory, and
teeth and gum health)

X

Depressive symptoms (Patient Health Questionnaire- 9) X
Pain (Pain Impact Questionnaire-6) X
Sleep quality (Pittsburgh Sleep Quality Index) X
Acute respiratory tract infectionj X X X
Infections X X X
Fallsk X X
Memory and cognition (Telephone Interview for Cognitive Status –modified) X
Urinary function (International Prostate Symptom Score (Men);

Questionnaire for Urinary Incontinence Diagnosis (Women))
X

Erectile dysfunction X
Treatment of keratinocyte cancer X
Telomere length X

a Annual surveys are completed at the end of each year of the intervention.
b The Medicare Benefits Scheme (MBS) and Pharmaceutical Benefits Scheme (PBS) databases are managed by Medicare Australia. Records of consenting parti-

cipants will be linked to these databases. The MBS database records health services provided outside the public hospital system. The PBS database records almost all
medications prescribed outside a public hospital setting. Medications will be used as proxies for diagnosis. A first linkage captured data up to and including 31
December 2017. A second linkage is scheduled for 2021.

c Linkage to hospital admitted patient datasets.
d For conditions with specific medical and/or surgical treatments, PBS data regarding dispensing of drugs and/or hospital data regarding procedures will be used

in preference to annual survey data to derive the timing of first diagnosis.
e We follow up diagnoses of hypercalcemia with medical records where possible.
f Hip and/or vertebral fracture(s) may be used to confirm a diagnosis of osteoporosis.
g Hospital data regarding procedures used to the treat the event will be given preference to annual survey data when deriving the number and timing of events.
h A person will be classified as having cerebrovascular disease if they have a transient ischaemic attack and/or a stroke.
i A person will be classified has having coronary artery disease (CAD) if they have symptoms of the disease (angina, myocardial infarction) and/or treatment for

the disease (coronary stenting, coronary artery bypass graft, angioplasty) or if they are documented as having a diagnosis of CAD in the hospital data.
j Annual surveys ask whether or not a participant had a cold/runny nose/sore throat/the flu in the last month. Diaries use a scoring system of respiratory tract

infection-related symptoms; these are completed daily over 8 weeks during winter.
k Annual surveys ask: whether or not a participant had a fall in the last month; and how many times a participant fell in the last 12 months. Diaries are used to

indicate whether or not a participant fell during each day of a 3 month period; a fall is described as unintentionally coming to rest on the floor, the ground or other
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Women's Health Initiative trial, was designed to be adequately powered
to detect an absolute difference in colorectal cancer incidence of 22%
over 8 years [5]. The study did not observe a reduction in the incidence
of invasive colorectal cancer (hazard ratio (HR), 1.08; 95% confidence
interval (CI), 0.86 to 1.34). However, both the dose used (400 inter-
national units (IU)/day) and adherence were low, with only 60% of
participants taking at least 80% of their study medication. Further, the
study included only healthy, post-menopausal women, and their base-
line intake of vitamin D from supplements was twice the national
average. The large-scale Vitamin D and Omega-3 Trial (VITAL) found
that supplementation with vitamin D at a dose of 2000 IU/day was not
associated with lower incidence of invasive cancer of any type (HR,
0.96; 95% CI, 0.88 to 1.06) [7]. However, the study found that body
mass index (BMI) may modify the effect of vitamin D, and amongst
people with BMI < 25 kg/m2, incidence was lower in the vitamin D
group than in the placebo group [7]. VITAL recruited men and women
and the median follow-up was 5.3 years.

Meta- and pooled analyses of trials have found that vitamin D
supplementation results in a small decrease in all-cause mortality
[1,4,8], but the generalizability of these results is uncertain. Many
studies were designed to assess falls and bone health, so included pri-
marily women, and a substantial proportion of participants lived in
aged care facilities. Mortality was usually a secondary outcome.

We launched the D-Health Trial [9] in response to calls for large,
well-designed, population-based trials of vitamin D supplementation
[8]. The D-Health trial aims to determine if monthly high-dose vitamin
D supplementation of the general older population can prevent cancer
and premature mortality, with results having the potential to influence
public health policy.

For transparency of future reporting of results from the trial, we
now provide a detailed statistical analysis plan for the primary (all-
cause mortality) and secondary (total cancer incidence and colorectal
cancer incidence) outcomes. Tertiary outcomes are also briefly dis-
cussed.

2. Methods

2.1. Brief trial overview

Detailed trial methods and baseline characteristics have been pub-
lished [9]. Briefly, the D-Health Trial is a double-blind, randomized,
placebo-controlled trial of monthly high-dose vitamin D supplementa-
tion in older Australian adults. Participants will be supplemented for 5
years, after which time we will continue to capture cancer and mor-
tality outcomes through linkage with registries. The QIMR Berghofer
Medical Research Institute Human Research Ethics Committee ap-
proved the trial and all participants gave written or online consent.

We invited 421,207 Australians aged 60–79 years to participate,
using the Commonwealth electoral roll as a sampling frame, and also
allowed volunteers to join the trial. We excluded people who had a
history of osteomalacia, sarcoidosis, hyperparathyroidism, hy-
percalcemia, or kidney stones, or who were taking more than 500 IU of
supplementary vitamin D per day. Between February 2014 and May
2015, the 21,315 people recruited (1,896 were volunteers) were ran-
domized in a 1:1 ratio to receive monthly doses of either 60,000 IU of
cholecalciferol (vitamin D3) or placebo for five years. Randomization
occurred within strata of age (60–64; 65–69; 70–74; 75 + years), sex,
and state of residence (New South Wales, Queensland, South Australia,
Tasmania, Victoria, Western Australia) at baseline.

2.2. Outcomes

The primary outcome is all-cause mortality. The secondary

outcomes are total cancer incidence (excluding incident keratinocyte
cancers of the skin, which are registered by only one of the Australian
state-based cancer registries) and colorectal cancer incidence. These
outcomes are ascertained via linkage to death and cancer registries.
Preliminary linkage occurred in 2017/18. A final linkage is scheduled
for 2020/21, with possible further linkages dependent on continued
funding.

Table 1 lists the tertiary outcomes and the data sources used to
derive them. These were selected from a review of published reports of
associations between vitamin D and health outcomes. Some outcomes
are ascertained from multiple sources, enabling triangulation of the
data. Data regarding provision of health services and drugs dispensed
outside public hospitals are available for participants who consented to
linkage of their study records with those of the Medicare Benefits
Scheme (MBS) (95%) and/or Pharmaceutical Benefits Scheme (PBS)
databases (92%). Many tertiary outcomes are captured using annual
surveys, which participants are encouraged to complete even if they
have withdrawn from the trial. Some outcomes are collected for a
random sample of participants only (Table 1). More detailed definitions
of tertiary outcomes will be given in separate publications.

2.3. Sample size calculation

We based our sample size calculations on cumulative risk of death
over a 10-year period under the assumption that the trial cohort ex-
periences 0.8 of the event rate of the general Australian population. The
trial was designed to detect, with 80% power and using a significance
level of 0.05, a mortality HR of 0.88 (based on a logrank test) over a
ten-year period from the start of the trial. We allowed for a drop-out
rate of 20% and assumed that, on average, participants would become
non-adherent at the midpoint of the trial.

An HR of 0.88 corresponds to an absolute risk reduction of 1.5% or
the equivalent of needing to treat 66 patients to prevent one death. It
equates to an extra 3.1 years of life for 60 year olds and 1.2 years for 79
year olds. Currently, we are funded to ascertain primary and secondary
outcomes only over a six-to seven-year period, corresponding to a
second data linkage occurring in 2020/21.

2.4. Compliance with study medication and use of off-trial vitamin D
supplements

Although we restricted enrolment to people taking 500 IU or less of
supplementary vitamin D per day, once enrolled we allow participants
to remain in the trial provided that they take no more than 2000 IU/day
of off-study vitamin D supplementation. This minimizes missing parti-
cipant-reported information about outcomes and supplement use while
ensuring participants take no more than the equivalent of 4000 IU per
day, recommended as the tolerable upper intake level by the United
States Institute of Medicine [10]. To estimate compliance and use of
additional vitamin D supplements, the annual survey asks participants
to report the number of study capsules taken during the previous 12
months (none, 1–3, 4–6, 7–9, 10–12), and intake of off-study vitamin D
supplementation. We also ask participants to contact us to report any
changes to off-study supplementation. Additionally, each year (begin-
ning one year after baseline) we measure 25(OH)D concentration in a
random sample of approximately 350 people from each trial arm.

2.5. Statistical analyses

2.5.1. Primary and secondary outcomes
2.5.1.1. General principles. A time-to-event approach will be used with
time since randomization as the time axis. Follow-up will begin at date
of randomization and end at the date of the event of interest, death

lower level, regardless of what caused the fall. For each fall that is documented in the diary, participants also provide information on whether they sought medical
help and injuries sustained as a result of the fall.
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(when not the event of interest), final linkage, or loss to follow-up (e.g.
for people who emigrate from Australia during follow-up), whichever
comes first. For the primary outcome, the event is death from any
cause. For the secondary outcomes, the events are: (1) first diagnosis of
any cancer (excluding keratinocyte cancer); and (2) first diagnosis of
colorectal cancer. We will fit separate models for each outcome. When
analyzing a secondary outcome, if a person dies without having had a
cancer diagnosis, then their data will be treated as censored at the time
of death.

2.5.1.2. Primary analysis. The primary analysis will follow an
intention-to-treat approach, using data from all people who were
randomized, excluding the few (currently N=5) participants who
have withdrawn and requested destruction of their data. Participant
flow will be shown using a CONSORT diagram [11]. We will report the
number and percentage of events within each randomization group.

We will use a flexible parametric survival model (FPSM) [12] to
estimate the association between an outcome and randomization group.
We will model the baseline log cumulative hazard function using a
restricted cubic spline with two internal knots (placed at the 33rd and
67th percentiles of the uncensored log survival times). To allow the
estimated HR to vary with time, we will include an interaction between
randomization group and a restricted cubic spline with one internal
knot (placed at the median of uncensored log survival times). The
choice of spline functions follows the recommendations made by Roy-
ston and Parmar [12,13]. The model will include the randomization
strata of age, sex, and state of residence at baseline as non-time-de-
pendent covariates.

We will plot the estimated HR and its 95% CI as a function of time
since randomization, and report the estimated HR (95% CI) at 2, 4 and
6 years post-randomization. We will also use the FPSM to produce plots
(with 95% CIs) of estimated survival functions by randomization group,
and difference in survival functions.

2.5.1.3. Interactions and subgroup analyses. For each outcome, we will
investigate whether the effect of supplementation is modified by: age at
baseline (< 70 years, ≥ 70 years); sex; predicted baseline
deseasonalized 25(OH)D concentration (using the following range of
cut points: 30 nmol/l; 40 nmol/l; 50 nmol/l; 75 nmol/l; and the
median); and BMI (< 25 kg/m2, ≥25 kg/m2). For each factor we will
report the P value from a likelihood ratio test comparing models with
and without an interaction term (between randomization group and the
factor of interest). Plots of the estimated HR (and 95% CI) for the
association between supplementation and the outcome will be
produced for each stratum of a factor.

2.5.1.4. Secondary analyses assessing the impact of compliance and off-
study supplementation. We will perform secondary analyses that take
into account the fact that some participants may not take all their study
tablets, may consume off-study supplementary vitamin D, or may do
both. Some of these analyses require data about intake of
supplementary vitamin D in the period after we no longer have
questionnaire data on this variable (e.g., in the post-trial passive/
linkage period, and from the time of withdrawal for people who
withdraw and don't continue to complete annual surveys). For
simplicity, we will assume that from the date of last reported intake
until the event or censoring, a person's intake remains constant at the
dose last reported. Note that for these analyses, ‘total intake’ refers to
intake from study tablets and off-study supplementation and does not
include dietary intake. We will use the following approaches:

2.5.1.4.1. Per-protocol analysis. We will estimate the effect that
would have been observed had all participants adhered to the
protocol. We will define adherence as taking ≥80% of the study
tablets and not taking more than 500 IU/day of off-study vitamin D
supplementation at any time. We will ‘artificially’ censor participants at
the time that they first report being non-adherent [14]. We will use pre-

and post-randomization prognostic factors that predict censoring and
the outcome to derive stabilized inverse probability of censoring
weights (IPCW) [14,15]. We will then use these weights to fit a Cox
proportional hazards (PH) model or pooled logistic regression; the
choice of model will depend upon whether we treat time as continuous
or discrete.

Estimates based on IPCW can be quite sensitive to the model gen-
erating the weights. When selecting variables to include in the weight
determining model we will use an approach outlined previously [15].
This approach includes examining the distribution of weights and
modifying the model if there are extreme values.

2.5.1.4.2. As-treated analyses using propensity score methods. We will
estimate the effect of treatment actually received, with propensity score
adjustment used to minimize bias. For this analysis we will calculate the
treatment actually received during the intervention period as average
total daily intake of vitamin D from study capsules and off-study
supplements. For a person who neither dies nor experiences the event of
interest during the intervention period, the average will be calculated
over 5 years. Otherwise it will be calculated over the time from
randomization until the event (or death).

We will define a person as ‘treated’ if their average total intake
is≥ 1600 IU/day, and ‘not treated’ if their average intake is < 1600
IU/day, regardless of the group to which they were randomized. This
threshold corresponds to a participant in the active arm taking 80% of
their study tablets, without additional off-study supplementation.

We will use a generalized boosted model (GBM) [16] to estimate the
propensity score for being treated, from which we will derive inverse
probability of treatment weights (IPTW) [17]. The weights will be used
in a weighted Cox PH model that regresses survival against an indicator
of whether or not the person was treated. We will use bootstrapping to
construct a 95% CI for the estimated HR [18].

The GBM will include baseline covariates that are associated with
the outcome or confound the relationship between treatment and out-
come [19]. We will use subject-matter knowledge to construct directed
acyclic graphs from which we will identify the potential confounders
for which adjustment is necessary. We will follow the recommendations
from a paper on ‘best practice’ when using IPTW [20] to assess whether
we have achieved balance between distributions of baseline covariates
in the treated and untreated groups in the weighted sample. We will use
standardized differences to compare proportions (of binary variables),
means and higher-order moments. For continuous variables, we will
also produce side-by-side boxplots and empirical cumulative distribu-
tion functions. If these diagnostics suggest that the groups are not suf-
ficiently balanced in the weighted sample, then we will modify the GBM
by including additional covariates. The process of deriving IPTWs and
assessing balance will be repeated until we are satisfied that balance
has been achieved.

We will conduct a second as-treated analysis in which the treatment
received is categorized as ‘very low’ (average intake < 200 IU/day);
‘low’ (average intake 200–499 IU/day); ‘moderate’ (average intake
500–1600 IU/day); and ‘high’ (average intake > 1600 IU/day).
Propensity score methods generalize relatively easily to this situation
where treatment has more than two levels [21], and this analysis will
allow us to assess whether or not vitamin D is associated with an out-
come when taken at doses lower than prescribed by our protocol.

2.5.1.4.3. Rank-preserving structural failure time model. In a third
approach, we will estimate the causal effect of vitamin D
supplementation by fitting a rank-preserving structural failure time
model (RPSFTM). This randomization-based method allows for
participants switching between treatments more than once [22]. By
classifying a participant as being ‘on’ the treatment whenever their total
intake of vitamin D is≥ 1600 IU/day and otherwise ‘off’ treatment, we
will be able to partition a participant's observed event time (Ti) into
time ‘on’ and ‘off’ treatment (i.e. Ti = Tion + Tioff). We will relate Ti to
the counterfactual event time (Ui) that would have been observed had
participant i never been treated, using
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= +U T T ψexp( ).i i i
off on (1)

here ψ is the true causal parameter (i.e. the treatment effect) and ψexp( )
is the acceleration factor that describes the relative increase or decrease
in survival due to treatment. We will use a grid search based upon the
Wald test from a Cox PH model adjusted for randomization strata to
estimate the value of ψ that balances Ui across randomization groups
and we will estimate a 95% CI for ψ [23].

2.5.1.5. Hypothesis tests, significance levels, multiple testing. Hypothesis
tests, when performed, will be two-sided and, unless otherwise
specified, we will use a statistical significance level of P < 0.05. We
will not adjust for multiple testing.

2.5.2. Predicting baseline 25(OH)D concentrations
We did not collect blood samples at baseline because the study was

designed to replicate what would happen in a population subjected to
fortification and we could not justify the additional cost (estimated at
several millions of dollars). Hence, to be able to investigate whether or
not the effect of supplementation is modified by a person's vitamin D
status we need to predict baseline 25(OH)D concentrations. To do this
we will use data and blood samples collected from the placebo group
for compliance monitoring as training data to develop a prediction
model as follows.

2.5.2.1. Preparing the training data. To model the seasonal component
of 25(OH)D concentrations, we will fit the following sinusoidal model:

= + ⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠

β β πt β πtactual OH D concentration25( ) sin 2
12

cos 2
12

,0 1 2

(2)

where t is the month of sample collection, and β0, β1 and β2 are model
coefficients to be estimated [24]. Deseasonalized 25(OH)D
concentrations will then be estimated by adding the overall mean
25(OH)D concentration to the residuals from the fitted sinusoidal
model.

2.5.2.2. Prediction modelling. We will use boosted regression trees
(BRTs) [25–27] to model the relationship between continuous
deseasonalized 25(OH)D concentration and a set of fifteen
explanatory variables. The latter will include factors that are
correlated with cutaneous production of vitamin D (ambient
ultraviolet radiation at the person's place of residence, skin type, time
outdoors, physical activity), factors that have been shown to be strong
determinants of 25(OH)D concentration in the elderly (total intake of
vitamin D from diet and supplements, body mass index, self-reported
health status) [28], and personal and lifestyle factors (age, sex, history
of chronic diseases (diabetes, high blood pressure, high cholesterol),
smoking behaviour, alcohol consumption, living arrangements).
Dietary vitamin D intake will be estimated using responses to a 16-
item food frequency questionnaire; the items include oily fish, meat,
margarine (which is routinely fortified in Australia), eggs, cheese, and
milk fortified with vitamin D.

We will fit BRT models for 36 combinations of parameter settings,
using learning rates of 0.01, 0.005 and 0.001, tree complexities of 2, 3,
4 and 5, and bag fractions of 0.5, 0.6 and 0.7. For each combination, we
will use 10-fold cross-validation to determine the optimal number of
trees [27]. To identify the ‘best’ set of parameters we will use the cross-
validation deviance. The optimal fitted BRT model will then be used to
predict deseasonalized baseline 25(OH)D concentration for all trial
participants using data from their baseline questionnaire.

2.5.3. Blinding
Blinding will be broken after all results (from primary and sec-

ondary analyses) have been generated. Secondary analyses require es-
timation of total vitamin D intake (excluding dietary intake) for each

person. In theory, this requires knowledge of whether or not a person
was randomized to vitamin D or placebo. However, we can avoid
breaking the blinding by generating two versions of the results: one set
will be based on the assumption that randomization group A received
vitamin D; the other set will assume that randomization group A re-
ceived placebo. Once blinding has been broken, we will know which
results are the ‘true’ estimates to be included in the final manuscript/s.

We will initially perform the analyses using a dataset for which the
true randomization allocation has been replaced with a randomly as-
signed allocation. This will allow the statistician to test and validate all
statistical programs. Once validated, a researcher external to the D-
Health team will execute the programs to produce results for the actual
randomization allocation; blinding will then be broken.

2.6. Tertiary outcomes: details of analyses to be reported in separate
publications

Due to the long period of passive follow-up, some tertiary outcomes
will be analyzed prior to the analysis of the primary and secondary
outcomes. Detailed statistical analysis plans will be written prior to
each analysis, but here we highlight some important issues.

To maintain blinding, any analysis performed prior to study com-
pletion will use a random sample of 8,000 participants from each
treatment arm. A different sample will be generated for each outcome
(or group of related outcomes). A researcher external to the study team
will randomly assign each person in the sample a new unique identifier,
and the randomization code will be randomly mapped from its current
values (A and B) to 0 or 1. The secretary of the data safety monitoring
board (DSMB) will hold the mapping link. After results have been fi-
nalized the DSMB secretary will provide the study group allocation to
enable interpretation of the results. The choice of sample size is prag-
matic; it is small enough to make it almost impossible to deduce from
participant characteristics whether the group that received vitamin D
was randomization group A or B, but large enough that there should be
adequate statistical power for most tertiary outcomes.

Interactions and subgroup analyses may differ from those con-
sidered for the primary and secondary outcomes, with factors chosen on
the basis of their relevance to each specific outcome. Some of these
factors, and indeed outcomes, will have missing data. The amount and
nature of missing data in each random sample will inform which
technique we use to handle missing data. For example, when there are
very few missing data, we may use complete cases only, but we will also
consider using multiple imputation and maximum likelihood estimation
where there is a large amount of missing data. If we suspect data are
missing not at random we will perform sensitivity analyses using pat-
tern mixture models [29].

3. Discussion

We are publishing a detailed statistical analysis plan for the primary
and secondary outcomes of the D-Health Trial while the intervention is
on-going. This will help minimize bias during the analysis phase.

We have decided to use a FPSM for our primary analysis rather than
Cox PH regression because the FPSM can accommodate non-propor-
tional hazards and model differences over time in a continuous fashion.
This is important because it is plausible that vitamin D supplementation
would take time to have an effect on the primary and secondary out-
comes, violating the PH assumption. The method also allows us to
produce smooth plots of survival functions and the HR over time,
providing greater insight into the treatment effect than is possible with
a single ‘average’ HR from a Cox PH model [13].

Unlike many clinical trials, the D-Health Trial is population-based,
of long duration, uses an intervention that can be readily obtained by
participants, and ascertains many tertiary outcomes prior to the pri-
mary and secondary outcomes. Furthermore, access to vitamin D testing
means that some participants may become unblinded to their
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allocation, possibly influencing adherence to protocol. Indeed, this
appears to be the case for VITAL participants; after 5 years, 10.8% of
people in the placebo group were taking>800 IU/day of off-study
vitamin D supplements, compared with 6.4% in the vitamin D group
[7]. There are thus considerable challenges to: (1) estimating the ef-
fectiveness of vitamin D treatment; and (2) maintaining investigator
and analyst blinding through to the study's completion.

We have addressed the first challenge by proposing sophisticated
secondary analyses that consider non-compliance and contamination.
These approaches are appealing for a number of reasons. Throughout
the intervention we collect data related to adherence and many prog-
nostic factors that may affect it. We are therefore able to perform a per-
protocol analysis that will appropriately adjust for post-randomization
confounding and selection bias [30,31]. The other two methods (as-
treated analysis incorporating propensity score methods and RPSFTM)
do not censor a participant when they deviate from the protocol. Ra-
ther, they accommodate participants whose supplementary intake
changes repeatedly over the course of the study. This type of treatment
switching is not permitted by approaches that assume all-or-none
compliance [32–35] or that participants in the placebo arm have no
access to the active treatment [34]. Another attractive property of these
methods is that we preserve some of the benefits of randomization;
namely, that aside from the treatment, the two groups are balanced
across measured and unmeasured confounders. The RPSFTM is rando-
mization-based, while the as-treated analysis will mimic a randomized
trial by creating a synthetic sample in which treated and untreated
participants have similar distributions of measured baseline covariates
[36].

Our proposed secondary analyses have some limitations. Unlike the
FPSM, these analyses assume proportional hazards and each produces a
single estimate of the effect. The validity of the per-protocol and ‘as-
treated’ analyses depends upon there being no unmeasured con-
founders. A limitation of the RPSFTM is that the effect of treatment is
assumed to be the same regardless of when it is received [23]. More-
over, to fit an RPSFTM to the actual event times we must make an
assumption about participants' supplement intake after they have left
the trial.

Our approaches to the second challenge, maintaining blinding, are
designed to safeguard against bias until all analyses of the primary and
secondary outcomes are finalized. This includes restricting analyses of
tertiary outcomes to a subset of participants. Although this exclusion of
participants is contrary to the intention-to-treat principle, it should not
materially affect estimates because participants will be sampled at
random.

It is likely that the effects of vitamin D supplementation are not
linear and will be most marked in people who are vitamin D deficient
prior to supplementation. Thus there have been recommendations that
low 25(OH)D concentration be an inclusion criterion of vitamin D
supplementation trials [37–39]. The D-Health Trial was not established
to investigate the benefits of correcting for vitamin D deficiency. In-
stead we aim to determine whether increasing the mean 25(OH)D
concentration in the population would result in substantial health
benefits. As such, the trial aims to provide evidence to inform policy
decisions regarding population-level interventions, such as mandatory
food fortification.

The D-Health Trial uses a vitamin D dose equivalent to that used in
VITAL. VITAL found that 2000 IU/day was sufficient to increase mean
25(OH)D concentrations in the supplemented group from 74 nmol/l at
baseline to 104 nmol/l after one year, with no increased risk of adverse
events during follow-up [7]. We are thus confident of achieving a
substantial shift in 25(OH)D concentrations. Unlike VITAL, the D-
Health Trial uses a monthly bolus dosing regimen and we expect higher
compliance with the study tablets; approximately 80% of VITAL par-
ticipants took at least two thirds of the trial capsules. Concerns have
been raised about the efficacy [40] and safety [41] of bolus doses.
Comparisons between D-Health and VITAL will enable us to assess this

issue.
Publication of this statistical analysis plan in advance of the inter-

vention's completion, and adherence to it, will avoid data-driven ana-
lyses of the primary and secondary outcomes and ensure robust re-
porting of outcomes. We have carefully considered how to handle the
complexities of analyzing the D-Health trial; the methods we have
outlined may prove useful to other researchers planning analyses of
similar trials.

Trial status

Randomization of participants was completed in May 2015.
Participants are currently completing their fourth or fifth year of the
intervention.
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