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Abstract

Many cognitive and computational models have been proposed to help understand working 

memory. In this paper, we present a simulation study of cortical processing of visual objects 

during several working memory tasks using an extended version of a previously constructed large-

scale neural model (Tagamets & Horwitz, 1998). The original model consisted of arrays of 

Wilson-Cowan type neuronal populations representing primary and secondary visual cortices, 

inferior temporal cortex and prefrontal cortex (PFC). We added a module representing entorhinal 

cortex, which functions as a gating module. We successfully implemented multiple working 

memory tasks using the same model and produced neuronal patterns in visual cortex, IT and PFC 

that match experimental findings. These working memory tasks can include distractor stimuli, or 

can require that multiple items be retained in mind during a delay period (Sternberg’s task). 

Besides electrophysiology data and behavioral data, we also generated fMRI BOLD time-series 

from our simulation. Our results support the involvement of inferior temporal cortex in working 

memory maintenance and suggest the cortical architecture underlying the neural mechanisms 

mediating particular working memory tasks. Furthermore, we noticed during simulations of 

memorizing a list of objects, the first and the last item in the sequence were recalled best, which 

may implicate the neural mechanism behind this important psychological effect (i.e., the primacy 

and recency effect).
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I. Introduction

The past three decades have witnessed an explosion of studies on memory in both humans 

and other primates. The prefrontal cortex (PFC) has been considered to play a crucial role in 
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the maintenance of working memory, the cognitive process that is involved in the transient 

holding and manipulating of information. A large number of nonhuman primate studies 

using single-neuron recordings (Funahashi, Bruce, & Goldman-Rakic, 1989; Fuster, Bauer, 

& Jervey, 1982; Miller, Erickson, & Desimone, 1996) and lesions (Levy & Goldman-Rakic, 

1999) have supported the involvement of the PFC in working memory-related processes. 

Human brain-imaging studies (Courtney, Petit, Maisog, Ungerleider, & Haxby, 1998; 

D’Esposito et al., 1995; Haxby, Ungerleider, Horwitz, Rapoport, & Grady, 1995; Husain, 

Tagamets, Fromm, Braun, & Horwitz, 2004; Riley & Constantinidis, 2015), using positron 

emission tomography (PET) and functional magnetic resonance imaging (fMRI), have also 

revealed the crucial role that PFC plays in both object and spatial working memory.

Working memory tasks, such as the delayed match-to-sample (DMS) task and Sternberg’s 

recognition task (Sternberg, 1966, 1969), have been extensively used in the study of the 

behavior of neurons and microcircuits related to working memory maintenance in the PFC 

(Funahashi, Inoue, & Kubota, 1993; Fuster & Alexander, 1971, 1973; Kubota & Niki, 1971; 

Schon, Ross, Hasselmo, & Stern, 2013). However, the underlying neurobiological 

mechanisms for the brain activations seen in these studies and the interactions between PFC 

and other brain regions, such as inferior temporal cortex, to support working memory 

operations is not well understood.

We and others have argued that large-scale neural network models can be powerful tools for 

addressing such issues (Chaudhuri, Knoblauch, Gariel, Kennedy, & Wang, 2015; Corchs & 

Deco, 2002; Garagnani, Wennekers, & Pulvermuller, 2008; Gisiger & Kerszberg, 2006; 

Tagamets & Horwitz, 1998). In order to understand better the neural substrate of human 

imaging studies using PET and fMRI, Tagamets and Horwitz proposed a large-scale model 

(LSNM) based on the visual ventral pathway that simulated a DMS task for objects (Horwitz 

& Tagamets, 1999; Tagamets & Horwitz, 1998). The model was later updated for 

transcranial magnetic stimulation (TMS), structural equation modeling (SEM), function 

magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) simulations 

(Horwitz & Banerjee, 2012; Husain et al., 2002; Kim & Horwitz, 2009). A similar model 

was also developed to perform auditory tasks for fMRI simulations (Husain et al., 2004) 

based on the hypothesis that the sensory cortices involved in visual and auditory object 

processing perform similar operations but act on different features. These models 

successfully simulated cortical neuronal activities and functional brain imaging data that 

generally agree with experimental results. However, a number of limitations of the original 

models exist, including: (1) the models could not handle distractors or multiple stimuli; (2) 

the inferior temporal neural activity during the delay period did not always match the 

experimental findings in nonhuman electrophysiology study in which the IT area showed 

higher-than-baseline activity during the delay period (Fuster et al., 1982); and (3) the rest of 

the brain was not included in the model.

In this paper, we will present a large-scale neural network model that can perform multiple 

short-term memory (STM) tasks for novel objects, with the simulated neuronal behaviors 

and simulated fMRI patterns matching experimental data. We modified and expanded the 

original model by adding one module representing the entorhinal cortex to perform a gating 

mechanism. We successfully simulated three versions of DMS tasks with or without 
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distractors, and a variation of Sternberg’s recognition task that required the model to hold 

multiple items in working memory. A primacy/recency effect was observed during the 

simulations of memorizing a list of objects, i.e., the first and the last item in the sequence 

were recalled best, which may implicate the neural mechanisms behind this important 

psychological effect. Moreover, we have now improved the match between simulated and 

experimental activity and observed rich neuronal behaviors during the delay period in the 

module representing inferior temporal cortex. Finally, we have placed our model in a whole-

brain connectome framework (Ulloa & Horwitz, 2016). In this paper, we will restrict our 

attention to the visual processing model.

II. Methods

1. Brief review of visual object processing model

The visual object processing model developed by Tagamets and Horwitz (Horwitz & 

Tagamets, 1999; Tagamets & Horwitz, 1998) consisted of interconnected neuronal 

populations representing the cortical ventral pathway found to process primarily the features 

of a visual object (Haxby et al., 1991; Mishkin & Ungerleider, 1982) (see Fig. 1 of Ulloa 

and Horwitz, 2016). Shape is the feature used in the model to characterize a visual object. 

Model neurons in modules representing early visual cortex were assumed to be orientation 

selective (for simplicity, horizontal and vertical orientations were used). Beginning in striate 

visual cortex, the ventral processing pathway extends into the inferior temporal gyrus and 

projects into ventrolateral prefrontal cortex. The modules that comprise the visual model 

include ones representing primary and secondary visual cortex (V1/V2), area V4, anterior 

inferotemporal cortex (IT), and prefrontal cortex (PFC). Each of these regions contains one 

or more neural populations with different functional attributes (discussed below). The 

response properties of the simulated neuronal populations were based on known monkey 

neural electrophysiological data (e.g., Funahashi, Bruce, & Goldman-Rakic, 1990). An 

important assumption for the visual model, inferred from such experimental data, was that 

the spatial receptive field of neurons increased along the ventral processing pathway.

Each neuronal population in our model consisted of 81 microcircuits, each representing a 

cortical column. As shown in Fig. 1A, the model employed modified Wilson-Cowan units 

(an interacting excitatory and inhibitory pair of elements) as the microcircuit (Tagamets & 

Horwitz, 1998; Wilson & Cowan, 1972). The input synaptic activity to each microcircuit can 

also be evaluated and combinations of this activity were related to the fMRI or MEG/EEG 

signals via a forward model. In this paper, we will only consider simulated fMRI (Horwitz & 

Tagamets, 1999).

This visual large-scale neural model was designed to perform a short-term recognition 

memory delayed match-to-sample (DMS) task. During each trial of the task a stimulus S1 is 

presented for a certain amount of time, followed by a delay period in which S1 has to be 

kept in short-term memory. When a second stimulus (S2) is presented, the model has to 

respond as to whether S2 matches S1. The model also performs a control task: passive 

perception of the stimuli. Multiple trials of the active and passive tasks constitute a 

simulated functional neuroimaging study.
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Ulloa and Horwitz (Ulloa & Horwitz, 2016) embedded the visual LSNM into a whole brain 

framework using The Virtual Brain (TVB) software package (Sanz Leon et al., 2013). TVB 

is a simulator that combines: (i) white matter structural connections among brain regions to 

simulate long-range connections, (ii) a neuronal population model to simulate local brain 

activity, and forward models that convert simulated neural activity into simulated functional 

neuroimaging data (i.e., fMRI or EEG/MEG). The TVB framework is helpful for simulating 

functional and effective connectivity neuroimaging data (see Ulloa and Horwitz, 2016) and 

the interaction between our model and TVB enables us to explore how task and intrinsic 

activities interact (Ulloa and Horwitz, in preparation). In the current paper, TVB neurons 

provide neural noise to the embedded LSNM. The structural connectome we employ is that 

due to Hagmann et al. (2008), which comprises 998 regions of interest (ROIs), and the 

simulated neuronal microcircuits at each TVB node are Wilson-Cowan units.

2. The structural network

The structural network of the modified visual model is shown in Fig. 1B. Each module of 

the modified network is explained in detail in the following. As detailed in the original paper 

by Tagamets and Horwitz (Cerebral Cortex, 1998), most of the connections are hand-tuned. 

However, the connections between V4 and IT were learned by means of a Hebbian 

algorithm.

V1/V2—In the model, the early visual areas V1 and V2 are combined and are designed to 

consist of orientation selective units (for simplicity we have only employed horizontal 

selective units and vertical selective units). Single-neuron recording experiments in primates 

have confirmed that neurons exist in both V1 and V2 areas that respond preferentially to 

visual features such as line orientation, edges and colors (Hubel, Wiesel, & Stryker, 1977; 

Peterhans & von der Heydt, 1993; Roe & Ts’o, 1995). This formulation is unchanged from 

the original Tagamets & Horwitz (Tagamets & Horwitz, 1998) model.

V4—The V4 area is designed as a continuation of the shape processing pathway and 

consists of three populations of units: horizontal selective units, vertical selective units and 

corner selective units. They are constructed to have an increased spatial receptive field 

relative to V1/V2, i.e., they respond to longer horizontal and vertical line segments, and also 

corners formed by adjacent pairs of horizontal and vertical lines. Experimental studies 

provide the basis for this design; neurons in area V4 share similar properties with earlier 

areas but appear to encode more complex properties of shape (Desimone & Schein, 1987; 

Gallant, Braun, & Van Essen, 1993). As with V1/V2, this module is the same as in the 

original model. We did add one new item, however; there is now feedback connectivity from 

V4 to V1/V2.

IT—The next processing module of the model corresponds to inferior temporal cortex and is 

denoted by IT. The IT module functions as a feature integrator and generates the initial 

rough representation of a percept. In single-neuron recordings, as we mentioned in the 

introduction, IT areas exhibit various active behaviors during the short delay periods that 

might be relevant to visual feature selective activity and visual information maintenance 
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(Fuster et al., 1982; Horel, Pytko-Joiner, Voytko, & Salsbury, 1987; Miyashita, 1988; 

Petrides, 2000; Ranganath & D’Esposito, 2005). IT was also a module in the original model.

Entorhinal cortex (EC): In our new model, we have added a new module - the entorhinal 

cortex - to serve as a gate between IT and PFC. We designed the gating mechanism by 

incorporating several groups of neurons in entorhinal cortex that competitively inhibit one 

another (see Fig. 1C). The purpose of such a mechanism is to avoid the working memory of 

one stimulus being overwritten by later incoming stimuli. We tentatively assigned the 

entorhinal cortex based on results of a series of empirical findings. The involvement of 

entorhinal cortex in working memory encoding has been supported by multiple experimental 

studies (for a review, see (Lech & Suchan, 2014)), although the actual neural mechanisms 

remain unclear. Divergent projections from the anterior IT area to the EC have been verified 

by anatomical studies in monkeys (Saleem & Tanaka, 1996). Some recent evidence suggests 

that the outputs of the medial PFC are sent back to the lateral EC and perirhinal cortex 

(Navawongse & Eichenbaum, 2013). In our design, a group of gating neurons will be 

activated when a stimulus comes in and inhibits other groups of gating neurons. Once the 

item is stored in this working memory buffer, an inhibitory feedback from PFC to entorhinal 

cortex will suppress the active gating neurons and release other gating neurons so that the 

remaining gating neurons are ready for new stimuli. By such a design, we are assuming that 

each group of entorhinal gating neurons could be used only once during a task trial.

Prefrontal area: Model neurons in the PFC module, in a short-term memory task condition, 

can be delineated into four types based on experimental data acquired by Funahashi et al. 

(1990). In our model (see Fig. 1B), the submodule FS contains cue-sensitive units that in 

general reflect the activities in the IT module. D1 and D2 submodules form the short-term 

memory units by exciting one another during the delay period. D1 is active only during the 

delay period and D2 is active during the stimuli presentations and the delay period. In our 

modified model, we now have multiple sets of D1 and D2 submodules built into the model 

such that holding more than one item in short-term memory is possible (see Fig. 1C). R 

serves as a response module (output). It receives information from D1 (containing a 

representation of a stimulus being kept in short-term memory) and FS (containing the 

temporary representation of the stimulus just presented). FS or D1 alone cannot activate R. 

When the incoming stimulus matches an item in working memory, FS and D1 together can 

activate R. Note also that we assume that there are a limited number of gating units and a 

similar limited number of D1-D2 units, since empirical studies indicate that only a limited 

number of items can be simultaneously kept in short-term memory [e.g., the so-called 7±2 

(G. A. Miller, 1956); others have proposed a more limited capacity such as 3 or 4 (Cowan, 

2001)]. For computational simplicity, in this paper we will employ no more than three items.

We first found the hypothetical regions of interest (ROIs) corresponding to each module in 

our LSNM and the connected nodes in Hagmann’s connectome. Then we embedded our 

revised model of microcircuits and network structure into the connectome. We ran the 

simulations using our in-house simulator in parallel with Hagmann’s connectome using the 

Virtual Brain software (Sanz Leon et al., 2013). Fig. 2 shows the embedded model in the 

Hagmann’s connectome. Overall, the LSNM embedded in TVB was able to perform the 
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DMS task, generated simulated neural activities in the various brain regions that match 

empirical data from non-human preparations, and produced simulated functional 

neuroimaging data that generally agree with human experimental findings (see Ulloa and 

Horwitz, 2016, for details).

Although arbitrary, a task specification module, which is located in the superior frontal 

gyrus of the Virtual Brain model, gives instructions to the model concerning what task is 

going to be performed: whether only the first stimulus should be remembered or a list of 

items should be remembered. This module provides a low-level, diffuse incoming activity to 

the D2 module in the prefrontal area which can be interpreted as an attention level. The 

attention level/task parameter can be modulated and is specified before each trial in a 

simulation. High attention will ensure a (better) working memory for the presenting 

stimulus. When the attention level is low, the working memory modules are not able to hold 

a stimulus throughout the delay period. Note that the mutual inhibition within the EC 

module does not depend explicitly on the level of attention.

The Talairach coordinates (Talairach, 1988) and the closest node in Hagmann’s connectome 

for each of the LSNM modules discussed above were identified (see Table 1), based on 

visual experimental findings (Haxby et al., 1991). As to the prefrontal module, which 

contains four submodules (FS, D1, D2, R), we used the Talairach coordinates of the 

prefrontal cortex in Haxby et al. (1995) for the D1 submodule and assigned the locations of 

adjacent nodes for the rest of the submodules (FS, D2, R) (see Table 1). This arrangement is 

due to the fact, as mentioned above, that the four types of neuronal populations were based 

on the experimental findings in monkey PFC during a delayed response task (Funahashi, 

Bruce, & Goldman-Rakic, 1990). It is not known if these four neuronal types were found in 

separate anatomical locations in PFC or were found in the same brain region.

3. Simulated experiments

We use the extended model to perform a number of simulated experiments that can include 

not only one stimulus, but others as well, some of which can be considered to be distractors. 

The complete set of simulated experiments is the following:

Experiment 1: Single stimulus—We first displayed a single stimulus to the model as a 

test to observe the responses of different modules of the model to a transient visual input. No 

response is required. The attention/task parameter is set to a high value (0.3).

Experiment 2: Delayed match-to-sample task—This experiment implemented the 

original delayed match-to-sample (DMS) task to demonstrate that the new model (with an 

added node – the entorhinal cortex) continues to perform the DMS task and gives the same 

results as the original model (Ulloa & Horwitz, 2016). One typical DMS trial consists of the 

presentation of a stimulus, an ensuing delay period, a presentation of a probe (the same or a 

new stimulus) and at the end of it, the simulated subjects need to decide whether the probe is 

the same as the first stimulus presented (see Fig. 3A). The attention/task parameter is set to 

high (0.3) during a trial.
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Experiment 3: Delayed match-to-sample task with distractors—We implemented 

a version of DMS task with intervening distractors. The simulated subjects were shown two 

distractors before the probe was displayed (see Fig. 3B). The attention/task parameter is set 

to high (0.3) for the first stimulus and decreased to low (0.05) following the presentation of 

the distractors.

Experiment 4: “ABBA” task—A special version of the distractor task (the “ABBA” 

task) is used. The “ABBA” task was employed by Miller et al. (Miller, Gochin, & Gross, 

1993) in monkey electrophysiology experiments. The model is supposed to hold its response 

when repeated distractors (“B”) are shown and to respond only to the matched stimulus 

(“A”) (see Fig. 3C).

Experiment 5: Sternberg’s recognition task—A variant of Sternberg’s recognition 

task (Sternberg, 1966, 1969) was used. On each trial of the simulation, three stimuli were 

presented sequentially, followed by a delay period and then a probe. The subjects’ task was 

to decide whether the probe was a match to any of the three stimuli presented earlier (see 

Fig. 3D). The Sternberg paradigm with visual objects has been used in many studies, and 

thus allows us to compare our simulated results with experimental results.

4. Simulating electrical activity and fMRI activity

We simulated the electrical activity and fMRI activity of the model as our measure while 

implementing the tasks discussed above. The electrical activity of one simulated neuronal 

unit, a modified Wilson-Cowan configuration, is given by the following equations:

dEi t

dt = Δ 1

1 + e
−KE wEEEi t + wIEIi t + iniE t − ϕE + N t

− δEi t

and

dIi t

dt = Δ 1

1 + e
−KI wEIEi t + iniI t − ϕI + N t

− δIi t

where ∆ is the rate of change, δ is the decay rate, KE, KI are gain constants, wEE, wIE, wEI are 

the connectivity weights within one neuronal unit, ϕE, ϕI are the input threshold, N t  is the 

noise. iniE t  and iniI t  are the incoming inputs from other nodes. iniE t  is given by:

iniE(t) =
j

w ji
EE j(t) +

j
w ji

I I j(t) +
j

c jiz ji
c C j(t)

where w ji
E and w ji

I  are the weights for connections from the excitat ory (E) and inhibitory (I) 

elements of jth LSNM unit to the excitatory element of ith LSNM unit, c j is the electrical 
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activity of the connectome excitatory unit j connected to LSNM unit i, and z ji
c  is the 

connection weight. c ji is a coupling term obtained by the Gaussian pseudo-random number 

generator of Python. iniI t  is given by:

iniI t =
k

wki
E Ek t +

k
wki

I Ik t

where wki
E  and wki

I  are the weights for connections from the excitatory (E) and inhibitory (I) 

elements of kth LSNM unit to the excitatory element of ith LSNM unit.

The integrated synaptic activity is computed prior to computing fMRI BOLD activity, by 

spatially integrating over each LSNM module and temporally integrating over 50 ms 

(Horwitz & Tagamets, 1999)

rSYN = INi t

where INi t  is the sum of absolute values of inputs to the excitatory and inhibitory elements 

of unit i at time t:

INi t = wEEEi t + wEIEi t + |wIEIi t | +
k, i

wkiEk t

The last term is the sum of synaptic connections from all other LSNM units and connectome 

nodes to the ith unit in LSNM.

In simulating an fMRI study, the model alternately implements a block of DMS task trials 

(three trials) and a block of control task trials (three trials). The control task used degraded 

shapes and each trial of the control task followed the design of the DMS task in Experiment 

2, except that the attention/task parameter is set to a low value. We first computed the 

integrated synaptic activity for select regions of interests (ROIs) (Ulloa & Horwitz, 2016). 

Using the integrated synaptic activity of ROIs as the input to the fMRI BOLD balloon model 

of hemodynamic response (Stephan, Weiskopf, Drysdale, Robinson, & Friston, 2007; Ulloa 

& Horwitz, 2016), we calculated the simulated fMRI signal time-series for all our ROIs and 

then downsampled the time-series to correspond to a TR value of 2 seconds.

A top-down task control signal is also used before each trial. The top-down task control 

signal informs the model that the trial is a DMS task, DMS task with distractors, an 

“ABBA” task, in which only the first stimulus is the target to be remembered, or a 

Sternberg’s recognition task, in which there are multiple targets to remember. The top-down 

control doesn’t change the network structure; it only controls the attention module so as to 

apply high attention to targets and low attention to distractors.

In each of the tasks, the simulated stimulus was on for 2 seconds (one time step in the model 

is considered to have a duration of 5 ms) followed by a 4 seconds delay period. After each 
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trial, the model was reset in the intertrial interval. When performing the tasks, we varied the 

connectivity weights between brain regions by slight amounts to create multiple “subjects” 

(see (Ulloa & Horwitz, 2016)). In both the DMS task and the Sternberg’s recognition task, 

the short delay periods between the presentations of stimuli and the probe are the main 

elements that make the two tasks tests of short-term memory.

III. Results

1. Response to a single stimulus

Fig. 4 shows the responses of the different modules of the model when a single visual input 

(a shape composed of horizontal and vertical line segments) was displayed. The attention 

level was set to high. Each module of the model exhibited proper behaviors in the 

simulation. Early visual cortex (V1/V2) responded quickly to the stimulus and displayed a 

sharp decrease in activity when the stimulus disappeared. As the visual input propagated 

deeper into the network, the average activity displayed slower and smoother responses. For 

instance, the average activity of working memory modules (D1, D2) slowly climbed during 

the presentation of the stimulus and displayed persistent activity in the delay period when 

the stimulus disappeared. The response module (R) showed only noise since only one 

stimulus was presented.

2. Delayed match-to-sample task

We ran simulations of the delayed match-to-sample condition using both our extended visual 

LSNM and the original LSNM (Tagamets & Horwitz, 1998; Ulloa & Horwitz, 2016). The 

simulated neuronal activities of the extended LSNM and the original LSNM are shown in 

Fig. 5. As shown in Table 1, the accuracy of simulations run using the extended model is as 

high as the simulations run using the original model.

The new model also improved the performance of the inferotemporal area compared with 

the original model (see Fig. 5). The module representing the inferotemporal area showed 

higher-than-baseline mean activation level during the delay periods in the delayed match-to-

sample task, which eliminated the discrepancy between previous simulation and 

experimental results. As pointed out in the Introduction, the neurons of the IT module of the 

original LSNM of Tagamets and Horwitz (Tagamets & Horwitz, 1998) did not show 

increased activity during the delay period of a DMS trial, in contradiction with nonhuman 

electrophysiological findings (Fuster et al., 1982). To address this small yet important 

disagreement, we added a feedback connection from the D2 module in PFC to IT. Fig. 5A 

shows the mean activities of selected modules in a simple delayed match-to-sample task 

from which the delay activation of the inferotemporal area can be seen.

When looking into individual behaviors of inferotemporal neurons of the extended model, 

we noticed that these neurons exhibited selectivity to different stimuli (Fig. 6). Among 

activated inferotemporal neurons, most responded to all stimuli with or without delay 

activity, but neurons with selective activity can be observed in each trial. The data for the 

multiple-item holding Sternberg’s task also displayed similar behaviors of stimulus-

selectivity. We did not observe similar behaviors in PFC. This difference between the 
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model’s IT and PFC is consistent with experimental results (Miller et al., 1996) and shows 

that PFC is mostly involved in working memory and decision-making and thus supporting 

the idea that PFC neurons have little or no contribution in coding complex visual features.

3. DMS task with distractors and the “ABBA” task

The model performed the DMS task with distractors and the “ABBA” task at a slightly 

lower accuracy rate (although still well above chance) than the simple DMS task (see Table 

2). Figs. 7A and 7B show the simulated neuronal activities of the different modules for the 

distractor task and the ABBA task, respectively. All modules (except the response module 

R) show increases in activation to all stimuli, but importantly, the response units (R) display 

activity greater than background noise only to the stimulus that matches the target. During 

the simulations shown in Figs. 7A and 7B, four separate groups of entorhinal neuronal units 

responded respectively to the four items and passed the information to prefrontal cortex for 

storage and comparison. The target (first stimulus) and intervening distractors are all stored 

in working memory modules (D1 and D2), but in separate groups of neuronal units during 

the simulation. The target is stored with high attention while the intervening distractors are 

stored with lower attention. Consequently, the storage of distractors is weaker than the 

storage of targets, i.e., fewer simulated neuronal units in their D1 and D2 modules showed 

persistent activity throughout the trial.

4. Sternberg’s recognition task

Fig. 8 shows the simulated neuronal activity of each module in three trials of Sternberg’s 

recognition task, in which the model successfully responded to two matched cases and 

rejected 1 non-matched case. Note that in the first trial, the probe stimulus matches the first 

of the three stimuli being held in short-term memory, whereas in the third trial, the probe 

matches the second presented stimulus. In both trials, the response units show increased 

activity, unlike the second trial where none of the stimuli matches the probe. The average 

accuracy rates of 10 simulated subjects can be found in Table 2.

In the simulated results of the Sternberg’s recognition task, we noticed a significant primacy/

recency effect. When the test stimulus is a match with the first or the last item of the three 

items remembered, the model has a greater chance to make a correct response than when the 

test stimulus is a match with the second item (see Fig. 9 and Table 3). The recency effect is 

stronger than the primacy effect. We will discuss our tentative explanation of this finding in 

the Discussion.

In simulating the holding of multiple items in short-term memory, one interesting finding 

related to the feedback from PFC to IT is that many simulated neurons in both PFC and IT 

displayed a progressive increase in activity level across the DMS trial with multiple 

distractors and the Sternberg task (Fig. 10). This type of behavior could not be observed 

once we removed the feedback from PFC to IT. We found neurons with climbing activity in 

both PFC and IT while monkey physiological studies have reported such activity only in 

PFC (Miller et al., 1996).
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5. Simulated fMRI BOLD signal

As discussed in the Methods section, we implemented an experiment that consisted of 

alternative blocks of DMS trials and control trials (passive viewing of degraded shapes), and 

then calculated the integrated synaptic activity and fMRI BOLD time series for select 

regions of interest (ROIs). Fig. 11A and Fig. 11B show the integrated synaptic activity and 

fMRI BOLD signal, respectively, for ROIs during three blocks of DMS task (grey) and three 

blocks of the control task (white). Each block consists of three trials. We can conclude from 

the figures that the modules of higher order show more signal change between the DMS and 

control tasks. Early visual cortex V1/V2 did not show much change between DMS trials and 

control trials, but higher order modules such as PFC module and entorhinal cortex module 

displayed much larger changes.

Fig. 11C shows a comparison, using signals from V4 module as an example, between the 

integrated synaptic activity and fMRI BOLD signal. From the figure, we see that using such 

a block design, the simulated BOLD signal cannot isolate the detailed response profile for 

each stimulus, as is well known to the experimental research community.

We also performed a simulated event-related experiment by extending the delay period to 20 

seconds in order to show a more complete response curve in BOLD signal for each 

incoming stimulus. Fig. 12 shows the simulated fMRI BOLD signal for an event-related 

design that consists of a DMS trial, a DMS trial with two intervening distractors and a 

Sternberg’s task trial. The signal differences between these tasks and the control task 

(passive viewing of four stimuli separating each of the aforementioned tasks) were 

calculated and are shown in Table 4. By employing such a design, we could examine the 

effect of working memory load (by comparing the DMS task with the Sternberg task) and 

the effect of attention (by comparing the Sternberg’s task with the DMS task with 

distractors). The V1/V2 module (the yellow trace in Fig. 12) did not show statistically 

significant differences in terms of mean fMRI BOLD signals between the DMS tasks and 

the control tasks. We observed that the entorhinal cortex (black trace) displayed greater 

activity, compared with the control task, during encoding (stimuli presentations) and 

retrieval (probe presentations) but not during maintenance (delay periods), which is 

consistent with experimental findings (Schon, Quiroz, Hasselmo, & Stern, 2009). V4, IT and 

PFC showed increased activity during the delay periods, which indicated their roles in 

working memory maintenance. The activity of PFC increases when multiple items are 

stored, which agrees with the experimental evidence for both visual working memory 

(Cairo, Liddle, Woodward, & Ngan, 2004; Druzgal & D’Esposito, 2003; Rypma, Berger, & 

D’Esposito, 2002; Rypma & D’Esposito, 1999) and verbal working memory (Veltman, 

Rombouts, & Dolan, 2003). We also noticed the effect of working memory load for V4 and 

IT during encoding and maintenance (stimuli presentations and delay periods), but not 

during the retrieval phase (probe presentation).

IV. Discussion

We have presented a simulation study of several short-term memory tasks using an extended 

version of a previously constructed large-scale neural model. A module representing the 

entorhinal cortex to serve as a gating module was added to process multiple items. We 
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successfully implemented multiple short-term memory tasks using this extended model and 

produced neuronal patterns in visual cortex, IT, EC and PFC that match experimental 

findings. These short-term memory tasks can include distractor stimuli, or can require that 

multiple items be retained in mind during a delay period.

Fuster and Jervey (Fuster & Jervey, 1982) first revealed in primate single-unit recording 

studies that inferior temporal neurons exhibit sustained, increased activity during the short 

delay of a delay match-to-sample task. A number of later studies have also supported the 

notion that inferior temporal cortex is important for the maintenance of visual object 

information (Horel et al., 1987; Petrides, 2000; Ranganath & D’Esposito, 2005). The 

neuronal behaviors in IT across short delays in DMS trials were indicated to be relevant to 

object-selective activity and associative learning (Erickson & Desimone, 1999; Miller et al., 

1993; Miyashita, 1988). The extended version of our large-scale neural model, compared to 

the original version, explicitly implements this critical role for IT, which will be important 

for extending our model to incorporate a long-term memory component.

Fuster and colleagues first reported the presence of PFC neurons with climbing activity 

across delay periods in DMS trials without distractors (Quintana & Fuster, 1992). Similar 

behavior was also observed in DMS trials with distractors (Miller et al., 1996). Fuster and 

colleagues interpreted the climbing activity as expectation. Our model doesn’t have 

expectation built-in; rather, our simulations suggest that the climbing activity is related to 

feedback from PFC to IT, i.e., a recurrent loop is formed with feedback from PFC to IT so 

that the information stored in PFC can strengthen itself through the loop, and it represents 

the working memory distributed in the network. These two notions of the neural mechanism 

for the observed climbing behavior may in fact complement one another.

We modeled working memory using the D1-D2 microcircuit as a fixed state. Meanwhile, the 

recurrent connectivity between PFC and IT in our model enables a network dependent 

mechanism of working memory represented by the “climbing neurons” we observed. There 

is experimental evidence for both views of working memory. Persistent activity of neurons 

in PFC was observed during the delay period by Funahashi et al. (1990), while some 

neuronal activity in PFC declined and was reactivated during the delay period (Barak, 

Tsodyks, & Romo, 2010; Rainer & Miller, 2002), indicating the existence of a dynamic 

mechanism for working memory.

In the simulations of DMS with distractors and the “ABBA” task, we assumed that the 

intervening distractors are also stored in the prefrontal cortex. Due to the low attention level 

applied, the storage of distractors is weaker than the storage of targets. Experimental studies 

in visual search and incidental learning supports our assumption that the distractors are 

stored in working memory (Goolsby, Shapiro, & Raymond, 2009; Williams, Henderson, & 

Zacks, 2005). We used separate working memory modules to handle distractors in the DMS 

task based on the fact that the attention paid to the distractors is lower than the target and the 

target has a special status in working memory that is not shared by the distractors (Peters, 

Goebel, & Roelfsema, 2009). The structural network of multiple working memory modules 

was inspired by a similar scheme proposed by Ulloa et al. in an auditory model that dealt 

with long-duration tonal patterns (Ulloa et al., 2008). The capacity limit of working memory 
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is implemented by limiting the number of memory pools (we used three, but the number is 

arbitrary). Once the memory pools are all filled, further items will not be stored and the 

corresponding BOLD signal will reach a plateau. This was instantiated in our model for 

simplicity, but future research could aim toward determining whether or not this assumption 

is warranted.

Whereas the classic view is that working memory has a limited number of slots (Cowan, 

2001), some recent experimental and modeling studies propose working memory as a 

continuous resource that is distributed among all remembered items (Bays & Husain, 2008; 

Fougnie, Suchow, & Alvarez, 2012; Keshvari, van den Berg, & Ma, 2013; for a review, see 

Ma, Husain, & Bays, 2014). According to this view, the precision of memory, which 

decreases as more items are remembered, is the key metric of working memory limits 

instead of the quantity of memory items. In our model, the working memory representations 

of different items are stored in non-overlapping PFC modules, which, in the future, could be 

integrated into one continuous module.

Even though we did not explicitly set out to incorporate a primacy and recency effect in our 

model, nonetheless, we observed such effects in our simulation results. In our model, the 

observed primacy effect in the Sternberg task was a result of decayed attention. In our 

simulated experimental design, the attention applied to the prefrontal area decays with time 

and higher attention helps the working memory network encoding for new items. The neural 

basis underlying the experimentally observed recency effect has been debated (Baddeley & 

Hitch, 1993). Based on our simulation, we suggest that the gating mechanism, specifically 

competitive inhibition and the inhibitory feedback from PFC to entorhinal cortex, may 

contribute to the recency effect. The inhibitory feedback from PFC to entorhinal area 

reduces the competition level among gating neurons; thus, later incoming stimuli have less 

inhibition and stronger representations in working memory. Previous experiments have 

shown that these effects are sensitive to the duration of the delay periods (Wright, 1999), 

which we have not observed in our simulation study, possibly due to a lack of a “forgetting” 

mechanism in the current version of the model.

Because working memory is such an important cognitive process, many research groups 

have developed models of this process. They range from purely cognitive models (Baddeley, 

1992) to computational models of varying levels of complexity (e.g., Amit, Fusi, & 

Yakovlev, 1997; Ashby, Ell, Valentin, & Casale, 2005; Dehaene & Changeux, 1989; Rolls, 

Dempere-Marco, & Deco, 2013; for reviews, see Barak & Tsodyks, 2014; Durstewitz, 

Seamans, & Sejnowski, 2000; Maex & Steuber, 2009). Many computational models aimed 

to account for both behavioral and neural activity observed in monkey electrophysiological 

studies during the delay portion of a delayed response task. For instance, one approach, 

exemplified by Amit and colleagues (e.g., Amit et al., 1997) employed recurrent excitatory 

connections in a cell assembly to maintain stable activity patterns (i.e., attractors). In initial 

studies, Hebb-like learning methods were employed to generate synaptic weights that 

reinforced the connections between specific neurons. These attractor models initially dealt 

with maintaining in short-term memory one or more previously learned images. More recent 

work has extended these models so that novel images can also be handled (e.g., Amit, 

Yakovlev, & Hochstein, 2013). Although a number of modeling efforts addressing working 
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memory have focused on the prefrontal cortex, a substantial number have also argued that 

the basal ganglia play an important role as well (e.g., Ashby et al., 2005; Monchi & Taylor, 

1999). The modeling framework proposed by Ashby et al. (2005) is of particular interest 

because, like the model we presented in this paper, it also provides a distributed 

neurocomputational model that incorporates multiple, interacting brain regions, and aims to 

account for both neurophysiological data and behavioral data. Furthermore, the authors 

argue that this approach, like ours, also can account for human neuroimaging data (Ashby & 

Valentin, 2007).

The basal ganglia and the thalamus have been implicated in working memory function. 

Lesions of caudate and medial dorsal nuclei of the thalamus can severely impair working 

memory capacity (Kubat-Silman, Dagenbach, & Absher, 2002). However, as pointed out by 

Ashby et al. (2005), lesions of the caudate and medial dorsal nuclei of the thalamus can 

impair but will not abolish working memory, and this has been found experimentally (e.g., 

Gabrieli et al, 1996; Janahashi et al., 2002). It is worth noting that the examples used in this 

paper deal with a rather limited working memory capacity (i.e., no more than three objects).

The interactions between the PFC and the basal ganglia and the thalamus have also been 

interpreted as a gating mechanism (Braver & Cohen, 2000; Cohen, Braver, & O’Reilly, 

1996; O’Reilly & Frank, 2006). For example, the O’Reilly-Frank working memory model 

incorporates a prefrontal cortex that controls both itself and other brain areas in a task-

dependent manner. It does this by employing learning mechanisms that involve a number of 

subcortical structures including the basal ganglia that act as a gating mechanism for updating 

working memory. However, the EC is considered to be directly involved in the visual ventral 

(object) processing pathway and declarative memory encoding (Preston & Eichenbaum, 

2013).

In the current paper, we chose parameters for the added components of the model so as to 

provide a reasonable match to the electrophysiological data, although we did not employ 

explicit model-fitting to any particular data set. As pointed out by Ashby et al. (2005), there 

is much variability between cells in monkey electrophysiological data, which may preclude 

quantitative data fitting. Moreover, another reason that explicit data-fitting was not employed 

was that there are numerous data sets (behavioral performance, electrophysiological data in 

multiple brain regions, fMRI activation and connectivity data, MEG/EEG data) that we want 

our model to account for. These data have different featural and temporal characteristics. It 

is not clear to us how in principle one should go about fitting all these data simultaneously. 

In fact, as far as the neuroimaging data is concerned, other researchers (e.g., Friston, Preller 

et al., in press) have just begun to develop a systematic approach to this problem.

Some caveats of our work include: the attention level and the top-down task control we used 

in the model are not realistically modeled; we hypothesized that the entorhinal cortex was 

responsible for a gating process, which needs to be confirmed by experiments; the locations 

we chose for prefrontal nodes (D1, D2, FS, R) in the Virtual Brain are somewhat arbitrary. 

We plan to address these caveats in future work, and extend the model to incorporate long-

term memory and implement related cognitive tasks (e.g., paired associate task).
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In summary, we have performed several short-term memory tasks using one large-scale 

neural network model and studied various neuronal behaviors in the inferotemporal cortex 

and prefrontal cortex. We modeled working memory with local microcircuits (D1, D2) and a 

large-scale recurrent network (PFC, IT), which produced neuronal behaviors that matched 

experimental findings. For generating a brain-like environment, we embedded the model into 

The Virtual Brain framework. The model in the future can be extended to incorporate more 

brain regions and functions, such as long-term memory. Our results indicate that 

computational modeling can be a powerful tool for interpreting human and nonhuman 

primate neuroimaging data.
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Fig. 1. 
A. Structure of a Wilson-Cowan microcircuit, which can be considered as a simplified 

representation of a cortical column. Each microcircuit consists of an excitatory and an 

inhibitory element with the excitatory element corresponding to the pyramidal neuronal 

population in a column and the inhibitory element corresponding to the inhibitory 

interneurons. B. The network structure of the modified visual LSNM. Compared to the 

original LSNM structure (Tagamets & Horwitz, 1998; Ulloa & Horwitz, 2016), (1) a gating 

module (GU) has been added, which is tentatively located in the entorhinal cortex (EC); (2) 

multiple sets of working memory modules (D1 and D2 in PFC) are used, instead of one set 

of D1 and D2 units in the original model. C. The entorhinal cortex and additional working 

memory modules are designed to act as a gate between IT and PFC. Multiple groups of 

entorhinal neurons and prefrontal cortex neurons are incorporated to hold multiple items in 

short-term memory. The entorhinal neurons competitively inhibit each other so that a group 
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of gating neurons will be activated when a stimulus comes in and inhibits other groups of 

gating neurons. Once the item is stored, an inhibitory feedback from PFC to entorhinal 

cortex will suppress the active gating neurons and release other gating neurons so that the 

remaining gating neurons are ready for new stimuli.
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Fig. 2. 
Embedded model in Hagmann’s connectome (Hagmann et al., 2008). We first found 

hypothetical locations for our model’s regions of interest (ROIs) and the connected nodes in 

the connectome (small dots connected to ROIs). We embedded our model of microcircuits 

and network structure into the structural connectome model of Hagmann et al. (2008). See 

Ulloa and Horwitz (2016) for details.
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Fig. 3. 
A. The timeline and task-parameter/attention level of a single delayed match-to-sample trial. 

The simulated subjects’ task is to identify whether the probe is a match with the first 

stimulus. B. The timeline for a single trial of a DMS task with distractors. The simulated 

subjects need to ignore the two intervening distractors and only respond to the probe. C. The 

timeline for a single trial of an “ABBA” task, i.e., a DMS task with two repeated distractors. 

D. The timeline for a single trial of Sternberg’s recognition task. The simulated subjects are 
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shown a list of stimuli and their task is to decide, after a delay, whether the probe is a match 

with any stimulus in the list.
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Fig. 4. 
Response of the model to a single stimulus. One stimulus is shown to the model for 2 

seconds, followed by a 4-second delayed period before resetting. The vertical axis is the 

normalized mean neuronal activity (i.e., normalized firing rate) in the different modules.
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Fig. 5. 
A. Neuronal activities of the excitatory neurons in the different modules during one trial of 

the DMS task simulated using the extended model. B. The excitatory neuronal activities of 

the different modules during one trial of DMS task simulated using the original model. In 

the simulations with the new model, the IT module showed activity during the delay period, 

which does not occur for the original model.
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Fig. 6. 
Different types of excitatory neuronal activity and selectivity behaviors of simulated 

inferotemporal neurons during one DMS trial. Each of the gray stripes represents the 

presentation of one stimulus and the white stripes between them represent the delay periods. 

We observed that the simulated neurons in the IT module exhibited several different activity 

patterns and selectivity to different stimuli. Most of activated inferotemporal neurons 

responded to both stimuli with or without delay activity (top panel), but in each trial we 

observed neurons that responded only to the first or the second stimulus (middle and bottom 

panels); neurons with delay activity are shown in the bottom panel).
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Fig. 7. 
A. Neuronal activities for DMS task with two intervening distractors. B. The neuronal 

activities for the “ABBA” task. The two distractors were held in PFC with low attention (the 

persistent activities in D1 and D2 modules). The response module in both tasks properly 

avoided the distractors and responded when the probe was a match of the first stimulus.
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Fig. 8. 
Neuronal activities for Sternberg’s task. Three trials of Sternberg’s recognition task are 

shown. In each trial, the first three stimuli are the targets that the model needs to hold in 

working memory. In the first and last trial, the probe (last stimulus) was a match of one of 

the targets (the first and the second, respectively) and the response module R made proper 

responses. In the second trial shown, the probe was not a match of any of the targets and R 

didn’t respond to it.
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Fig. 9. 
Mean accuracy (percent correct) for each subject for each position of the stimulus matching 

the probe stimulus of the Sternberg task. Blue bars correspond to the case when the 

matching stimulus was first, gray when it was second and red when it was third. Nine of the 

10 subjects had more errors for the second position than for the other two, and nine subjects 

had their highest accuracy for the third position (recency effect).
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Fig. 10. 
Simulated neurons with climbing activities during one trial of Sternberg’s task. A. Activity 

of one neuron found in the PFC module. B. Activity of one neuron found in the IT module. 

Each of the grey stripes indicates the presentation of one stimulus and the white stripes 

between the grey are delay periods.
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Fig. 11. 
A simulated experiment with three blocks of alternative DMS trials (gray stripes) and 

control trials (white stripes) was implemented. Each block consisted of three trials. A. The 

integrated synaptic activity of different modules. B. The simulated fMRI BOLD signal of the 

different modules. Modules of higher order have larger difference in activity between the 

DMS and control tasks. C. A comparison of the simulated synaptic activity and the fMRI 

BOLD signal of the V4 module during the simulated experiment for one task and one 

control block.
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Fig. 12. 
The simulated fMRI BOLD signals of different modules of an event-related experiment. 

Each gray bar represents the presentation of a stimulus. The experiment consists of one 

DMS trial (first two gray bars), one DMS trial with two distractors (the middle four gray 

bars) and one trial of Sternberg’s task (the last four gray bars). Passive viewing of 4 stimuli 

separates each of these task trials. The V4 (orange), IT (blue), EC (black) and PFC (red) 

modules showed higher fMRI BOLD signals when the working memory load increased 

(DMS vs. Sternberg’s task).

Liu et al. Page 33

J Cogn Neurosci. Author manuscript; available in PMC 2019 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 34

Table 1.

The Talairach coordinates (Talairach, 1988) and the closest node in the Hagmann’s connectome (Hagmann et 

al., 2008) corresponding to visual LSNM modules. Note that the locations of FS, D1, D2 and R are not 

explicitly known (see text) and were chosen only to demonstrate validity of the method.

Modules Talairach location Source Host connectome node

V1/V2 (18, −88, 8) Haxby et al., 1995 (14, −86, 7)

V4 (30, −72, −12) Haxby et al., 1995 (33, −70, −7)

IT (28, −36, −8) Haxby et al., 1995 (31, −39, −6)

EC (25, −12, −25) Hagmann et al., 2008 (25, −12, −25)

FS Location selected for illustrative purposes (47, 19, 9)

D1 (42, 26, 20) Haxby et al., 1995 (43, 29, 21)

D2 Location selected for illustrative purposes (42, 39, 2)

R Location selected for illustrative purposes (29, 25, 40)
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Table 2.

Performances of 10 simulated subjects during 4 tasks (DMS task, DMS task with distractors, ABBA task, 

Sternberg’s recognition task). Performances are measured by counting the number of neuronal units in the 

decision-making module (R) firing above a certain threshold during the response period.

Subject DMS DMS w/ distractors ABBA Sternberg

S1 92.3% 90.5% 88.7% 90.3%

S2 81.0% 80.5% 80.7% 78.7%

S3 92.0% 92.0% 89.7% 87.0%

S4 86.5% 84.0% 82.3% 82.0%

S5 88.5% 89.0% 87.0% 87.7%

S6 77.5% 75.5% 75.7% 73.0%

S7 81.0% 79.5% 79.0% 78.7%

S8 73.0% 69.5% 68.0% 69.3%

S9 79.0% 79.5% 79.0% 78.0%

S10 84.0% 81.0% 81.7% 79.7%

Mean 84.5% 82.1% 81.2% 80.4%

Standard deviation 6.02% 6.63% 6.15% 6.22%
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Table 3.

Performances of 10 simulated subjects during Sternberg’s task when the probe is a match of the first, the 

second and the third target, respectively.

Target 1 Target 2 Target 3

S1 91% 87% 93%

S2 81% 76% 79%

S3 86% 85% 90%

S4 81% 80% 85%

S5 88% 87% 88%

S6 72% 70% 77%

S7 78% 79% 79%

S8 70% 66% 72%

S9 78% 77% 79%

S10 79% 78% 82%

Mean 80% 79% 82%

Standard deviation 6.28% 6.53% 6.17%
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Table 4.

The mean signal change (in percentage) of specific task from control task (passive viewing). Both integrated 

synaptic activity and fMRI data of different brain regions are shown. Paired t-test was used for the signal 

difference

Integrated synaptic activity fMRI

DMS DMS w/distractors Sternberg’s task DMS DMS w/distractors Sternberg’s task

V1 6.533* 5.318* 8.702* 2.739 1.841 3.028

V4 25.786* 27.861* 29.250* 23.034* 25.548* 26.947*

IT 13.318* 16.470* 18.852* 11.750* 14.824* 15.773*

EC 8.161* 8.803* 10.182* 5.709* 8.871* 9.098*

PFC 25.083* 28.915* 32.594* 20. 623* 23.647* 26.992*

*
= p<0.05.
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