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Abstract

Microsatellite instability (MSI) leads to accumulation of an
excessive number of mutations in the genome, mostly small
insertions and deletions. MSI colorectal cancers (CRCs), however,
also contain more point mutations than microsatellite-stable
(MSS) tumors, yet they have not been as comprehensively stud-
ied. To identify candidate driver genes affected by point muta-
tions in MSI CRC, we ranked genes based on mutation
significance while correcting for replication timing and gene
expression utilizing an algorithm, MutSigCV. Somatic point
mutation data from the exome kit-targeted area from 24
exome-sequenced sporadic MSI CRCs and respective normals,
and 12 whole-genome-sequenced sporadic MSI CRCs and
respective normals were utilized. The top 73 genes were vali-
dated in 93 additional MSI CRCs. The MutSigCV ranking identi-
fied several well-established MSI CRC driver genes and provided
additional evidence for previously proposed CRC candidate
genes as well as shortlisted genes that have to our knowledge

not been linked to CRC before. Two genes, SMARCB1 and
STK38L, were also functionally scrutinized, providing evidence of
a tumorigenic role, for SMARCB1 mutations in particular.
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Introduction

Colorectal cancer (CRC) is one of the most fatal cancers in Western

countries leading to death in nearly 50% of the cases (Jemal et al,

2011). Approximately 15% of CRCs exhibit microsatellite instability

(MSI), which results from defective DNA mismatch repair (MMR)

machinery (Boland & Goel, 2010). This is most often the result of
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hypermethylation of the promoter of MLH1, one of the central genes

involved in MMR.

It is estimated that approximately 90% of CRCs are sporadic,

whereas the remaining 10% arise due to inherited predisposition

(Bogaert & Prenen, 2014). The most common form of inherited

predisposition is Lynch syndrome, where the individual inherits a

germline mutation in one of the MMR genes (MLH1, MSH2, MSH6,

PMS2) and is therefore highly predisposed to CRC and endometrial

cancer (Boland & Goel, 2010). In addition to CRC, MSI is also

observed in approximately 15% of sporadic endometrial and gastric

cancers (Hamelin et al, 2008). MSI CRCs arise through a distinct

genetic pathway as compared to microsatellite-stable (MSS) CRCs

(Boland & Goel, 2010). The defective MMR machinery results in the

accumulation of an excessive number of mutations in the genome.

Most of the mutations are small insertions and deletions (indels) that

target short nucleotide repeats, microsatellites. Genes that provide

growth advantage to cells via loss-of-function mutations in

microsatellites, or MSI target genes (Duval & Hamelin, 2002), have

been extensively studied and numerous genes have been published

as candidate targets and thus putative tumor suppressors (Alhopuro

et al, 2012; Kondelin et al, 2017). MSI tumors also contain an order

of magnitude more point mutations than MSS tumors (Boland &

Goel, 2010), yet to date the point mutations in MSI CRCs have been

mostly overlooked. Only few genes with causative point mutations

have been identified in this tumor type. Most of these have been

flagged by missense mutation hot spots (e.g., BRAF, KRAS, CTNNB1,

and PIK3CA), a mutation pattern typical of oncogenes (Fearon,

2011).

In our past efforts, we have identified candidate oncogenes

with missense mutation hot spots based on next-generation

sequencing (NGS) data from a small discovery set of MSI CRCs

(Gylfe et al, 2013; Tuupanen et al, 2014). To our knowledge,

however, only few studies have attempted to systematically char-

acterize the full landscape of coding point mutations in MSI CRC

in order to identify new driver genes (Cancer Genome Atlas

Network 2012; Seshagiri et al, 2012; Kim et al, 2013; Cortes-

Ciriano et al, 2017).

In the past few years, NGS has been largely accepted into both

research and clinical use, and numerous mutations—both somatic

and germline—have been reported to contribute to disease. There

is, however, debate on which of the genes and mutations reported

are truly significant for disease (Gonzalez-Perez et al, 2013). The

distinction between driver genes and the incidentally mutated

passengers is a challenge that is augmented in MSI tumors due to

their high mutation load. It is, however, established that mutation

frequency solely is a poor predictor of causality (Vogelstein et al,

2013). In attempt to account for other important factors, algorithms

have been developed to predict which genes are likely cancer-

driving genes based on several parameters (Lawrence et al, 2013;

Mularoni et al, 2016).

In this study, we utilized a discovery set of 24 exome-sequenced

sporadic MSI CRCs and respective normals, and 12 whole-genome-

sequenced sporadic MSI CRCs and respective normals to identify

driver genes affected by point mutations in MSI CRC (Fig 1). The

top 73 genes predicted as the most likely to be causative were re-

sequenced in a validation set of 93 additional MSI CRCs. From this

effort, SMARCB1 emerged as our top candidate for a novel MSI CRC

driver gene.

To continue on our previous studies where candidate MSI CRC

oncogenes were identified based on mutation hot spots in a smaller

dataset (Gylfe et al, 2013; Tuupanen et al, 2014), we repeated the

hot spot analysis in this dataset of 36 exome- or whole-genome-

sequenced sporadic MSI CRCs and corresponding normals. Hence,

genes containing mutation hot spots in these somatic point mutation

data were detected (Figs 1 and 2). From this set of hot spots, the 90

novel hot spots as well as seven previously studied hot spots were

re-sequenced in the validation set of 93 additional MSI CRCs. From

this effort, seven new candidate oncogenes emerged (CORIN,

KLHL6, PCDHB16, PLEKHG1, PROS1, SPP2, and TROAP). To our

knowledge, this study represents the first effort to uncover driver

point mutations in MSI CRC utilizing deep sequencing of a large set

of tumors for validation.

Results

In order to identify new candidates for driver genes affected by point

mutations in MSI CRC, we analyzed sequencing data from a discov-

ery set of 36 exome- or whole-genome-sequenced MSI CRCs and

respective normals. MutSigCV analysis was performed on the

somatic single-nucleotide variation (SNV) data to identify the genes

most likely to display an excess of point mutations due to selection,

and the resulting top 73 genes were further validated by MiSeq

sequencing in a validation set of 93 additional MSI CRCs. Next, a

new algorithm, OncodriveFML, had become available during the

study and was utilized on the somatic SNV data from the MiSeq

sequencing to identify the most likely candidates for previously

unknown CRC-driving genes. Of these, SMARCB1 and STK38L were

further validated in functional experiments. The analysis workflow

is summarized in Fig 1.

In addition, to continue on our previous efforts (Gylfe et al,

2013; Tuupanen et al, 2014), we performed an analysis on genes

containing somatic mutation hot spots—mutations residing in either

the same or two adjacent codons, or two bases flanking an exon–

intron boundary—in at least two samples. Ninety-seven hot spots

from 94 genes were selected for further validation in the set of 93

additional MSI CRCs. The analysis workflow is summarized in

Fig 2.

Characterization of the SNVs in the discovery set of 36 exome- or
whole-genome-sequenced MSI CRCs

A median of 778 somatic SNVs were found in the exome kit-targeted

region of the 36 NGS samples. On average, 75% of the targeted

bases had a coverage of ≥ 21 reads, and the average coverage of the

targeted regions was 47. The mean frequencies of the SNV types are

shown in Appendix Fig S1. The most frequent mutation type was C:

G>T:A (54.5%) as was to be expected in MSI CRC (Alexandrov

et al, 2013; Tuupanen et al, 2014). The mutation frequencies per

sample are shown in Appendix Fig S2.

MutSigCV yields a ranking of genes based on the discovery set

MutSigCV was run on the somatic SNV data from the discovery set

of 36 exome- or whole-genome-sequenced MSI CRCs, and yielded a

ranking of 7,511 genes (Dataset EV1, Fig 1). Genes with mutations
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in only one or two tumors were excluded (resulting in a ranked list

of genes with non-synonymous or splice site mutations in at least

three tumors; “Ranking based on discovery set”; Fig 1, Dataset

EV2). The genes did not display statistically significant P-values

(Dataset EV1), which is likely due to the small size of the discovery

set. Therefore, MutSigCV was rather used as a ranking tool. Among

the top ten genes, three well-established MSI CRC driver genes

(BRAF, CTNNB1, and PIK3CA) were found (Dataset EV2) (Shitoh

et al, 2001; Davies et al, 2002; Fearon, 2011), providing confidence

in the MutSigCV approach to identify MSI CRC driver genes.

Characterization of the SNV mutations in the validation set of 93
MiSeq-sequenced MSI CRCs

From the ranking based on the discovery set, the coding regions of

the top 73 genes were targeted for further validation in MiSeq

sequencing of the validation set of 93 MSI CRCs (Dataset EV2). A

median of six somatic SNVs were found in the 73 MutSigCV-ranked

genes. On average, 92% of the targeted bases had a coverage of

≥ 21 reads, and the average coverage of the targeted regions was

222. As with the 36 exome- or genome-sequenced tumors, the

most frequent somatic mutation type was C:G>T:A (47.8%)

(Appendix Fig S3). The mutation frequencies per sample are shown

in Appendix Fig S4.

OncodriveFML analysis reveals novel candidate MSI CRC
driver genes

OncodriveFML, suitable for ranking genes in smaller datasets, was

run on the somatic SNV data from the 73 MiSeq-sequenced genes

from the validation set of 93 MSI CRCs (Dataset EV3) (Mularoni

et al, 2016). From the resulting ranking (OncodriveFML ranking;

Dataset EV4), genes with only one mutation were excluded as Onco-

driveFML does not calculate q-values for them. The resulting data

were therefore a ranking of 57 genes (“Ranking based on validation

set”; Fig 1, Table 1, Final ranking; Dataset EV4). On top of the rank-

ing, there were eight genes (BRAF, CTNNB1, CASP8, CCDC47,

STK38L, ENO3, PIK3CA, and SMARCB1) with a q-value smaller than

0.1. PolyPhen and SIFT predictions for the variations in these eight

genes are featured in Dataset EV3.

Three of the genes found among the top genes (BRAF,

CTNNB1, and PIK3CA) are previously well-established oncogenic

drivers of MSI CRC (Shitoh et al, 2001; Davies et al, 2002;

Fearon, 2011). Characteristic of oncogenes, they each harbor one

Exome sequencing data: 24 MSI CRCs + corresponding normals
Whole genome sequencing data: 12 MSI CRCs + corresponding normals

Filtering against respec�ve normals and 118 in house controls to remove germline variants

A list of soma�c muta�ons in the region targeted by exome sequencing

MutSigCV

Soma�c missense, nonsense, synonymous, and non-coding muta�ons in the
region targeted by exome sequencing kit

Ranking of candidate driver genes

Top 73 genes validated by MiSeq sequencing in 93 addi�onal MSI CRCs

Filtering against >60,000  NGS samples to remove germline variants

Soma�c missense, nonsense, and synonymous changes with MAF < 5x10-5

OncodriveFML

Ranking based on discovery set

Ranking based on valida�on set

Hot spot analysis

A ranked list of 57 genes

Further func�onal studies on SMARCB1 and STK38L

Figure 1. Schematic representation of the overall study design.

We utilized exome sequencing data from 24 MSI CRCs and corresponding normals and whole-genome sequencing data from 12 MSI CRCs and corresponding normals. The
tumor data were filtered against the corresponding normals as well as outside controls to remove germline variants. Only the areas targeted by the exome sequencing kit
were included in the analysis. Insertions and deletions were then filtered out, leaving the somatic missense, nonsense, synonymous, and noncoding mutations in the region
targeted by the exome sequencing kit. On this set of variants, (i) hot spot analysis was performed, and (ii) MutSigCV was utilized, resulting in a ranking of genes. Genes with
mutations in one or two tumors only were excluded. The top 73 genes were validated by MiSeq sequencing in a validation set of 93 additional MSI CRCs. The data were
filtered against > 60,000 outside controls to remove germline variants. Insertions and deletions were left out, resulting in a set of somatic missense, nonsense, and
synonymous changes with MAF < 5 × 10�5. On this set of variants, OncodriveFML was utilized. Genes with mutations in only one tumor were excluded, resulting in a
ranking of 57 candidate driver genes. Further functional studied were carried out for SMARCB1 and STK38L.
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or more non-synonymous missense mutation hot spots (Dataset

EV3).

CASP8 has been listed as significantly mutated in hypermutable

CRCs (Cancer Genome Atlas Network, 2012) and suggested to be a

CRC suppressor gene (Kim et al, 2003). In our data, we observed

ten non-synonymous changes in CASP8, of which all are found

within functional domains of the gene (Pfam domains, Dataset EV3;

Finn et al, 2016). Three of the 10 variants are in the death effector

domains. Of the ten variants, eight were predicted damaging by

both SIFT and PolyPhen, one was predicted damaging by PolyPhen,

and one was a nonsense change, a protein truncating mutation type

not scored by either program (Dataset EV3). Of the three variants

located in the death effector domains, two were predicted damaging

by both programs. In our data, we found seven non-synonymous

and one splice site change in SMARCB1 (Fig 3, Dataset EV3). Of the

seven non-synonymous changes, four—including a hot spot muta-

tion in codon 377—were predicted to be damaging by both SIFT and

PolyPhen, and two were predicted to be damaging by SIFT. Again,

for the nonsense and splice site change, no prediction was made. Of

the seven non-synonymous variants, three were found within the

functional domain of the gene (Pfam domains, Fig 3). STK38L has

been shown to promote cell survival and invasion in MSS CRC cell

lines (Suzuki et al, 2006).

SMARCB1 in turn is a previously known tumor suppressor gene

(Suzuki et al, 2006). In our data, we observed six non-synonymous

changes and one splice site variant in STK38L, and five of the six

non-synonymous variants—including a mutation hot spot in codon

105—are found within the protein kinase domain of the gene (Pfam

domains, Fig 3, Dataset EV3; Finn et al, 2016). The hot spot muta-

tion was predicted damaging by both SIFT and PolyPhen (Dataset

EV3). The remaining two of the top eight genes (CCDC47 and ENO3)

have to our knowledge not been implicated in CRC before.

From the top eight genes, we selected SMARCB1 and STK38L—

which display plausible growth associated functions and to our

knowledge have not been implicated in MSI CRC before—for further

validation in functional studies.

Microscopy analysis shows normal localization of mutant
SMARCB1 and STK38L

Mutations typically mediate their oncogenic potential by chang-

ing protein function via three key molecular mechanisms:

Exome sequencing data: 24 MSI CRCs + corresponding normals
Whole genome sequencing data: 12 MSI CRCs + corresponding normals

Filtering against respec�ve normals and 118 in house controls to remove germline variants

A list of soma�c muta�ons in the region targeted by exome sequencing

Soma�c missense, nonsense, synonymous, and non-coding muta�ons in the
region targeted by exome sequencing kit MutSigCV analysis

90 soma�c hot spots in 88 genes

Genes with non-synonymous or splice site hot spot changes in the same or two adjacent codons or
within the first two bases of the exon-intron boundary in at least two different samples selected

Previously reported genes omi�ed
Contained six previously
reported hot spot genes
within the top 73 genes

Added to the hot spot
analysis

97 soma�c hot spots in 94 genes validated by MiSeq sequencing in 93
addi�onal MSI CRCs

Filtering against >60,000  NGS samples to remove germline variants

Soma�c missense, nonsense, and synonymous changes with MAF < 5x10-5

11 genes with addi�onal hot spot muta�ons

Coding regions of the top 73 genes
selected for further valida�on

In 13 genes a muta�on
hot spot was

discovered a�er the
MiSeq valida�on

Figure 2. Schematic representation of the hot spot analysis.

We utilized exome sequencing data from 24 MSI CRCs and corresponding normals and whole-genome sequencing data from 12 MSI CRCs and corresponding normals. The
tumor data were filtered against the corresponding normals as well as outside controls to remove germline variants. Only the areas targeted by the exome sequencing kit
were included in the analysis. Insertions and deletions were then filtered out, leaving the somatic missense, nonsense, synonymous, and noncoding mutations in the region
targeted by the exome sequencing kit. On this set of variants, (i) hot spot analysis was performed, and (ii) MutSigCV was utilized. In the hot spot analysis, genes with non-
synonymous or splice site hot spot changes—mutations residing in either the same or two adjacent codons, or two bases flanking an exon–intron boundary—were
identified. Previously reported hot spot genes were omitted. The resulting list consisted of 90 somatic hot spots in 88 genes. The MutSigCV analysis included six previously
reported hot spot genes, which were then added to the hot spot list. The hot spot list entering validation therefore consisted of 97 somatic hot spots in 94 genes, and these 97
hot spots were re-sequenced with MiSeq sequencing in the validation set of 93 additional MSI CRCs. The data were filtered against > 60,000 outside controls to remove
germline variants. Insertions and deletions were left out, resulting in a set of somatic missense, nonsense, and synonymous changes withMAF < 5 × 10�5. In theMiSeq data,
11 of the 94 genes contained additional hot spot mutations.
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Table 1. Ranked list of genes by OncodriveFML. A summary of the ranking by OncodriveFML and MutSigCV as well as the mutation frequencies of
the genes.

Gene ENSG

Standing
from
OncodriveFML

Standing
from
MutSigCV

Mutation frequency
of the non-synonymous
changes in the gene in
the discovery set of 36
MSI CRCs

Mutation frequency of
the non-synonymous
changes in the gene in
the validation set of 93
MiSeq-sequenced
samples

Mutation frequency
of the non-synonymous
changes in the
gene in the 129
samples (discovery
set + validation set)

BRAF ENSG00000157764 1 1 33.33 35.48 34.88

CASP8 ENSG00000064012 2 4 13.89 5.38 7.75

STK38L ENSG00000211455 3 71 8.33 3.23 4.65

SMARCB1 ENSG00000099956 4 21 11.11 3.23 5.43

CCDC47 ENSG00000108588 5 63 8.33 3.23 4.65

PIK3CA ENSG00000121879 6 11 25.00 15.05 17.83

ENO3 ENSG00000108515 7 53 8.33 3.23 4.65

CTNNB1 ENSG00000168036 8 10 16.67 10.75 12.40

MAN1B1 ENSG00000177239 9 66 11.11 5.38 6.98

PLG ENSG00000122194 10 22 13.89 5.38 7.75

NPL ENSG00000135838 11 24 8.33 2.15 3.88

SLITRK4 ENSG00000179542 12 39 13.89 8.60 10.08

PEMT ENSG00000133027 13 38 8.33 4.30 5.43

EPB41L3 ENSG00000082397 14 62 16.67 9.68 11.63

CHRM1 ENSG00000168539 15 43 11.11 4.30 6.20

PNCK ENSG00000130822 16 41 11.11 2.15 4.65

CDKAL1 ENSG00000145996 17 9 22.22 2.15 7.75

FOXN3 ENSG00000053254 18 5 16.67 3.23 6.98

CRYBB1 ENSG00000100122 19 14 13.89 2.15 5.43

MSGN1 ENSG00000151379 20 35 8.33 2.15 3.88

GLUL ENSG00000135821 21 49 8.33 3.23 4.65

LDHD ENSG00000166816 22 28 11.11 3.23 5.43

WASF3 ENSG00000132970 23 56 11.11 3.23 5.43

TSLP ENSG00000145777 24 18 8.33 1.08 3.10

GDAP1L1 ENSG00000124194 25 33 11.11 2.15 4.65

SLC4A11 ENSG00000088836 26 40 22.22 10.75 13.95

CLVS1 ENSG00000177182 27 37 8.33 2.15 3.88

AMD1 ENSG00000123505 28 61 8.33 1.08 3.10

ITM2A ENSG00000078596 29 23 8.33 2.15 3.88

GPR108 ENSG00000125734 30 25 11.11 2.15 4.65

URI1 ENSG00000105176 31 72 8.33 3.23 4.65

FMR1 ENSG00000102081 32 29 13.89 6.45 8.53

EYA4 ENSG00000112319 33 27 13.89 2.15 5.43

OR1N1 ENSG00000171505 34 44 8.33 2.15 3.88

COL10A1 ENSG00000123500 35 73 8.33 1.08 3.10

CREB3L4 ENSG00000143578 36 50 8.33 2.15 3.88

SLC36A1 ENSG00000123643 37 31 11.11 3.23 5.43

FN3KRP ENSG00000141560 38 15 8.33 1.08 3.10

DTX1 ENSG00000135144 39 52 13.89 7.52 9.30

HS3ST2 ENSG00000122254 40 45 11.11 5.38 6.98
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altering localization, molecular interactions, or enzymatic activ-

ity. Therefore, immunofluorescence microscopy analysis of the

SMARCB1 and STK38L wild-type and mutant proteins was

performed via transient transfection in HeLa cells (Figs 4A and

5A). The SMARCB1 wild-type and R377C mutant proteins were

detected predominantly in the nucleus, with some staining in the

cytoplasm close to the nucleus (Fig 4A). Similar results were

obtained with the mass spectrometry (MS)–microscopy approach

(Liu et al, 2018), where chromosomal (nucleus), endosomal, and

membrane contexts were distinguished. No differences in local-

ization were detected between the SMARCB1 wild-type and

R377C mutant proteins. Similarly, the immunofluorescence

microscopy analysis of STK38L wild-type and R105W mutant

proteins showed highly similar and uniform localization in the

nucleus and cytoplasm (Fig 5A). In the molecular microscopy,

slightly increased endosomal localization of the R105W mutant

was detected. Overall, no obvious mutation-induced changes in

localization were observed for either SMARCB1 or STK38L.

Interactome analysis identifies high-confidence interactions for
SMARCB1 and STK38L

In order to obtain insight on the possible effects of the mutations on

molecular level, a comprehensive interactome analysis was

performed for SMARCB1 and STK38L (bait proteins) using both

affinity purification mass spectrometry (AP-MS) (Varjosalo et al,

2013b) and BioID proximity labeling (Roux et al, 2012) analyses in

Flp-In T-REx 293 cells (Figs 4B and 5B, Dataset EV5, Fig EV1). For

SMARCB1, these analyses identified 72 high-confidence physical

(AP-MS) interactions and 127 high-confidence interactions (HCIs)

from the BioID (functional and proximal interactions). Of the total

of 199 interactions, 63 were detected with both methods. For

STK38L, a total of 34 physical and 86 functional HCIs were detected,

of which 25 were overlapping. The obtained average connectivity

for both of the analyzed bait proteins, identified using AP-MS and

BioID, matches well with the numbers from the published large-s-

cale interactomics studies (Varjosalo et al, 2013a; Yadav et al, 2017;

Liu et al, 2018).

SMARCB1 mutant versus wild-type interactome analysis
implicates changes in “carbon metabolism” and “metabolic
reprogramming in colon cancer” pathways

From the interactome analyses, a comprehensive interaction land-

scape view was constructed for SMARCB1 and the 136 HCIPs

(Fig 4B, Dataset EV5). Our analyses captured 17 components of the

BAF (SWI/SNF-A) and PBAF (SWI/SNF-B) complexes, whose subu-

nits are commonly mutated in cancer (Hodges et al, 2016).

However, SP16H was the only subunit of these complexes found to

display a change—a 3.5-fold increase—in binding with the R377C

mutant (Dataset EV5). The remaining SMARCB1 interactors were

clustered based on their Gene Ontology Biological Processes (GO-

BP) terms. This resulted in clusters in “organelle organization” (16

proteins), “ATP binding” (14), “RNA binding” (12), “DNA binding”

(12), and “chromatin binding” (7). Of the 136 SMARCB1 HCIPs, 52

displayed a change in binding with the mutant protein; 49 negative

and 3 positive changes were identified (Figs 4B and EV1, Dataset

EV5). Interestingly, the majority of the proteins with lowered

Table 1 (continued)

Gene ENSG

Standing
from
OncodriveFML

Standing
from
MutSigCV

Mutation frequency
of the non-synonymous
changes in the gene in
the discovery set of 36
MSI CRCs

Mutation frequency of
the non-synonymous
changes in the gene in
the validation set of 93
MiSeq-sequenced
samples

Mutation frequency
of the non-synonymous
changes in the
gene in the 129
samples (discovery
set + validation set)

KCNJ5 ENSG00000120457 41 59 8.33 3.23 4.65

ING3 ENSG00000071243 42 46 8.33 1.08 3.10

G3BP2 ENSG00000138757 43 58 8.33 4.30 5.43

CPA5 ENSG00000158525 44 54 8.33 6.45 6.98

TGFBR1 ENSG00000106799 45 3 13.89 2.15 5.43

DRD4 ENSG00000069696 46 55 16.67 1.08 5.43

ACTL6A ENSG00000136518 47 57 8.33 1.08 3.10

CDH8 ENSG00000150394 48 69 13.89 5.38 7.75

CMTM2 ENSG00000140932 49 17 8.33 3.23 4.65

TRIM39 ENSG00000204599 50 7 8.33 1.08 3.10

KIT ENSG00000157404 51 47 16.67 5.38 8.53

ASCL4 ENSG00000187855 52 64 8.33 5.38 6.20

EOGT ENSG00000163378 53 60 8.33 1.08 3.10

PAK7 ENSG00000101349 54 65 13.89 2.15 5.43

THRB ENSG00000151090 55 19 8.33 2.15 3.88

TAOK3 ENSG00000135090 56 70 13.89 0.00 3.88

ZNF419 ENSG00000105136 57 34 11.11 89.25 67.44
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interaction with the mutant were linked to RNA, DNA, or ATP bind-

ing. KEGG pathway mapping was then performed for the 52 proteins

that displayed differential binding between the wild type and the

mutant. Surprisingly, the “Carbon metabolism” pathway was identi-

fied as highly enriched (7/52 proteins linked to this pathway,

Bonferroni P-value 4.4 × 10�4). Similarly, the most enriched GO-BP

term was the “pentose-phosphate shunt” (93.5-fold enrichment). A

closer inspection of these seven proteins identified five out of seven

to map to “Metabolic reprogramming in colon cancer” (Fig EV2).

The STK38L interactome shows increased binding of the R105W
mutant with 11 interactors

As with SMARCB1, a comprehensive interactome network was

constructed for STK38L and the 95 HCIPs (Fig 5B, Dataset EV5). In

our network, the known STK38L interactions with the Hippo signal-

ing pathway components MOB1B and MOB2 as well as the nuclear

transport receptor Importin-11 (IPO1) were identified. However, no

changes in interaction with the Hippo signaling pathway compo-

nents were observed between the wild type and the R105W mutant.

Additionally, we detected interactions with proteins functioning

(GO-BP) in “poly(A) RNA binding” (10 HCIPs), “cell–cell adhesion”

(9), “nucleic acid binding” (7), and “cytoskeleton organization” (4).

Of the total of 95 HCIPs, 16 showed differential binding between the

wild type and the mutant. Of these, 11 interactions (CNBP, CNOT2,

HUWE1, IMA5, MAP1A, PGRC1, SCO1, SCO2, UCKL1, XPO5, and

ZKSC8) increased with the mutant protein, whereas five interactions

(BCR, CLIC1, SPD2B, WAC2C, and ZN569) decreased with the

mutant protein (Fig 5B). As we did not detect changes in the local-

ization of the STK38L R105W mutant, the other mechanism for the
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Figure 3. Distribution of the non-synonymous somatic mutations found in SMARCB1 and STK38L.

Each sphere represents a mutation. Purple: missense; blue: nonsense.

▸Figure 4. Molecular and cellular landscape of SMARCB1 wild type and R377C mutant.

A Immunofluorescence microscopy analysis reveals highly similar and mostly nuclear localization of the SMARCB1 wild type and the R377C mutant, visualized by anti-
HA staining (green). Phalloidin and DAPI staining was used to visualize the actin cytoskeleton and the nucleus, respectively. A novel MS–microscopy approach was
used to further define the molecular context of the proteins. This analysis identified possible chromosomal, endosomal, and membrane localization of the proteins.
The possible endosomal localization is in agreement with the anti-HA immunofluorescence microscopy results (key: the scale bar for immunofluorescence images is
10 lm, and the color gradient on the MS–microscopy indicates the localization scores calculated by the MS–Microscopy tool)

B The physical (AP-MS, green) and functional (BioID, red) interactions of SMARCB1 wild type and the R377C mutant (key: lower right corner). The majority of the
physical interactions remained highly similar with the R377C mutant, whereas several functional interactions decreased. The interactions that decreased (< 0.6-fold)
with the R377C mutant are shown with green node color, and the interactions that increased (> 2-fold) are shown in blue. The interaction map of the proteins is
grouped based on participation in known protein complexes (CORUM) or on Gene Ontology Biological Processes of the proteins.

C The cell proliferation assay in HCT116 CRC cells shows growth advantage conferred by the SMARCB1 R377C mutation compared with the wild-type SMARCB1 or the
vector control. The error bars designate the standard deviation (SD). Three replicates were analyzed.
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differential binding with interactors could be altered STK38L enzyme

(kinase) activity. This is plausible as the ATP-binding region in

STK38L (amino acids 96–104) is neighboring to the mutated amino

acid R105. Indeed, homology modeling of STK38L shows a shift from

a positively charged arginine to a non-polar tryptophan pointing

inside toward the ATP-binding site, thereby possibly inhibiting the

ATP-binding and kinase activity of STK38L (Fig 5C).

The SMARCB1 R377C mutation increases colony formation in
colon cancer cells

Mutations may promote oncogenesis by altering cell cycle regulation

or cell proliferation. Using the SMARCB1 and STK38L constructs

stably and inducibly expressing Flp-In T-REx 293 cells, we

performed a flow cytometric analysis of the cell cycle with propid-

ium iodide DNA staining. The cell cycle profiles for SMARCB1 wild

type and the R377C mutant were similar to the parental cell line

used as a control (Fig EV3). Similarly, the STK38L R105W mutant

displayed a control-like profile. However, the STK38L wild type

showed a slight increase (+5.6%) in the number of cells in G1 and a

decrease (�2.8%) in the number of cells in G2 (Fig EV3). This

possibly reflects a somewhat accelerated cell cycle progression.

To test whether the SMARCB1 and STK38L mutations affect CRC

cell growth, we performed a cell proliferation assay in HCT116 CRC

cells. With the SMARCB1 R377C mutant, we detected an increase

(11.1-fold) in the number of drug-resistant colonies compared with

the wild-type SMARCB1 and the vector control (Fig 4C). The wild-

type SMARCB1 failed to increase colony formation (1.2-fold). Inter-

estingly, in the case of STK38L, the wild type increased the number

of drug-resistant colonies (15.7-fold), whereas the R105W mutant

showed only a slight increase compared to the control (4.2-fold)

(Fig 5D). The possible differences in the ability of the STK38L wild

type and the R105W mutant to induce cell proliferation can be

related to the differential interactomes or the possible effect of the

R105W mutation on the STK38L kinase activity.

Hot spot analysis reveals 11 genes to display additional
mutations in the validation set

Genes harboring non-synonymous or splice site hot spot changes—

mutations residing in either the same or two adjacent codons, or

two bases flanking an exon–intron boundary—in at least two

samples were detected from the somatic point mutation data (Figs 1

and 2). Previously reported genes were omitted. Ninety hot spots

from 88 genes were selected for further validation (69 hot spots in

the same codon in 67 genes, and 21 hot spots in adjacent codons in

21 genes) in the extended set of 93 MSI CRCs (Dataset EV6). Two of

the genes (ALG1 and SASH1) contained two hot spots. Six of the

selected hot spot-containing genes (CCDC47, ENO3, LDHD, RER1,

SLC4A11, and TMEM80) were also found in the top 73 of the

MutSigCV ranking. Also, six hot spot-containing genes Sanger-

sequenced in our previous efforts (BRAF, CMTM2, CRYBB1,

CTNNB1, PIK3CA, and SLC36A1) (Gylfe et al, 2013; Tuupanen et al,

2014)—harboring altogether seven hot spots—were ranked within

the top 73 genes by MutSigCV and therefore qualified for validation.

They were thus added to our set of hot spots. The final set entering

validation therefore consisted of 97 hot spots from 94 genes (Dataset

EV6). The two most commonly mutated amino acids were arginine

and alanine (Appendix Fig S5A).

Of the 94 genes, 11 were found to contain hot spot mutations

also in the MiSeq data: BRAF, CORIN, CTNNB1, KLHL6, PCDHB16,

PIK3CA, PLEKHG1, PROS1, SLC36A1, SPP2, and TROAP (Table 2,

Dataset EV3). The observed count of the total mutation hot spots in

the unified data of 36 samples differed significantly from the null

distribution of hot spots acquired from randomizing the mutations

across the exome, with all randomized counts being less than the

observed count (P = 2 × 10�5).

In addition to the 94 genes in the hot spot set (Datasets EV6 and

EV7), there were 13 genes (ACTL6A, ASCL4, CASP8, DTX1,

EPB41L3, FMR1, FOXN3, PNCK, SLITRK4, SMARCB1, STK38L,

TGFBR1, and URI1) that qualified for MiSeq validation as they were

found in the top 73 genes of the MutSigCV ranking, and in which a

hot spot was discovered only after the MiSeq validation (Fig 2,

Dataset EV3). In none of these 13 genes, however, the mutation

frequency of the hot spots exceeded 5%.

Discussion

The challenge of distinguishing driver genes from passengers is

pronounced in MSI tumors due to their high mutation count, yet

they may provide a sensitive model system for detection of mutation

and subsequent selection. Cancer-driving genes have been consid-

ered genes whose mutations increase cell growth under the

microenvironmental conditions within the cell in vivo (Tokheim

et al, 2016). However, mutation frequency solely does not predict

causality, but rather the mutation impact and pattern should be

considered (Vogelstein et al, 2013).

In this study, we utilized a discovery set of 36 exome- or whole-

genome-sequenced MSI CRCs and respective normals to identify

new driver genes in MSI CRC based on somatic point mutations of

the exome kit-targeted region of the genome (Fig 1). The top 73

◀ Figure 5. Molecular and cellular landscape of STK38L wild type and R105W mutant.

A Immunofluorescence microscopy analysis of the STK38L wild type and the R105W mutant displays no clear difference in localization. Both the wild type and the
R105W mutant display nuclear, cytoplasmic, and plasma membrane localization. However, the MS–microscopy analysis suggests a more prominent endosomal
localization with the R105W mutant (key: The scale bar for the immunofluorescence images is 10 lm, and the color gradient on the MS–microscopy indicates the
localization scores calculated by the MS-Microscopy tool).

B The physical (AP-MS, green) and functional (BioID, red) interactions of the STK38L wild type and the R105W mutant (key: lower right corner). The R105W mutant
displays increased interaction with 11 HCIPs, whereas five interactions decreased. The interactions that decreased (< 0.6-fold) with the R105W mutant are indicated
with green node color, and the interactions that increased (> 2-fold) are in blue.

C The homology modeling of the STK38L shows a shift from the positively charged arginine to a non-polar and bulky tryptophan pointing inside toward the ATP-
binding site, thereby possibly inhibiting the ATP-binding and kinase activity of STK38L.

D The cell proliferation assay in HCT116 CRC cells shows growth advantage conferred by the expression of the wild-type STK38L, whereas the R105W mutant only
slightly increased the number of colonies. The error bars designate the standard deviation (SD). Three replicates were analyzed.
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genes predicted as the most likely drivers by MutSigCV were re-

sequenced by MiSeq sequencing in a validation set of 93 additional

MSI CRCs. A newly available algorithm more suitable for smaller

datasets, OncodriveFML, was utilized on the somatic point mutation

data from the targeted MiSeq sequencing to yield a ranking of candi-

date driver genes. From these, SMARCB1 and STK38L were selected

for further validation in additional functional studies. To our knowl-

edge, this study represents the first effort to uncover driver point

mutations in MSI CRC utilizing deep sequencing of a large set of

tumors for validation.

The two most highly mutated genes were the previously well-

characterized drivers BRAF (33% in the discovery set, 35% in the

validation set) and PIK3CA (25% in the discovery set, 15% in the

validation set) (Fearon, 2011). The mutation percentage of the BRAF

mutation hot spot V600E (28% in the discovery set and 34% in the

validation set) was in line with previous literature (Rajagopalan

et al, 2002). The rest of the genes were mutated with lower

frequency, and distinguishing the candidate driver genes from

among these was a challenge where computational prediction of

mutation impact was of primary importance.

Table 2. Summary of the hot spots identified. Information on the hot spots that contained additional mutations in the MiSeq sequencing data.

Gene ENSG

Chromosomal
Position
(GRCh37) Base

Amino Acid
Change

n out of
the
36 NGS
samples

Mutation
percentage
in the 36
NGS
samples

n out of
the 93
MiSeq
samples

Mutation
percentage
in the 93
MiSeq
samples

Total n
(out
of 129)

Total
mutation
percentage

Number of
mutations
in the
gene
targeting
hot spots

Percentage
of all
mutations
in the
gene
targeting
hot spots

BRAF ENSG0
00001
57764

7:140453136 A->T Val600Glu 10 27.8 32 34.4 42 32.6 42/45 93.3

CTNNB1 ENSG0
00001
68036

3:41266124 A->G Thr41Ala 2 5.6 2 2.2 4 3.1 10/17 58.8

CTNNB1 ENSG0
00001
68036

3:41266137 C->T Ser45Phe 0 0.0 6 6.5 6 4.7 10/17 58.8

CORIN ENSG0
00001
45244

4:47625753,
4:47625751,
4:4762750

C->T,
G->A,
C->T

Arg792His,
Arg793Cys,
Arg793His

2 5.6 1 1.1 3 2.3 NA NA

KLHL6 ENSG0
00001
72578

3:183225972 G->A Arg262Cys 2 5.6 1 1.1 3 2.3 NA NA

PCDHB16 ENSG0
00001
96963

5:140564212 C->T Ala693Val 2 5.6 1 1.1 3 2.3 NA NA

PIK3CA ENSG0
00001
21879

3:178916876 G->A Arg88Gln 1 2.8 1 1.1 2 1.6 14/25 56.0

PIK3CA ENSG0
00001
21879

3:178916890 C->T Arg93Trp 0 0 2 2.2 2 1.6 14/25 56.0

PIK3CA ENSG0
00001
21879

3:178936091,
3:178936092,
3:178936094,
3:178936095,
3:178936096

G->A,
A-C,
C->A,
A->G,
G->T

Glu545Lys,
Glu545Ala,
Gln546Lys,
Gln546Arg,
Gln546His

2 5.6 4 4.3 6 4.7 14/25 56.0

PIK3CA ENSG0
00001
21879

3:178952085 A->G His1047Arg 3 8.3 1 1.1 4 3.1 14/25 56.0

PLEKHG1 ENSG0
00001
20278

6:151161856,
6:151161857

C->T,
G->A

Arg1328Cys,
Arg1328His

2 5.6 1 1.1 3 2.3 NA NA

PROS1 ENSG0
00001
84500

3:93605265 A->G Leu413Pro 2 5.6 1 1.1 3 2.3 NA NA

SLC36A1 ENSG0
00001
23643

5:150844717 G->A Ala136Thr 3 8.3 1 1.1 4 3.1 4/9 44.4

SPP2 ENSG0
00000
72080

2:234959459 T->C Met10Thr 2 5.6 1 1.1 3 2.3 NA NA

TROAP ENSG0
00001
35451

12:49722962,
12:49722965

C->T,
C->T

Arg347Trp,
Arg348Cys

2 5.6 1 1.1 3 2.3 NA NA
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On top of the OncodriveFML ranking, there were eight genes

(BRAF, CTNNB1, CASP8, CCDC47, STK38L, ENO3, PIK3CA, and

SMARCB1) with a q-value smaller than 0.1. Three of the eight genes

(BRAF, CTNNB1, and PIK3CA) are previously established oncogenic

drivers of CRC, and in our data, they display the typical hot spot

mutations (Polakis, 1999; Davies et al, 2002; Velho et al, 2005).

CASP8 has been listed as significantly mutated in hypermutable

CRCs (Cancer Genome Atlas Network, 2012) and suggested to be a

CRC suppressor gene (Kim et al, 2003). SMARCB1 in turn is a previ-

ously known tumor suppressor gene (Shain & Pollack, 2013) impli-

cated in a number of malignancies (Modena et al, 2005; Smith et al,

2012; Shain & Pollack, 2013; Bishop et al, 2014), including CRC

(Pancione et al, 2013; Jauhri et al, 2016; Wang et al, 2016). STK38L

has been shown to promote cell survival and invasion in MSS CRC

cell lines (Suzuki et al, 2006). The remaining two of the top eight

genes (CCDC47 and ENO3) have to our knowledge not been impli-

cated in CRC before. From the top eight genes, SMARCB1 and

STK38L—which display plausible growth associated functions and

to our knowledge have not been implicated in MSI CRC before—

were selected for further validation in functional studies where the

effect of the mutations on the localization, molecular interactions,

and enzymatic activity of the proteins was investigated.

Initially, SMARCB1 (SWI-SNF-related matrix-associated actin-

dependent regulator of chromatin subfamily B member 1) was shown

to be biallelically inactivated in malignant rhabdoid tumor cell lines

(Versteege et al, 1998). Later, mutations and aberrant expression of

SMARCB1 have been reported in various tumor types including famil-

ial schwannomas (Hulsebos et al, 2007), melanomas (Stockman

et al, 2015), and rhabdoid tumors from different locations (Eaton

et al, 2011). Loss of expression of SMARCB1 has been reported in

colorectal adenocarcinomas and has been associated with higher

histological grade, larger tumor size, poor overall survival, MSI, and

the BRAF V600E mutation (Wang et al, 2016). Another CRC study

has reported low expression of SMARCB1 to associate with poor dif-

ferentiation, liver metastasis, and poorer survival regardless of the

MMR status or tumor stage (Pancione et al, 2013).

In our SMARCB1 interactome analysis, 136 HCIs were detected,

of which 52 displayed changes between the wild type and the

R377C mutant. Interestingly, the 49 interactions that decreased in

the mutant showed enrichment for glycolytic and pentose-phos-

phate pathway (PPP) enzymes. The synthesis of glycolytic and PPP

enzymes has previously been reported to be almost ubiquitously

augmented in CRC cell lines (Shibuya et al, 2015). Additionally,

ribose-5-phosphate isomerase A (RPIA), an enzyme involved in the

PPP, has been shown to be significantly elevated in CRC and to

stabilize b-catenin activity and promote activation of its target genes

in CRC cells (Chou et al, 2018).

Furthermore, five of the seven glycolytic and PPP enzymes iden-

tified in our interactome analysis (GOT2, GPI, PGD, PSAT1, and

TKT) were found to map to the “Metabolic reprogramming in colon

cancer” pathway. Previously, inhibition of glutamic oxaloacetic

transaminase 2 (GOT2) has been shown to lead to elevated levels of

reactive oxygen species (ROS) and cyclin-dependent kinase inhibitor

p27-mediated cell senescence in human pancreatic ductal adenocar-

cinoma cells (Yang et al, 2018). Disruption of glucose-6-phosphate

isomerase (GPI), in turn, has been shown to reduce glucose

consumption and suppress lactic acid secretion in the LS174T CRC

cell line, resulting in reprogramming of cells to depend on oxidative

phosphorylation and mitochondrial ATP production (de Padua et al,

2017). Knockdown of 6-phosphogluconate dehydrogenase (PGD) of

the PPP has been shown to inhibit the growth of lung cancer cells

by inducing cell senescence, which was thought to occur through

accumulation of growth-inhibitory glucose metabolics (Sukhatme &

Chan, 2012). Overexpression of phosphoserine aminotransferase 1

(PSAT1) in the SW480 CRC cell line was shown to increase the

growth rate and survival of the cells (Vie et al, 2008). Finally,

knockdown of transketolase (TKT) has been shown to result in a

decrease in the levels of the antioxidant NADPH and an increase in

ROS, and to remarkably reduce cell growth in two hepatocellular

carcinoma cell lines and in vivo (Xu et al, 2016).

Glucose availability is known to be a metabolic checkpoint in cell

cycle progression (Jones et al, 2005), and the PPP has been shown

to be specifically regulated during cell cycle progression in the HT29

CRC cell line, and its inhibition to slow down the progression of the

cell cycle (Vizan et al, 2009). In agreement with these findings, we

detected increased cell proliferation induced by the expression of

the SMARCB1 R337C mutant in the HCT116 CRC cell line.

STK38L (serine/threonine kinase 38-like), in turn, is a member of

a family of protein serine/threonine kinases involved in the control

of cell division (Tamaskovic et al, 2003). STK38L has been shown

to be involved in the regulation of cell cycle progression by stabiliz-

ing c-myc and preventing the accumulation of p21 protein levels

(Cornils et al, 2011a,b). STK38L has been suggested to enhance the

impact of its close relative, STK38, that opposes TGF-b-mediated cell

cycle arrest by limiting the phosphorylating ability of TGF-b (Pot

et al, 2013). Also, stimulation of STK38L by IGF-1 has been shown

to activate ARK5, which in turn promoted cell survival and invasion

in two MSS CRC cell lines (Suzuki et al, 2006).

In our interactome analysis for STK38L, the previously known

interactions with the Hippo signaling pathways were observed

(Devroe et al, 2004; Meng et al, 2016). In addition, several interac-

tions involved in polyA RNA binding, regulation of translation, cell–

cell adhesion, and cytoskeleton organization were detected. The 16

proteins that displayed differential binding between the STK38L

wild-type and the R105W mutant proteins included several proteins

that have been previously linked to different cancers including CRC.

Of these, cytochrome c oxidase assembly protein 1 (SCO1) has been

shown to be upregulated in the Caco-2, HCT116, and HT29 CRC cell

lines (Barresi et al, 2016). SCO1 regulates the assembly of the elec-

tron transport chain-associated cytochrome c oxidase complex along

with cytochrome c oxidase assembly protein 2 (SCO2), which is in

turn regulated by p53 (Nath & Chan, 2016). Mutations in TP53 have

been shown to downregulate the transcription of SCO2 thus prevent-

ing the assembly of the cytochrome c oxidase complex, therefore

promoting the cells’ dependency on glycolysis for energy produc-

tion. Chloride intracellular channel 1 (CLIC1) has been shown to

exhibit increased protein levels in several cancers including CRC

(Peretti et al, 2015). Knockdown of CLIC1 expression has been

shown to inhibit migration and invasion of cells in the LoVo CRC

cell line (Wang et al, 2012, 2014). Lack of SPD2B, a protein encoded

by SH3 and PX domains 2B (SH3PXD2B), has been shown to result

in incomplete formation of podosomes and inhibited degradation of

extracellular matrix in scr-transformed fibroblasts (Buschman et al,

2009). RhoGEF and GTPase activating protein (BCR), in turn, is one

of the two genes involved in the BCR-ABL complex associated with

the Philadelphia chromosome in leukemias (Rowley, 1973).
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In our hot spot effort, 97 hot spots from 94 genes were selected

for MiSeq validation from the discovery set. From 11 genes (BRAF,

CORIN, CTNNB1, KLHL6, PCDHB16, PIK3CA, PLEKHG1, PROS1,

SLC36A1, SPP2, and TROAP), additional hot spot mutations were

found in the MiSeq data. BRAF, CTNNB1, and PIK3CA are previously

known MSI CRC driver genes (Shitoh et al, 2001; Davies et al, 2002;

Fearon, 2011). In SLC36A1, a hot spot mutation has been validated

in our previous effort (Tuupanen et al, 2014). The mutation

frequencies observed in this effort and our previous study were

similar and are shown in Dataset EV7. Seven of the 11 genes in

which additional hot spot mutations were found in the MiSeq

data—CORIN (R792H/R793H/R793C), KLHL6 (R262C), PCDHB16

(A693V), PLEKHG1 (R1328C/R1328H), PROS1 (L413P), SPP2

(M10T), and TROAP (R347W/R348C), all containing a hot spot in

3/129 tumors—are to our knowledge novel hot spot-containing

genes.

Cataloguing the genetic changes underlying cancer is essential

for profound understanding of cancer biology. In this effort, a

SMARCB1 mutation exhibited altered interactions with several

proteins with an enrichment of alterations for the PPP. The muta-

tion increased colony formation in CRC cells suggesting that

SMARCB1 is a novel candidate driver gene in MSI CRCs. Also, seven

novel candidate oncogenes (CORIN, KLHL6, PCDHB16, PLEKHG1,

PROS1, SPP2, and TROAP) were identified based on somatic muta-

tion hot spots. Utilizing a discovery set larger than that in our study

might enable identification of yet more candidates for MSI CRC

driver genes. Also, further functional work is required to validate

the significance of the candidate genes discovered in this study.

Cancer genes affected by point mutations—activating hot spot muta-

tions in particular—are attractive potential therapeutic targets, and

their identification should facilitate development of personalized

treatments.

Materials and Methods

Ethics approval

The study was approved by the National Institute for Health and

Welfare (THL/151/5.05.00/2017) and the Ethics Committee of the

Hospital District of Helsinki and Uusimaa. All samples were derived

after either an informed consent signed by the patient or authoriza-

tion from the National Supervisory Authority for Welfare and

Health. The study was conducted in accordance with Declaration of

Helsinki and Belmont Report.

Patient material

The discovery set of 36 sporadic MSI CRCs and corresponding blood

or healthy colon tissue samples were derived from a previously

characterized population-based series of 1,044 CRCs (Dataset EV8)

(Aaltonen et al, 1998; Salovaara et al, 2000). Of the 36 sporadic MSI

CRCs, 24 were utilized in our previous efforts where novel candi-

date oncogenes were identified (Gylfe et al, 2013; Tuupanen et al,

2014), and novel candidates for MSI target genes were identified

(Kondelin et al, 2017). DNA was extracted from whole blood or

fresh frozen tissue specimens using standard methods. An addi-

tional set consisting of 93 additional MSI CRCs, of which 12 were

from patients with Lynch syndrome and the rest sporadic, was avail-

able for validation (Dataset EV8). The MSI status of the tumors had

been determined previously (Aaltonen et al, 1998; Salovaara et al,

2000). All tumors fulfilled the criteria for MSI high (Boland et al,

1998).

Exome sequencing of 24 MSI CRCs and corresponding normals

The coding regions of the genome were enriched with the Agilent

SureSelect Human All Exon Kit v1 (Agilent, Santa Clara, CA) accord-

ing to the manufacturer’s instructions. Paired-end short-read

sequencing was performed with Illumina Genome Analyzer II

machines (Illumina, Inc, San Diego, CA) at Karolinska Institute

(Huddinge, Sweden), and the Institute for Molecular Medicine

Finland (FIMM) Genome and Technology Center, Finland.

The read mapping and variant calling of the exome sequencing

data were conducted as in our previous studies (Gylfe et al, 2013;

Cajuso et al, 2014; Tuupanen et al, 2014).

Whole-genome sequencing of 12 MSI CRCs and
corresponding normals

Genomic DNA libraries were prepared according to Illumina and

Complete Genomics (Complete Genomics Inc., Mountain View,

CA, USA) paired-end sequencing service protocol. The Illumina

sequencing service was performed on the Illumina HiSeq 2000

platform with paired-end reads of 100 base pairs (bp) in length.

Each normal and tumor DNA sample was sequenced to a median

coverage of 40× at minimum (the Complete Genomics service

package was conducted with standard coverage, i.e., 40× average

coverage and 90% callable diploid loci on the human reference

genome). The read mapping and variant calling of the whole-

genome sequencing data were conducted as in our previous study

(Katainen et al, 2015).

Somatic variant calling and quality control in the exome and
whole-genome data

A comparative analysis and visualization tool developed in-house

(BasePlayer) (Katainen et al, 2017) was utilized for sequencing data

analysis and visualization. The sequencing data from the discovery

set of 24 tumor exomes and 12 tumor genomes were filtered against

data from the respective normal samples, 92 in-house blood or

normal colorectal samples from CRC patients, and 26 myometrium

samples to remove germline variants and artifacts from the data.

The following quality filters were used for somatic variants: (i)

coverage at the variant site had to be 21 or higher (high coverage

was required to minimize the amount of artifacts), and (ii) the frac-

tion of reads supporting the mutation had to be 20% or higher. In

order to study SNVs only, insertions and deletions were removed

from the data (Fig 1). A bed file with the areas targeted by the

exome kit was utilized to unify the exome and genome data. The

resulting data therefore were a list of somatic missense, nonsense,

and synonymous changes as well as the few noncoding mutations

found in the region targeted by the exome kit.

The effect of the variants of interest was predicted by SIFT and

PolyPhen in the Ensembl Variant Effect Predictor (https://uswest.

ensembl.org/info/docs/tools/vep/index.html).
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RNA-sequencing data

Gene expression levels for MutSigCV were estimated from RNA-

sequencing data (Ongen et al, 2014). RNA from the normal samples

of 22 CRC patients was extracted with RNeasy Mini Kit (Qiagen,

Hilden, Germany; Appendix Table S1). The RNA-sequencing proce-

dure is described in Ongen et al (2014). All RNA-seq data were

processed using the Anduril software (version 1.2.21; http://csbi.ltd

k.helsinki.fi) and the reference genome GRCh37 (Ovaska et al,

2010). The initial quality control and adapter trimming of the read

data was performed with Trimmomatic (version 0.20; http://www.

usadellab.org/cms/?page=trimmomatic). The trimmed data were

then aligned with TopHat (version 2.0.8b; http://ccb.jhu.edu/sof

tware/tophat/). The gene and isoform abundances were estimated

based on Cufflinks (version 2.1.1; http://cole-trapnell-lab.github.io/

cufflinks/).

MutSigCV

MutSigCV (v1.4) was used to rank mutated genes based on signifi-

cance (Lawrence et al, 2013). MutSigCV analyzes SNVs discovered

in DNA sequencing to identify genes that were mutated more often

than expected by chance given the background mutation processes.

The analyzed SNVs were annotated with Annovar (2014 Jul 04)

using GRCh37 as the reference genome (Wang et al, 2010). Default

parameters for MutSigCV were used, except for the sequencing

coverage and the gene expression covariate (see below). Mutation

effects were defined as noncoding, nonsilent, or silent

(Appendix Table S2). The mutation effect refers to a broad class of

effects that the mutation exerts on the gene. A nonsilent effect

changes the protein sequence or a splice site, a silent effect is a

synonymous change, and a noncoding effect is intronic or in a

flanking noncoding region.

MiSeq sequencing of the validation set of 93 MSI CRCs

From the ranking of genes derived from MutSigCV, genes with

mutations in less than three tumors were left out. The coding

regions of the top 73 genes (as this was feasible with the size of the

MiSeq experiment) from the ranking by MutSigCV were selected for

further validation with MiSeq sequencing in the validation set of 93

MSI CRCs. Also, 97 hot spots from 94 genes were selected for

further validation.

Sequencing libraries were prepared with the TruSeq Custom

Amplicon Index Kit (Illumina) and the TruSeq Custom Amplicon Kit

v1.5 (Illumina) at Functional Genomics Unit (FuGU), Biomedicum,

Helsinki. Paired-end sequencing with a read length of 150 bp was

performed on Illumina MiSeq Sequencing System at FuGU.

Sequence files were produced with MiSeq Control Software 2.4.1.3.

Paired-end MiSeq reads were mapped against the 1000 Genomes

Project reference hs37d5 with BWA MEM (version 0.7.12) (Li,

2013). Overlapping read pair mates were clipped with the bamUtil

clipOverlap tool. Regions with suspected indels were realigned with

GATK IndelRealigner (GATK version 2.3-9) (Van der Auwera et al,

2013). Base quality scores were then normalized with GATK to

produce the BAM files used in subsequent variant calling and analy-

sis. Variants were called with GATK HaplotypeCaller with default

parameters and GATK GenotypeGVCFs with default parameters

except for the minimum confidence threshold for emitting variants,

which was set to 1.0 to achieve high sensitivity.

The corresponding normals were not included in the MiSeq

sequencing of the validation set, but it has been shown that germ-

line controlling with outside normal samples can exclude germline

changes even more efficiently (Hiltemann et al, 2015).

Somatic variant calling and quality control in the MiSeq data

The same in-house comparative analysis and visualization tool

(BasePlayer) used for the exome and genome sequencing data was

utilized for the MiSeq data (Katainen et al, 2017). The sequencing

data from the validation set of 93 MSI CRCs were filtered against

> 60,000 controls to remove germline variants. The controls

included 213 in-house whole genomes from blood or normal colorec-

tal samples of CRC patients, 1,092 genomes from the 1000 Genomes

Project (1000 Genomes Project Consortium et al, 2012), 69 genomes

from Complete Genomics 69 Genomes Data (http://www.complete

genomics.com/public-data/69-genomes/), 402 genomes from the

Kuusamo Project (Data ref: European Genome-phenome Archive

EGAS00001000020, 2015), 1,941 whole genomes from the Sequenc-

ing Initiative Suomi (SiSU) project (http://www.sisuproject.fi/), 740

whole genomes from individuals from the UK10K project, and 1,692

whole genomes from twins from the UK10K project (http://www.

uk10k.org/). Also 61,486 exomes (release 0.3) from individuals from

Exome Aggregation Consortium (ExAC) Cambridge, MA (Lek et al,

2016), and 2,203 genomes from African American individuals (re-

lease 0.0.23) as well as 4,300 genomes from European Americans

(release 0.0.23) from Exome Variant Server, NHLBI GO Exome

Sequencing Project (ESP), Seattle, WA (http://evs.gs.washington.ed

u/EVS/), were used. The control set also included 92 exomes from

migraine patients as well as 14 genomes from other in-house

controls. Variants with MAF < 5 × 10�5 were considered.

The same quality filters that were used to call somatic variants in

the exome and whole-genome data were also used for the MiSeq data.

The resulting data therefore were a list of somatic missense, nonsense,

and synonymous changes found in < 0.10 per mil of controls.

Utilizing the COSMIC database (Forbes et al, 2015) and the Inter-

national Cancer Genome Consortium (ICGC) Data Portal (https://

dcc.icgc.org/releases), we looked for variants in the same or adja-

cent codon of the variants found in our data. We only considered

confirmed somatic variants in the COSMIC database and verified

variants in the ICGC database. The domains of the genes were

checked from Ensembl database (Finn et al, 2016).

OncodriveFML

During the course of this study, a newly published algorithm, Onco-

driveFML, became available (Mularoni et al, 2016). Unlike

MutSigCV, OncodriveFML is feasible on smaller datasets as it

utilizes localized functional prediction of mutations rather than the

background mutation rate. Hence, OncodriveFML analysis was

performed on the MiSeq data from the 73 candidate genes identified

by MutSigCV. OncodriveFML was run on the somatic SNV data

acquired from the MiSeq sequencing of the validation set of 93 MSI

CRCs. The mean of CADD scores (i.e., the default settings) was

utilized. Genes with mutations in only one tumor were excluded as

OncodriveFML was not able to calculate q-values for them.
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Expression constructs

Site-directed mutagenesis of STK38L and SMARCB1 was performed to

generate the recurrent mutants (STK38L R105W and SMARCB1 R377C)

(Data ref: Transcript: Ensembl ENST00000263121.7, 2018; Data ref:

Ensembl ENST00000389032.7, 2018). The mutations for STK38L and

SMARCB1 were generated in gateway-compatible entry vectors

obtained from a human ORFeome collection from Genome Biology

Unit core facility (Research Programs Unit, HiLIFE Helsinki Institute of

Life Science, Faculty of Medicine, University of Helsinki, Biocenter

Finland). Site-directed mutagenesis for the three genes of interest was

performed with the Q5� Site-Directed Mutagenesis Kit (New England

BioLabs, Ipswich, MA, USA). The mutated clones were directly

sequenced to ensure only the correct mutation was created in the

inserts. The primers utilized in the mutagenesis are as follows:

STK38L-F: TGGAGAGGTGtGGTTGGTCCA, STK38L-R: AAAGCTCCTC

TTCCTATAACTTTCAG; and SMARCB1-F: GCGGATGAGGtGTCTTGC

CAA, SMARCB1-R: CTCGTGTTCCTGTCCTGG. The three complemen-

tary DNA constructs were then cloned into C-terminal MAC-tag expres-

sion vectors with Strep, HA, and BirA tags (Liu et al, 2018) via a

gateway LR reaction.

Cell culture

Flp-InTM T-RExTM 293 cell lines (Invitrogen, Carlsbad, CA, USA) were

cultured according to the manufacturer’s instructions and utilized for

generating stable cell lines that expressed the gene of interest with an

inducible promoter. Cells were co-transfected with the expression

vector and the pOG44 vector (Invitrogen) using the FuGENE 6 trans-

fection reagent (Roche Applied Science, Penzberg, Germany). Four

days after transfection, the cells were put in 100 lg/ml hygromycin

selection media for 2 weeks. Positive clones were then pooled and

amplified. Stable cell lines were each expanded to 80% confluence in

20 × 145 mm cell culture plates. Ten plates were used for the AP-MS

approach and ten for the BioID experiments. Expression of the gene of

interest was induced 24 h before harvesting the cells with 1 lg/ml

tetracycline. For the BioID plates, 50 lM of biotin was added. Cells

from five plates were pelleted as one biological sample. Therefore,

each bait protein had two biological replicates in both approaches.

The samples were snap-frozen and stored at�80°C.

Interactor affinity purification

For AP-MS, the cell pellets were lysed in 3 ml of lysis buffer A

(0.5% IGEPAL, 50 mM HEPES, pH 8.0, 150 mM NaCl, 50 mM NaG,

1.5 mM NaVO3, 5 mM EDTA, and 0.5 mM PMSF supplemented by

protease inhibitors; Sigma-Aldrich, St. Louis, MO, USA). For the

BioID samples, the cell pellets were thawed in 3 ml of lysis buffer B

(0.5% IGEPAL, 50 mM HEPES, pH 8.0, 150 mM NaCl, 50 mM NaF,

1.5 mM NaVO3, 5 mM EDTA, 0.1% SDS, and 0.5 mM PMSF, with

protease inhibitors; Sigma-Aldrich). The BioID lysates were treated

with benzonase, after which they were sonicated.

The lysates were centrifuged at 16,000 g for 15 min, after which the

supernatant was centrifuged for another 10 min to obtain cleared

lysates. The lysate was then loaded consecutively on spin columns

(Bio-Rad, Helsinki, Finland) containing 200 ll of Strep-Tactin beads

(IBA Lifesciences, GmbH, Göttingen, Germany) prewashed with 1 ml

of corresponding lysis buffer. The beads were then washed with

3 × 1 ml of lysis buffer and 4 × 1 ml of wash buffer (50 mM Tris–HCl,

pH 8.0, 150 mM NaCl, 50 mM NaG, 5 mM EDTA). After the final

wash, the beads were resuspended in 2 × 300 ll of elution buffer

(50 mM Tris–HCl, pH 8.0, 150 mM NaCl, 50 mM NaF, 5 mM EDTA,

0.5 mM biotin) and incubated for 5 min, and eluates were collected,

followed by reduction in the cysteine bonds with 5 mM Tris(2-carbox-

yethyl)phosphine (TCEP) for 20 min at 37°C and alkylation with

10 mM iodoacetamide (at room temperature, in the dark). Proteins

were digested overnight at 37°C with sequencing-grade modified

trypsin (Promega, Madison, WI, USA). After quenching with 10%

TFA, the samples were desalted with C18 reverse-phase spin columns

according to the manufacturer’s protocol (Harvard Apparatus,

Cambridge, MA, USA). The eluted samples were dried in a vacuum

centrifuge and reconstituted to a final volume of 30 ll in 0.1% TFA

and 1% CH3CN.

Liquid chromatography–mass spectrometry (LC-MS)

The LC-MS analysis was performed on a Q-Exactive mass spectrome-

ter using Xcalibur version 3.0.63, coupled to an EASY-nLC 1000

system via electrospray ionization sprayer (Thermo Fisher Scientific,

Waltham, MA, USA). Peptides were eluted and separated with a C18

precolumn (Acclaim PepMap 100, 75 lm × 2 cm, 3 lm, 100 Å;

Thermo Fischer Scientific) and an analytical column (Acclaim PepMap

RSLC, 75 lm × 15 cm, 2 lm, 100 Å; Thermo Fischer Scientific),

using a 60-min buffer gradient ranging from 5 to 35% buffer B,

followed by a 5-min gradient from 35 to 80% buffer B, and a 10-min

gradient from 80 to 100% buffer B at the flow rate of 300 nl/min

(buffer A: 0.1% formic acid in 98% HPLC-grade water and 2%

acetonitrile; buffer B: 0.1% formic acid in 98% acetonitrile and 2%

water). Four microliters of peptide sample was loaded from an

enclosed, cooled autosampler for each sample run. Data-dependent

FTMS acquisition was in positive ion mode for 80 min. A full scan

(200–2,000 m/z) with a resolution of 70,000 was performed, followed

by top 10 CID-MS2 ion trap scans with a resolution of 17,500.

Dynamic exclusion was set to 30 s. The acquired MS2 spectral data

files (Thermo RAW) were searched with Proteome Discoverer 1.4

(Thermo Fischer Scientific) using the SEQUEST search engine against

the human component of UniProtKB/Swiss-Prot database (https://

www.uniprot.org/). For the searches, trypsin was set as the digestion

enzyme with a maximum of two missed cleavages permitted. Precur-

sor mass tolerance was set to � 15 ppm and fragment mass tolerance

at 0.05Da. Carbamidomethylation of cysteine was defined as static

modification, and oxidation of methionine and biotinylation of lysine

and N-termini were set as variable modifications. All reported data

were based on high-confidence peptides assigned in Proteome Discov-

erer with FDR < 1%. For label-free quantification, spectral counts for

each protein in each sample were extracted and used in relative quan-

tification of protein abundance changes.

Filtering and analysis of the LC-MS data

Significance Analysis of INTeractome (SAINT)-express version

3.6.065,66 (Teo et al, 2014) (Choi et al, 2011) and Contaminant

Repository for Affinity Purification (CRAPome) (Mellacheruvu et al,

2013) were used as statistical tools for identification of specific high-

confidence interactions from our AP-MS data. Sixteen GFP control

runs (eight N-terminal MAC-GFP and eight C-terminal MAC-GFP
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runs) were used as control counts for each hit, and the final results

only considered proteins with SAINT score ≥ 0.73. This corresponds

to an estimated protein-level Bayesian FDR of < 0.05. Furthermore,

we used the CRAPome database with a cutoff frequency of ≥ 20%

(≥ 82) except for the average spectral count fold change, which was

set to ≥ 3 to assign high-confidence interactors.

GO analysis of the identified prey proteins was conducted with

the DAVID gene functional analysis tool (Huang da et al, 2009)

using the GO_BP_DIRECT and GO_MF_DIRECT gene ontology sets.

The P-values associated with each considered annotation term were

< 0.01. For pathway analyses, KEGG (www.genome.jp/kegg/) and

WikiPathways (https://www.wikipathways.org/index.php/WikiPa

thways) were used. The interaction networks were constructed with

Cytoscape (Shannon et al, 2003), and the protein complex informa-

tion from CORUM (Ruepp et al, 2010) was incorporated. The known

prey–prey interaction data were obtained from iRefWeb (Turner

et al, 2010). Interaction abundance change-illustrating dotplots were

created with an online dotplots visualization tool (http://prohit

stools.mshri.on.ca/Dotplot/Dotplot.php) (Knight et al, 2015).

Mass spectrometry–microscopy (MS–microscopy)

The MS–microscopy analyses were performed with the MS–Micro-

scopy Web tool (http://www.biocenter.helsinki.fi/bi/protein/msmic)

(Liu et al, 2018). The results are presented in a polar plot, with the

circle divided into 14 different cellular compartments: centrosome

(CEN), chromatin (CHR), endoplasmic reticulum (EM), endosome

(ED), exosome (EXO), Golgi (GOL), lysosome (LYS), microtubule

(MIC), mitochondria (MIT), nuclear envelope (NE), nucleolus (NUC),

peroxisome (PER), plasma membrane (PM), and proteasome (PRO).

Cell cycle experiments

For the cell cycle analysis, MuseTM Cell Cycle Kit (Merck, Kenil-

worth, NJ, USA) was used. Flp-InTM T-RExTM 293 cell lines expressing

the corresponding transgene were grown on four 10-cm plates per

cell line until 50% confluency, at which point KaryoMAX Colcemid

solution (Gibco, Dublin, Ireland) was added 1:100 to two plates per

cell line for 6 h. Cells were harvested by trypsinization and fixed by

resuspending in ice-cold 70% EtOH. The final EtOH suspension was

calculated to contain 2 million cells/ml. The resuspensions were

kept at �20°C overnight. For cell counting, 300 ll of cell suspension
was centrifuged at 450 g for 5 min and washed once with 1× PBS.

Three hundred microliters of cell cycle reagent was added, and the

solution was incubated at room temperature for 30 min in the dark.

A total of 10,000 events were measured for each sample on Guava

easyCyte single sample flow cytometer (Merck). The G2-phase peak

was defined using the KaryoMAX-treated samples, while the results

were obtained from untreated samples.

Immunofluorescence microscopy

HeLa cells (ATCC, LGC Standards) were transfected with vectors

containing the MAC-tagged gene of interest. Bait proteins were

detected with an anti-HA antibody, followed by an Alexa Fluor 488-

conjugated secondary antibody. Actin was labeled with Alexa Fluor

594 phalloidin. DAPI staining was used to define the nuclei. A wide-

field fluorescence microscope (Leica, Wetzlar, Germany) with a

HCX PL APO 63×/1.40–0.60 oil objective was used to image the

samples. The image files were processed with the LAS X (Leica) and

ImageJ software (https://imagej.nih.gov/).

Colony formation assay

The assay was performed as described in Messerle et al (1994). In

short, full-length WT SMARCB1 and STK38L, as well as SMARCB1

R377C and STK38L R105W, were cloned into the modified pDEST40

(3×V5 C-terminal tag) vector (Varjosalo et al, 2008). HCT116

colorectal cancer cells (~5 × 105; ATCC) were grown in 6-well plates

and transfected with 4 lg of construct or empty vector. After 24 h,

the cells were trypsinized, counted, and plated in 6-cm dishes at

two different densities (Rep_1: 1 × 104 cells; and Rep_2: 2 × 104

cells). Cells were selected in G418 (600 lg/ml) containing media for

2–3 weeks. The colonies were stained with crystal violet and

counted with ColonyArea plug-in in ImageJ.

Structural model generation

As no atomic structures were available for STK38L, a model was

generated with i-TASSER (Zhang, 2008) by running the program

with default parameters using STK38L sequence from UniProt (Data

ref: UniProt Q9Y2H1, 2018). Out of the five output models, the one

with the highest confidence score was chosen and used to illustrate

the structural context of the mutation. The illustrations were made

with UCSF Chimera (Pettersen et al, 2004).

Statistical analysis

The mutation frequencies of the hot spots were calculated as the

number of samples mutated for each hot spot. For the hot spots in

which additional mutations were found in the validation set, muta-

tion frequencies were calculated as follows: (i) for the discovery set

of 36 NGS samples, (ii) for the validation set of 93 additional MSI

CRCs, and (iii) for the total of 129 samples. In case the entire gene

was sequenced by MiSeq (the genes found in the MutSigCV ranking

based on the discovery set: BRAF, CTNNB1, PIK3CA, and SLC36A1;

Fig 2), we calculated frequencies for mutations hitting any mutation

hot spot within the gene (Table 2).

In order to analyze whether the observed count of hot spots

significantly differed from the expected count, a permutation test

was applied. The mutations were divided into 18 different types

(A>C, A>G, A>T, C>A (at CpG), C>A (not at CpG), C>G (at CpG),

C>G (not at CpG), C>T (at CpG), C>T (not at CpG), G>A (at CpG),

G>A (not at CpG), G>C (at CpG), G>C (not at CpG), G>T (at CpG),

G>T (not at CpG), T>A, T>C, and T>G) and were then randomly

redistributed to the regions captured by the exome kit. After each

randomization round, the number of hot spots was counted. In

order to be counted as a hot spot, there had to be two or more non-

synonymous mutations in the same or adjacent codons. Randomiza-

tion was repeated 100,000 times to obtain null distribution. From

this distribution, the two-sided empirical P-value was calculated.

Sanger sequencing

To study the validity of the hot spot mutation appearing in ZNF419

in the MiSeq data (Dataset EV3), Sanger sequencing of the region
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was performed. The change was found in a region challenging to

replicate due to sequence homology. In the resulting Sanger

sequences, the change was observed in both tumors and normals,

and therefore was deemed not somatic.

PCR fragments were amplified with Phusion enzyme (Thermo

Fisher Scientific, Waltham, MA). Purification of the PCR products

was performed with the ExoSAP-IT PCR purification kit (USB Corpo-

ration, Cleveland, OH) or A’SAP PCR cleanup kit (Arctic Zymes,

Tromsø, Norway), and the sequencing reactions were performed

with the BigDye Terminator v.3.1 kit (Applied Biosystems) and run

using 730xl DNA Analyzer (Applied Biosystems, Foster City, CA, at

FIMM Genome and Technology Centre, Finland). PCR primers were

designed with the Primer3 program (http://frodo.wi.mit.edu/prime

r3/) with GRCh37 as the reference sequence. The primer sequences

are as follows: F: AAAGGCCTTACAAGTGCAGC, R: CCACTGTGAAC

TTTCTGGTGT. Analysis and visualization of the sequence graphs

were performed with Mutation Surveyor software (version v4.0.8;

Softgenetics, State College, PA).

Data availability

• DNA-seq data: European Genome-phenome Archive EGAS00001

003101 (https://www.ebi.ac.uk/ega/studies/EGAS00001003101)

• Protein interaction data: IMEx consortium through the IntAct data-

base IM-26463 (https://www.ebi.ac.uk/intact/query/IM-26463).

Expanded View for this article is available online.
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tigators who contributed to the generation of the data is available from

www.UK10K.org. Funding for UK10K was provided by the Wellcome Trust

under award WT091310.
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