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Abstract

This paper formally constructs navigation functions with time-varying destinations on star worlds. 

The construction is based on appropriate diffeomorphic transformations and extends an earlier 

sphere-world formulation. A new obstacle modeling method is also introduced, reducing analytical 

complexity, and offering unified expressions of common classes of n-dimensional obstacles. The 

method allows for dynamic target tracking, and is validated through simulations and experiments.
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I. INTRODUCTION

By now, the problem of feedback-based motion planning in fixed and known enviromnents 

[1] is well understood and adequately treated. When the workspace topology is known, and 

both environment and robot destinations are fixed (i.e. time-invariant), we know how to 

construct feedback controllers based, say, on navigation functions [2], to provably obtain 

(almost) global convergence to those destinations. Destination configurations, however, may 

not always be fixed within obstacle enviromnents. Examples can be found in applications 

ranging from detecting radiation sources in transit, to pediatric rehabilitation. In both of the 

aforementioned cases, a pursuing robot should maintain some small but safe distance from 

its target. Even when the trajectory of the goal configuration is known, the combination of 

stationary obstacles and moving destination does not necessarily fit the standard time-

invariant analysis which establishes that the potential field is local minima-free.

Many variants of the potential field approach have been introduced to address the motion 

planning problems for both mobile robots [3]–[5] and manipulators [6], [7]. However, all 

classical (attractive & repulsive) potential fields [8] suffer from local minima problems [9]. 

Although several improvements have been proposed, (fuzzy logic [10], [11], simulated 

annealing [12], intermediate goals, or by combinations of sampling-based or search-based 

path planners [13]–[16]), no method can provide probably complete solutions without 

significant performance degradation.
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Admittedly, a reference vector field does not necessarily have to be derived from a potential 

function. Instead, it can be explicitly defined over the state space; although in such a case, 

additional techniques are usually required to achieve global convergence with obstacle 

avoidance. In fact, methods of this type—like passive velocity field control, used for robot 

manipulators manipulators in contour following [17]–[19], and mobile robots in tracking 

moving targets [20], [21]—have been used for dynamic motion planning, but in obstacle-

free environments. One avenue to incorporate obstacles is workspace discretization [22]; 

although effective in general, such approaches are subject to the curse of dimensionality, in 

addition to linking accuracy to discretization resolution.

If one allows for workspace discretization, a realm of alternative to potential field-based 

solutions are available; for example, search-based algorithms [23]. Search-based methods 

usually require the motion planner to renew the search every time the configuration space 

changes. Within this realm, sampling-based methods play an important role, offering 

computational savings by avoiding the explicit construction of obstacles in the state space 

[24]; however, only probabilistic completeness guarantees can be expected. For most 

alternative (i.e. not based on exhaustive search or sampling) navigation approaches, 

approximations [25] and elaborate collision detection algorithms may be needed. Since now 

one is outside the domain of potential fields, the navigation problem would typically be 

decomposed into (a) reference path or trajectory generation, and (b) local tracking. This 

decomposition requires a separate solution, or planner, for each subproblem [26]. And while 

feedback may still be incorporated locally in those planners, usually little can be said 

(deterministically) about global convergence and completeness.

Turning for this reason our attention back to potential-field-based methods, we can 

distinguish two approaches that address the local minima problem directly: Harmonic 
functions [27] and navigation functions [2] (Fig. 1). Harmonic functions are solutions of 

Laplace equation, available for convex hull approximations of 2D planar obstacles [28], 

[29]. Feedback controllers based on harmonic functions have been designed for dynamic 

environments [30], [31] For harmonic fields, there is no simple and general analytical 

obstacle modeling method; even planar cases involve intensive integral computations. 

Alternative to harmonic functions, yet still within the class level-set based methods, are fast 
marching methods [32], which produce scalar fields by solving numerically a Hamilton-

Jacobi pde (cf. [33] for a different way of approaching a level-set construction). The main 

issue with these methods, in addition to the difficulty of harmonic functions to handle 

complex obstacle geometries, is related to the complexity of solving the associated PDE. In 

contrast, navigation functions admit analytic algebraic representations of the obstacles and 

there is a constructive way of generating them, but the majority of related work in this 

direction treats (simple) spherical obstacles [34]–[36]; see [37] for exceptions.

In the case of dynamic environments, the potential field landscape is different. Known 

heuristics are (re)introduced to tackle the time-varying nature of the workspace: virtual 

forces [38]—see [39], [40] for leader-following problems—which inevitably give rise to 

local minima [41], [42]; fuzzy logic [43], [44], or search-based methods [45], which come at 

the expense of completeness. Provably correct (local minima-free) potential fields have been 

constructed using fast marching methods [46] and sampling—computational complexity 
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issues here persisting—and with navigation functions on sphere worlds only, for the case of 

a moving destination [47]. Local potential-based methods [48], [49] have also tackled cases 

of moving destinations, but without consideration to collision avoidance. In related 

extensions that do account for obstacles [50], [51] and kinematic constraints, the 

environment is static.

This paper contributes by (a) reducing the algebraic complexity associated with workspace 

representation in navigation functions through a unified description of common obstacle 

classes, and mainly by (b) proving that, under some mild assumptions, the purging (Fig. 2) 

and star-to-sphere (Fig. 3b) transformations of the standard navigation function framework 

remain diffeomorphic when applied to the time-varying destination manifold case of [47], 

thereby extending the aforementioned approach to star worlds, including forests of stars.

Time-varying destination functions in sphere worlds [47] are first reviewed in §II, and 

together with some necessary notation, the new obstacle representation approach is 

introduced. In §III it is shown that the nature of critical points of time-varying navigation 

functions is preserved under diffeomorphisms, and this serves as the foundation for the 

transformations constructed later in the section. Testing and validation results are presented 

in §IV, first illustrating the application of transformations, and then offering both simulation 

and experimental results, the latter involving a differential-drive mobile robot. Conclusions 

close the paper in §VI.

II. PROBLEM STATEMENT

Consider an n-dimensional Euclidean space 𝔼n. and a bounded n-dimensional robot 

workspace 𝒲 ⊂ 𝔼n, populated by a finite number of obstacles 𝒪 j, for j ∈ ℐ.

If all 𝒪 j are star shaped (see Fig. 3a), then 𝒲 is a star world [2]. Obstacle 𝒪 j is (strictly) star 

shaped if the ray starting from a designated interior point qj (the center) to any other exterior 

point intersects its boundary exactly once. If βj(q) is a (smooth) implicit representation of 𝒪 j

[1], meaning 𝒪 j ≜ {q ∈ 𝒲: βi(q) ≤ 0}, then for a constant Δj > 0 it should be the case that 

∇βj(q) ⋅ (q − qj) ≥ 2Δj, for all q ∈ ∂𝒪 j [1]. The boundary of 𝒲 is similarly defined as an 

(outer) obstacle 𝒪0, having its own implicit representation in the form of function β0, so that 

𝒲 ≜ En − 𝒪0.

In a star world, all boundaries are either those of stars, or of star trees. A star tree 𝒯i is a 

finite union of stars arranged in the workspace in such a way that (i) whenever in the tree’s 

underlying partial order ≺ one finds that for two stars 𝒪 j ≺ 𝒪m there is no 𝒪k satisfying 

𝒪 j ≺ 𝒪k ≺ 𝒪m (this property is denoted here 𝒪 j ⪯ 𝒪m) this fact implies that the center of 𝒪m

is an interior point of 𝒪 j; and (ii) for any 𝒪 j in the tree, there is only one 𝒪 j such that 

𝒪 j ⪯ 𝒪m. Thus a tree is a group of stars that are partially overlapping and can admit a partial 
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order which essentially expresses an ancestor-descendant relationship between them. If 

𝒪 j ⪯ 𝒪m, then 𝒪 j is called the parent of 𝒪m and is equivalently denoted 𝒪pm
.

A forest of stars is a finite union of star trees. Assume that there are M trees in 𝒲, and 

denote qi the center of the root star in tree 𝒯i. The robot’s free space is denoted 

ℱ ≜ 𝒲 − ⋃i = 1
M 𝒯i, and it is assumed to be path-connected.

There are two main characteristics that distinguish the time-varying navigation functions 

here (cf. [47]) and those of the traditional formulation [2]: (i) the destination coordinates xt 

are time-varying, and (ii) there is a spherical “protective bubble” ℬr
xt of radius r around xt to 

ensure a safe minimal distance between robot and target. Similarly, obstacle (star) trees are 

not allowed to intersect with each other or with ℬr
xt.

The robot is required to converge on the surface of ℬr
xt. Inside ℱ, a time-varying navigation 

function is defined.

Definition 1. Given a free space ℱ and a sphere ℬr
xt of radius r centered at a time-varying 

point xt, a map φ:ℱ 0, 1  is a time-varying navigation function if it satisfies the following 
conditions: 1) It is a C(2) function on ℱ; 2) it has a uniform value on the boundary of ℱ

(admissible); 3) the nowhere dense1 set ∂ℬr
xt is the only attractive manifold in ℱ.

A. Time-varying navigation functions in sphere worlds

A sphere world is a subset of 𝔼n, where all objects of interest are spherical. The sphere world 

has a (spherical) boundary, which is at a constant distance ρ0 from a point x0. The interior of 

the sphere world workspace is the complement of 𝒪∘ 0 ≜ {x ∈ 𝔼n: ∥ x − x0 ∥ ≥ ρ0}. Inside this 

sphere world there can be M (spherical) obstacle regions 𝒪∘ i, each with radius ρi, i = 1, …, 

M, having implicit representations β
∘
i(x) = ∥ x − xi ∥2 − ρi

2. The free sphere-world space is 

then ℳ ≜ 𝔼n − ⋃i = 0
M 𝒪∘ i. Let xt ∈ 𝔼n be the position of a moving target, and r be a constant 

associated with the smallest distance that should be kept in relation to this target. Define the 

sphere-world time-varying destination function [47] as

J
∘
r(x, t) ≜ ( ∥ x − xt ∥ )2 − r2 2

(1)

1A set is nowhere dense if its closure has an empty interior.
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For ℳ to be a valid sphere world free space, the obstacles (including 

{x ∈ ℳ ∣ ∃t > 0:J
∘
r(x, t) = 0}) must all be disjoint (cf [2]). Let now κ > 0 be a constant, 

denote β
∘(x) ≜ Πi = 0

M β
∘
i(x), and define

φ∘(x) ≜
J
∘
r(x, t)

J
∘
r(x, t)κ + β

∘(x)
1
κ

(2)

The fact that (2) is consistent with Definition 1, with ℳ as free space, has been established 

[47]; specifically, it was shown that for ℬ∘ r

xt = {x ∈ ℳ: ∥ x − xt ∥ ≤ r}, it is true that (i) all 

critical points other than those on ∂ℬ∘ r

xt
 are either non-degenerate with attraction regions of 

measure zero, or in the interior of ℬ∘ r

xt
, namely intℬ∘ r

xt
, and that (ii) ∂ℬ∘ r

xt
 is the only limit set 

of the gradient field −∇φ with non-zero measure attraction region outside ℬ∘ r

xt
.

The problem treated in this paper is showing that the aforementioned properties are invariant 

under diffeormorphisms, meaning that (2) is a time-varying navigation function when ℱ is a 

star world. The solution to the aforementioned problem is presented in §III. Before we do 

so, however, let us elaborate on how a star world ℱ involving rectangular or cylindrical stars 

can be modeled efficiently.

B. Environment Modeling

The shape of a large class of obstacles in man-made environments can be adequately 

approximated by trees of rectangular solids, cylinders, and spheres. In the original 

formulation [1] such obstacles would be modeled in the form of finite Boolean combinations 

of linear and quadratic inequalities, and it has been shown that these constructions lend 

themselves to the definition of diffeomorphic transformations in ℱ. It turns out that these 

Boolean combinations are only one option; implicit obstacle representations that may be 

more analytically and computationally expedient can also be used.

There exists an analytic implicit representation of a twodimensional shape that 

“interpolates” smoothly between a circle and a square: the Fernandez-Guastis Squircle [52]. 

The use of the original squircle implicit representation in navigation functions, however, is 

problematic (creates spurious zero level sets) and a modified version is thus introduced here:

Definition 2 (cf. [52]). The unit squircle in 𝔼2 is the zero level set of the function

βsc(x, y) ≜ x2 + y2 + x4 + y4 + (2 − 4s2)x2y2

2 − 1 (3)

Li and Tanner Page 5

IEEE Trans Robot. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where s ∈ (0, 1) is a constant parameter.

Proposition 1. βsc (q) is smooth in ℝ2 − {0}.

Proof: Note that the only potentially problematic term in terms of continuity for derivatives 

is the square root (at the origin). With 0 < s < 1, and away from the origin, which is the 

center of the shape, we have x4 + y4 + (2 − 4s2)x2y2 > (x2 − y2)2 ≥ 0. Thus, the term inside 

the square root is positive definite. ■

The following equivalent representation of βsc, in which the argument is in vector form, is 

particularly convenient for calculating the length of rays from its center to its boundary. 

Denoting b1 and b2 any two base vectors in 𝔼2, and considering a point along the direction 

of a unit vector q at a distance r from the squircle’s center, (3) becomes

βsc(r, q) = r21 + 1 − 4s2 (q ⋅ b1)(q ⋅ b2) 2

2 − 1 (4)

Letting β2 = 0, the length ρ2 of the ray from center to the boundary of the unit squircle can 

be given as

ρsc(q) = 2
1 + 1 − 4s2 (q ⋅ b1)(q ⋅ b2) 2 (5)

Based on an iterative process, the implicit representations (4) and the length of rays (5) of 

2D unit squircles can be extended into n-dimensional spaces [53].

More general rectangular obstacles can be modeled through a process of rotation, translation 

and scaling. Given a scaling matrix A ∈ ℝn × n, a rotation matrix R ∈ ℝn × n, and a translation 

vector l ∈ ℝn, the implicit representation β of an n dimensional rectangular obstacles in 𝔼n

can be obtained by the coordinate transformation, q = A−1R−1(q′ − l), where q′ is the 

vector of new coordinates. Note that rotations and translations do not change the expression 

of the length of rays for a unit squircle. For scaling, however, the expression of ray length 

naturally depends on the scaling parameter. Based on (5), the length of rays of a scaled unit 

squircle is given as ρ(q) = ∥ Aq′ ∥ ρsc
A−1q

∥ A−1q ∥
. In higher-dimensional cases, the above 

expression applies uniformly.

As a means of comparison, the case of a four-sided, twodimensional polygon modeled using 

the original [2] semi-algebraic construction would require the equivalent of 48 additions, 11 

multiplications, and 28 exponentiations. To model the same object using squircles, one 

needs the equivalent of 6 additions, 5 multiplications, and 9 exponentiations.
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III. TIME-VARYING NAVIGATION FUNCTIONS

This section shows that the properties of time-varying navigation functions in sphere worlds 

are preserved under star-to-sphere and purging transformations when the destination 

configuration is changing over time. Specifically, it is shown that under certain topological 

conditions, the transformations can remain diffeomorphic. Then, the properties of sphere-

world time-varying navigation functions [47] are preserved.

A. Invariance Under Time-varying Diffeomorphisms

To prove that the properties of the star-world time-varying navigation functions are 

preserved under the new star-to-sphere and purging transformations [54], the following 

properties need to be established: (i) the transformations result in a bijection between the 

critical points of sphere-world and star-world navigation functions; (ii) the nature of the 

critical points related through this bijection is identical; and (iii) with the natural Euclidean 

topology of sphere-world and star-world spaces, the membership of critical points in the 

subsets of points “inside the destination bubble” and “close to obstacle boundaries” remains 

unaltered. The first assertion is established by examining the Jacobian of the transformation, 

while the second involves its Hessian.

Proposition 2 (cf. [54, Proposition 2.6]). Let φ∘(x) be a sphere-world navigation function (2) 

defined on ℳ, and h:ℱ ℳ be a diffeomorphism from star-world ℱ to sphere world ℳ. 

Let ℬr
xt ≜ {q: ∥ h(q) − xt ∥2 ≤ r2}, and denote intℬr

xt its interior. Then all the critical points of

φ(q) ≜ (φ∘ ∘ h)(q) (6)

other than those on ∂ℬr
xt, are either non-degenerate with attraction regions of measure zero, 

or in intℬr
xt. In addition, the flows of −∇φ have ∂ℬr

xt as the only limit set with non-zero 

measure attraction region outside intℬr
xt.

Proof: Follows from the three following Lemmas.

Lemma 1 (cf. [54, Proof of Proposition 2.6]). Let 𝒞φ ≜ {q: ∇φ(q) = 0} be the set of critical 

points of φ, and 𝒞φ∘ ≜ {x: ∇φ∘(x) = 0} the set of critical points of φ∘. The restriction of h on 𝒞φ, 

denoted h :𝒞φ 𝒞φ∘, is bijective.

Proof. Take c ∈ 𝒞φ and denote Dh the Jacobian of h. The chain rule requires that 

∇φ(c) = ∇(φ∘ ∘ h)(c) = Dh c
⊺ ∇φ∘(h(c)). Since h is a diffeomorphism, Dh is nonsingular, and 

thus it must be c0 = h(c) ∈ 𝒞φ∘. Given that h is injective, h  must be bijective.
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Lemma 2 (cf. [54, proof of Proposition 2.6]). If c = h−1(c0) ∈ 𝒞φ is a degenerate critical 

point, a local minimum, a local maximum or a saddle of φ, then c0 ∈ 𝒞φ∘ is also a degenerate 

critical point, a local minimum, a local maximum or a saddle of φ∘, respectively.

Proof. Let u = h(q) for x ∈ ℱ. From the multivariate version of Faà di Bruno’s formula [55], 

[56], for the Hessian Hφ ≡ (Hφ)i j , evaluated at a critical point q = c ∈ 𝒞φ:

Hφ 𝒸
= Dh

⊺Hφ∘ ∘ hDh +
k = 1

n
[(∇φ∘)k ∘ h]H(h)k

∣𝒸

Because h(c) = c0 ∈ 𝒞φ∘ (Lemma 1), the second term of Hφ c0
 vanishes, which implies 

Hφ c
= Jh

⊺
c

Hφ∘ h(c)
Jh c

. Given that h is a diffeomorphism, Hφ∘ c0
 and Hφ c

 have the same 

rank and eigenvalues. ◻

Lemma 3. For c ∈ 𝒞φ: (i) if c ∈ ∂ℬr
xt, then h(c) ∈ ∂ℬ∘ r

xt
; (ii) if c ∈ intℬr

xt, then h(c) ∈ intℬ∘ r

xt
; 

(iii) if c ∉ clℬr
xt, (cl denoting closure) then h(c) ∉ clℬ∘ r

xt
.

Proof. Straightforward: for critical point c ∈ 𝒞φ, and for each one of the cases identified 

above, (i) c ∈ ∂ℬr
xt ∥ h(c) − xt ∥2 = r2 h(c) ∈ ∂ℬ∘ r

xt
; (ii) 

c ∈ intℬr
xt ∥ h(c) − xt ∥2 < r2 h(c) ∈ intℬ∘ r

xt
; (iii) 

c ∉ clℬr
xt ∥ h(c) − xt ∥2 > r2 h(c) ∉ clℬ∘ r

xt
. ◻ ∎

B. Construction of Star-to-Sphere Transformations

For a star-shaped obstacle 𝒪i with center qi for i ∈ {1, …, M}, let 𝒪i(ϵ) ≜ {q ∈ ℱ: β(q) ≤ ϵ}, 

where ϵ is a sufficiently small positive constant so that 𝒪i(ϵ) ⊂ ℱ ∪ ∂𝒪i. It has been shown 

[1] that 𝒪i(ϵ) is also star-shaped, and it also satisfies ∇β ⋅ (q − qi) > 0.

Stars are transformed into spheres by scaling their rays. The scaling factors are functions 

vi:ℱ ℝ+ defined as follows,

vi(q) ≜ ρi
1 + βi(q)
∥ q − qi ∥ v0(q) ≜ ρ0

1 − β0(q)
∥ q − q0 ∥ (7)

for i ∈ {1, …, M} with qi the center of the star. Because the scaling of one star in ℱ should 

not interfere with that of another, these scalings are turned on and off by means of analytical 
switches, σi. After defining the omitted product of obstacle functions, β‒i ≜ Π j = 0, j ≠ iβ j, and 
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letting Jr express the destination manifold in ℱ in a way analogous to (1), these analytical 

switches are parameterized by a positive constant Λ and expressed uniformly for i ∈ {0, …, 

M} as

σi(q, λ) ≜ x
x + λ ∘

Jr(q, t)β‒i(q)
βi(q) =

Jr(q, t)β‒i(q)
Jr(q, t)β‒i(q) + λβi(q)

Assume now that the constructed star world ℱ and its model sphere world ℳ satisfy two 

constraints, referred to as the placement condition and the containment condition:

Assumption 1. For i = {0, …, M}, denote qi ∈ ℱ and xi ∈ ℳ the obstacle centers in star 

world ℱ and model sphere world ℳ, and let Jr express the destination manifold in ℱ. Star 
world ℱ and sphere world ℳ satisfy

• the placement condition if ∀i ∈ {0, …, M} it is xi = qi, and ∀x ∈ ℳ, q ∈ ℱ one 

has J
∘
r(x, t) ≡ Jr(q, t), and

• the containment condition if ∀q ∈ 𝒪i(ϵ), i ∈ {1, …, M} it is vi(q) ≤ 1, and 

∀q ∈ 𝒪0(ϵ) it holds that v0(q) ≥ 1.

Once this assumption is in place, the transformation that maps a star-world ℱ to a sphere-

world ℳ can be defined.

Definition 3. The star world to sphere world transformation, hλ:ℱ ℳ, with 

σd ≜ 1 − Σi = 0
M σi, is defined as

hλ(q) ≜
i = 0

M
σi(q, λ)[vi(q) ⋅ (q − qi) + pi] + σd(q, λ)q (8)

It should be stressed that contrary to the original definition [1], (8) is time-varying because 

σi are. That (8) defines a diffeomorphic mapping has not been established, but Theorem 1 

that follows does exactly that; cf. [1, Theorem 6].

Theorem 1. For any star world ℱ, there exists a suitable sphere world ℳ and a positive 
constant Λ, such that if λ ≥ Λ, then hλ:ℱ ℳ is a diffeomorphism.

Proof. The process of proving that (8) is a diffeomorphism rests on [1, Proposition 4.4.3], 

which states three conditions for it to first be a homeomorphism; then, given that hλ is 

analytic and has a nonsingular Jacobian, and together with being one-on-one on ℱ, the fact 

that hλ is a diffeomorphism follows directly from the Inverse Function Theorem. In this 

proposition 𝒳 and 𝒴 are to be understood as n-dimensional continuously differentiable 

compact connected manifolds with M + 1 disjoint boundary components. Denote ∂𝒳 j and 

∂𝒴 j their jth boundary component, and let each be a compact (n − 1)-dimensional connected 

manifold. For hλ now to be a homeomorphism, (i) hλ should have a nonsingular Jacobian, 
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(ii) its restriction on ∂𝒳 j should be a bijection onto ∂𝒴 j for all obstacles j = 0, …, M, and 

(iii) it should map neighborhoods of ∂𝒳 j onto neighborhoods of ∂𝒴 j. The process of 

establishing the nonsingularity of the Jacobian of hλ, denoted Dhλ, involves three steps, each 

established by a corresponding lemma. Each lemma establishes the behavior of the Jacobian 

in a particular region of ℱ.

With reference to an obstacle’s center qi, the tangent space Tqℱ of ℱ at q can be expressed 

as the direct sum of two subspaces in the form Tqℱ = span{q − qi} ⊕ span{q − qi}
⊥. Thus any 

vector y ∈ Tqℱ can be uniquely expressed by two components y1 and y2 in each orthogonal 

subspace, that is, y = y1 + y2 with y1 ∈ span{q − qi} and y2 ∈ span{q − qi}⊥. Now consider 

a unit sphere Sq
n ∈ Tqℱ centered at q, and denote u the unit vector along the direction of any 

u ∈ Tqℱ. Given a parameter ϵ > 0, ℱ is partitioned into

• the set away from obstacles 𝒜(ϵ) ≜ {q ∈ ℱ: β0(q) ≥ ϵ ∧ ⋯ ∧ βM(q) ≥ ϵ}, and

• a collection of obstacle neighborhood sets, {𝒪i(ϵ)}i = 0
M .

For the latter, the analysis of the behavior of Dh considers two cases: along (unit) directions 

within, and outside, the cone

Cq ≜ y ∈ Sq
n:

∥ y1 ∥
∥ y2 ∥ > 2[∇βi ⋅ (q − qi)]

−1
(9)

The Jacobian can be made nonsingular on 𝒜(ϵ) if λ is picked sufficiently large; the proof is 

in the Appendix:

Lemma 4. There exists Λ0(ϵ) > 0, ∀ϵ > 0, such that if λ ≥ Λ0, the Jacobian Dhλ of hλ is 
non-singular on 𝒜(ϵ).

Similarly, for each 𝒪i(ϵ), as long as the ray near the boundary points “outwards” (which is 

true for star-shaped obstacles), there are no zero eigenvalues associated with eigenvectors 

along directions in Cq; the proof is in the Appendix:

Lemma 5. Let ϵi0 be a positive constant such that ∇βi ⋅ (q − qi) > 0 ∀q ∈ 𝒪i(ϵi0). There exist2 

two constants, ϵi1 < ϵi0 and Λi1, such that for all ϵ < ϵi1, and q ∈ 𝒪i(ϵ), if λ > Λi1 (ϵ), then 

y⊺Dhλ
(q)y > 0, ∀y ∈ Cq.

And finally, the quadratic forms above can be made strictly positive in 𝒪i(ϵ) for directions 

outside Cq; the proof is in the Appendix:

2ϵi0 exists because βi is a continuous implicit representation of a strict star.
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Lemma 6. Let ϵi0 be a positive constant such that ∇βi ⋅ (q − qi) > 0 ∀q ∈ 𝒪i(ϵi0). There exist 

constants ϵi2 < ϵi0 and Λi2, such that for all ϵ < ϵi2, ∀q ∈ 𝒪i(ϵ), if λ > Λi2(ϵ), then 

∀y ∈ Sq
n − Cq and ∀y2 ∈ span{q − qi}

⊥, y2
⊺Dhλ

(q)y > 0.

By combining now Lemmas 4 through 6, one can choose ϵ < ϵi ≜ min{ϵi1, ϵi2} and λ > 

Λi(ϵ) ≜ max{Λi1, Λi2}, and then pick a single ϵ* and λ* as follows:

ϵ∗ ≜ min
j ∈ {0, …, M}

{ϵ j} λ∗ ≥ max
j ∈ {0, …, M}

{Λ j(ϵ
∗)} (10)

To see now that hλ maps the boundary of star i, ∂𝒪i, to the boundary of sphere i, ∂𝒪∘ i, let 

q ∈ ∂𝒪i; then by the construction, βi(q) = 0 and βj(q) > 0 for any j ≠ i. Therefore, 

hλ
∂𝒪i

=
ρi

∥ q − qi ∥ (q − qi) + pi, which means that hλ(q) for q ∈ ∂𝒪i is at a distance ρi from 

the center pi of sphere obstacle 𝒪∘ i. Thus, hλ(∂𝒪i) ⊆ ∂𝒪∘ i, for i ∈ {0, …, M}. In addition, 

hλ ∂𝒪i
 is injective; this can be shown by contradiction: assume otherwise, which implies the 

existence of two points q and q′, both in ∈ ∂𝒪i, such that 

ρi
∥ q − qi ∥ (q − qi) + pi =

ρi
∥ q′ − qi ∥ (q′ − qi) + pi, ∥ q′ − qi ∥ (q − qi) = ∥ q − qi ∥ (q′ − qi), and 

in turns suggests that points (q − qi) and (q′ − qi) are on the same ray. But this is impossible 

since they are on the boundary of a star. The proof that hλ ∂𝒪i
 is surjective follows the same 

procedure as in [1, Theorem 6].

The last condition involves the mapping of neighborhoods. Take q ∈ ∂𝒪i, consider the ray 

that starts from qi and goes through q rq(s) ≜ s(q−qi)+qi for s ≥ 0. Note that rq(1) = q. Then, 

using Lemma 5, since (q − qi) is in Cq, verify that:

dβ
∘
i ∘ hλ ∘ rq

ds s = 1
=

2ρi(q − qi)
⊺Dhλ

(q − qi)

∥ q − qi ∥
q ∈ ∂ℱi

> 0

Given monotonicity, continuity, and that (hλ ∘ rq)(1) ∈ ∂𝒪∘ i implying that 

(β
∘
i ∘ hλ ∘ rq)(s)

s = 1 = 0, there should be some s′ such that (β
∘
i ∘ hλ ∘ rq)(s)

s = 1 > 0 for s ∈ (1, 

1 + s′). With ∂𝒪i compact, there is a lower bound s0 < s′ over the whole obstacle boundary, 

that guarantees that (β
∘
i ∘ hλ ∘ rq)(s)

s = 1 > 0 for all q ∈ ∂𝒪i as long as s ∈ (1, 1 + s0). ◻
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C. Construction of time-varying purging transformations

The time-varying purging transformation introduced in this section is an extension of 

Rimon’s original constructions [1]: unlike the original purging transformation, which only 

deals with planar and parabolic obstacles, the transformations here apply to any star-shaped 

obstacle for which the implicit representation and length of rays are known.

Any star tree 𝒯 j has a nonempty set of leaves, that is, stars 𝒪i ∈ 𝒯 j which are the minimal 

elements in the tree’s partial order—meaning that there is no 𝒪k ∈ 𝒯 j such that 𝒪i ⪯ 𝒪k. The 

set of leaves of all trees in workspace 𝒲, is denoted ℒ. Every obstacle, including the leaves, 

is connected to its unique parent via a surface called the patch 𝒫pi
≜ 𝒪i⋂ ∂𝒪pi

. Unlike 

traditional purging transformations [2], here 𝒫pi
 does not need to be simply connected. The 

purpose of the purging transformation is to reduce the leaves to their corresponding patches, 

transforming ℱ to the purged free space ℱ ≜ ℱ⋃i ∈ ℒ (𝒪i − 𝒪pi
). The process is repeated 

until there are no leaves left, and trees of stars are reduced to their root star obstacles.

Without significant loss of generality (the center of a star is not unique) it is assumed that at 

each iteration of the purging transformation the centers of parent and leaf stars are picked so 

that they coincide. (Subsequent applications can use different centers.) Denote that common 

center pi ∈ 𝒪i⋂𝒪pi
. The geometric constants introduced in the following definition are used 

to describe a “collar” on the boundary of the parent, where it intersects with its child.

Definition 4. The positive constants Ei, Ed, are such that

𝒪i(2Ei)⋂𝒪 j(2E j) = ∅ ℬr + Ed

xt ⋂𝒪 j(2E j) = ∅

for i, j ∈ ℐ with pj ≠ i ≠ j ≠ pi.

The scaling factors utilized in the purging transformation differ slightly from (7), by the 

introduction of the scalar

κ i(q) ≜ βpi
(q) + βi(q) − 2Ei + βpi

2 (q) + (βi(q) − 2Ei)
2

and with ρpi (q) denoting the length of rays from center to boundary of the parents of leaf i, 

the purging transformation scaling maps of i ∈ ℒ are expressed as vi(q) ≜ ρpi
(q)

1 + βi(q)κ i(q)
∥ q − qi ∥ . 

Those ray lengths ρPi are assumed to be properly bounded, meaning that they should have a 

lower bound ρmin in 𝒪i(ϵ), and an upper bound ρmax in ℱ.

Once the scaling factors are in place, the maps fi that scale the rays from the center pi of 

each leaf, for i ∈ ℒ are expressed in the form of f i(q) ≜ vi(q)(q − qi) + pi.
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To construct the analytic switches of the purging transformation, which blend together the 

scaling maps, first define

βi ≜ βpi
(q) + 2Ei − βi(q) + βpi

2 (q) + (βi(q) − 2Ei)
2

and modify the expression for the omitted product as

β‒i ≜ Jr(q, t)
k ∈ ℐ − {i, pi}

βk k ∈ ℒ − {i} βk

form the analytic switches of the purging transformation, for i ∈ ℒ, as 

σi(q, μ) ≜ q
q + μ ∘

β‒iβ i
βi

=
β‒iβ i

β‒iβ i + μβi
.

Definition 5. Let ℱ be a forest of stars. The purging transformation f μ:ℱ ℱ is a 

continuous map defined as

f μ(q) ≜
i ∈ ℒ σi(q, μ) f i(q) + σdq (11)

With σd ≜ 1 − Σi ∈ ℒσi.

The proof that this particular purging transformation is a diffeomorphism is based on the 

following proposition.

Proposition 3 ( [1, Proposition 4.4]). Let 𝒞 ⊂ ∂𝒳 be closed and nowhere dense in ∂𝒳. A 

continuous map h:𝒳 − 𝒞 𝔼n of class C(q) where q ≥ 1, is a homeomorphism onto 𝒴 if

1) h has a non-singular Jacobian on 𝒳 − 𝒞;

2) h ∂ j𝒳 is a bijection onto ∂ j𝒴 for j = 0, …, M.

Based on the above proposition, the following theorem establishes the nature of the purging 

transformation (11); cf. [1, Theorem 7].

Theorem 2. For any forest of stars ℱ and its purged version ℱ, there exists a positive 

constant Λ, such that if μ ≥ Λ, then f μ:ℱ ℱ is a diffeomorphism.

Proof. In general, the workspace boundary ∂F contains a nowhere dense set 𝒮 of such sharp 
corners, particularly where a parent star 𝒪pi

 is joined with its child 𝒪i. Specifically in this 

region, and due to the introduction of the 2Ei “collar” around 𝒪i (see [2, Fig. 9]), there are 

two neighboring areas of ∂ℱ where one finds sharp corners: (i) the intersection of the leaves’ 

boundary and their parents’ boundary 𝒮1 ≜ ⋃i ∈ ℒ ∂𝒪i⋂ ∂𝒪pi
, and (ii) the intersection of the 
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parents’ boundary with the “2Ei thickened” version of the leaves, 

𝒮2 ≜ ⋃i ∈ ℒ𝒪i(2Ei)⋂ ∂𝒪pi
. Thus, 𝒮 ≜ 𝒮1 ∪ 𝒮2. It is also the case that for the collar region on 

the parent’s pi boundary it holds that ∇βi ⋅ (q − qi) ≥ Δi, ∀q ∈ 𝒪i(Ei) − 𝒮. Similarly to 

Theorem 1, showing that fμ is a homeomorphism consists of three parts: (i) fμ has a 

nonsingular Jacobian, (ii) fμ is a bijection on the boundary, and (iii) it maps local 

neighborhoods of the boundary of a leaf to local neighborhoods for the “seam” between 

itself and its parent.

Take ϵ > 0 and denote 𝒜ℒ ≜ ⋃i ∈ ℒ{q ∈ ℱ βi(q) > ϵ}, the free-space region ϵ–away from 

leaves. The Jacobian Dfμ of fμ is nonsingular on 𝒜ℒ(ϵ) − 𝒮, that is, away from leaves and 

boundary locations with sharp corners:

Lemma 7. Given a forest of stars in ℱ, and for any ϵ > 0, there exists a positive constant 
Λ0(ϵ), such that if μ ≥ Λ0(ϵ), then Dfμ is nonsingular on 𝒜ℒ(ϵ) − 𝒮.

The same holds true in the vicinity of obstacles, as long as sharp corners are avoided:

Lemma 8. For every leaf i ∈ ℒ in a star forest, there exist positive constants ϵi and Λi, such 
that if μ ≥ Λi and ϵ ≤ ϵi, Dfμ is nonsingular on 𝒪i(ϵ) − 𝒮.

The proof of Lemmas 7 and 8 are in the Appendix.

The nonsingularity of Dfμ is now ascertained as follows. Pick ϵ∗ ≜ mini ∈ ℒϵi and 

μ ≥ Λ1 ≜ maxi ∈ ℒΛi. Lemma 8 implies that Dfμ is nonsingular on ⋃i ∈ ℒ𝒪i(ϵ
∗) less 𝒮. If μ is 

further restricted so that μ ≥ max{Λ1, Λ0 * (ϵ*)}, then Dfμ is also nonsingular on 𝒜ℒ(ϵ∗)

less 𝒮. The conjunction of these two statements leaves Dfμ nonsingular on ℱ − 𝒮.

Let q ∈ ∂𝒪i; then by construction, βi(q) = 0 and βj(q) > 0 for any j ∈ ℒ and i ≠ j. Therefore, 

f μ
∂iℱ⋂ℱ

=
ρpi

∥ q − qi ∥ (q − qi) + qi, which means that for q ∈ ∂𝒪i, fμ(q) is at distance ρPi 

from the center qi of the parent obstacle 𝒪pi
. Thus, f μ(∂𝒪i) ⊆ ∂𝒪pi

, for i ∈ ℒ. In addition, 

f μ ∂𝒪i
 is injective; this can be seen by contradiction: if otherwise, then there would be two 

points q and q′, both in ∈ ∂𝒪i, such that 

ρpi
∥ q − qi ∥ (q − qi) + qi =

ρpi
∥ q′ − qi ∥ (q′ − qi) + qi ∥ q′ − qi ∥ (q − qi) = ∥ q − qi ∥ (q′ − qi), which 

in turns suggests that points (q − qi) and (q′ − qi) are on the same ray. This is impossible: 

they are on the boundary of a star. The proof that f μ ∂𝒪i
 is surjective mirrors that of [1, 

Theorem 6] paraphrased as follows. If μ ≥ Λ, there exists an open neighborhood in ℱ in 

which fμ has a non-singular Jacobian, indicating that f μ ∂𝒪i
 is a local homeomorphism 
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(Inverse Function Theorem). A local homeomorphism from a compact space into a 

connected one, is surjective.

Take now q ∈ ∂𝒪i, and consider the ray that starts from qi and goes through q, rq(s) ≜ s(q − 

qi) + qi for s ≥ 0. Then

dβpi
∘ hλ ∘ rq

ds s = 1
= ∇βpi

(q′) ⊺
q′ ∈ ∂𝒪pi

Dhλ
(q − qi)

q ∈ ∂ℱi

For ∇βpi
(q′)

q′ ∈ ∂𝒪pi

∈ ℝn, one can show that it can always be decomposed into two 

vectors, q1′  and q2′ , such that q1′ ∈ span{q − qi} and q2′ ∈ Cq ≜ {x ∈ Tqℱ: ∥ x2 ∥ ≤ ri ∥ x1 ∥ }. 

The decomposition is done as follows: For all x ∈ Tqℱ, x = x1 + x2 with x1 ∈ span{q − qi}, 

and x2 ∈ span{q − qi}⊥. Given any cone Cq, there is a corresponding ri ∈ ℝ, such that x ∈ 

Cq if ∥x2∥ ≤ r∥x1∥. To decompose now ∇βpi
(q′)

q′ ∈ ∂𝒪pi

, first split ∇βpi
(q′)

q′ ∈ ∂𝒪pi

 into 

components y1 and y2 along span{q − qi} and span{q − qi}⊥, respectively, so that 

∇βpi
(q′)

q′ ∈ ∂𝒪pi

= y1 + y2. Choosing 0 < r0 < r, let y3 = r0 ∥ x2 ∥ (q − qi), and denote 

q1′ = y1 − y3, q2′ = y2 + y3. Then according to Lemma 9,

dβpi
∘ hλ ∘ rq

ds s = 1
= q1′

⊺Dhλ
(q − qi)

q ∈ ∂ℱi

+ q2′
⊺Dhλ

(q − qi)
q ∈ ∂ℱi

> 0 (12)

Given that ( f μ ∘ rq)(1) ∈ ∂βpi
(βpi

∘ f μ ∘ rq)(s)
s = 1

= 0, in conjunction with continuity and 

monotonicity from (12), there exists s′ such that (βpi ο fμ ο rq) (s)|s=1 > 0 for some s ∈ (1, 1 

+ s′). Since ∂𝒪i is compact, there is a lower bound s0 < s’ over the obstacle boundary, 

guaranteeing that (βpi ο hλ ο rq) (s) |s=1 > 0 for all q ∈ ∂𝒪i as long as s ∈ (1, 1 + s0). ◻

IV. VALIDATION

This section illustrates the construction of two instances of environment representations, 

along with the time-varying navigation functions and the associated transformations. The 

two workspaces are of progressively higher complexity, with the first one containing two 

isolated obstacles, and the second one resembling a maze-like environment. The section 

couples these constructions with simulation studies with a point-mass robot, and 

experimental data obtained on a differential drive wheeled robot.
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A. Workspace Modeling

The first case study attempts to model a small playground for children, mirroring the one 

utilized in a pediatric rehabilitation clinical study that motivates this work (see Fig. 4). The 

particular study involves games of chase between infants and robots, and the idea is to 

enable the robot to chase the human subject autonomously, using localization information 

provided through a system of networked cameras.

The general layout of this simple playground is shown in Fig. 5a. The outer square marks the 

outer boundary of the playground. The circle represents a round table-toy, where as the L-

shaped obstacle is a combination of a foam ramp on one side and a small staircase (cf. Fig. 

4). The L-shaped obstacle is thought of as a star tree, with 𝒪1 being the root, and 𝒪2 as the 

single leaf. In this case, the moving destination is the human subject.

If φ0 (q) denotes the time-varying navigation function in the sphere world, h(q) the star-to-

sphere transformation, and f(q) the purging transformation, then the time-varying navigation 

function φ(q) for this workspace instance is given as φ(q) = φ0 ο h ο f(q). Assuming, 

without loss of generality, that the destination is momentarily at the geometric center of the 

workspace, the stages of the purging transformation that maps the star world to a sphere 

world are illustrated in Fig. 6.

The second case study emulates a maze-like environment, and is intended to highlight the 

application of the purging transformations. The environment layout in this case is shown in 

Fig. 5b (left). Here, all obstacles share a common ancestor: the outer workspace boundary. 

The long rectangular obstacles that represent walls are connected sequentially to form star 

trees, and to facilitate the application of purging transformations which would otherwise be 

challenging due to their elongated shape, virtual obstacles are used to patch the parent 

obstacle with its child (Fig. 5b (right)). This is done because when the center of the parent 

star does not coincide with its geometric center, straightforward application of (5) will 

introduce errors, since the latter is developed based on the geometric star (squircle) center. 

These (additional) virtual obstacles rectify this discrepancy and serve as links between 

parent and children stars, thus facilitating a sufficiently accurate approximation of the length 

of rays, needed for the purging transformations. In Fig. 5b, a purging transformation is 

applied four times consecutively, each time resulting in a transformed workspace depicted in 

the component figures of Fig. 7. Once all obstacles have been purged into the outer 

boundary, a star-to-sphere transformation maps to the sphere world of the bottom rightmost 

plot.

B. Simulation results

In this section, simulation results for an ideal point-mass robot are presented, ignoring any 

kinematic and dynamic constrains. The particular objective of the simulation study is to 

assess the capacity of the time-varying navigation function to offer target interception 

solutions. In every scenario, the robot is assumed to be able to develop speeds that exceed 

that of its target, to allow for interception. The radius of the bubble around the target is set at 

0.1 m.
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The first simulation result is presented in Fig. 8. The figure illustrates two scenarios of target 

motion. In the first (left), the target moves along a rounded square path tracing the outer 

boundary of the robot’s workspace. The robot starts at coordinates (0, −1) m and chases the 

target as it goes around, “cutting the corners” to gain on it, and eventually intercepting it 

close to the lower right segment of the target’s path. Below this picture of workspace and 

agent paths, the evolutions of the value of the navigation function, and that relative distance 

between target and robot, are plotted over time. Figure 9 offers snapshots at different time 

instances, indicating how the potential field changes as the target moves in this scenario. In 

the rightmost plot of Fig. 8, the target is moving along a straight diagonal line from 

northwest to southeast, while the robot starts at (−4, −4) m.

The first scenario illustrates a key feature of the approach. A navigation strategy based 

exclusively on the negated gradient of the time-varying navigation function does not 
necessarily decrease monotonically the value of the function. Depending on how the target 

moves, the relative distance between robot and target can fluctuate. This paper is not 

concerned with the stability properties of the relative distance dynamics and is part of future 

work. What this paper offers is illustrated better in Fig. 9. Under the stated conditions, the 

methodology presented guarantees that for any fixed time, and irrespectively of the target’s 
motion, φ is a navigation function.

The second simulation study is conducted in a ROS/GAZEBO environment, where a 

quadrotor is steered in the 3d environment of Fig. 10 to intercept a moving target. In the 

environment of Fig. 10 the structures are being modeled as rectangular obstacles, in a 

conceptual 3d analog of the planar configuration depicted in Fig. 1.

C. Experimental results

This section reports experimental results from the application of the methodology on the 

small black differential-drive robotic toy shown in Fig. 4 (right). The control update 

frequency used was 10 Hz.

Two scenarios of leader-following were tested, and the results are shown in Fig. 11. 

Specifically, Fig. 11 presents snapshots from the two trials. In these trials, the target is 

another, remotely controlled, robot with differential drive kinematics, steered at a smaller 

speed than the pursuing robot. The snapshots from trial 1 depict the robot, initially in the 

upper left hand side corner of the workspace attempting to chase its target around the square 

obstacle that is between them. As the target moves from right to left south of the obstacle, 

the time-varying potential field readjusts and eventually directs the robot, straight down in 

pursuit of its target, rather than following the path of the target. In trial 2, the robot chases its 

target as it winds around the obstacles. A similarly interesting behavior resulting from the 

potential field appears in the last two snapshots (at 12 and 15 seconds) where the robot 

“waits” for its target to appear behind the obstacle, instead of just following its target’s path.

V. DISCUSSION

Before discussing advantages and limitations, it is important to frame this discussion relative 

to what the methodology actually offers. To iterate the last words of Section IV-B, the paper 
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claims that even when the destination configuration varies over time, the construction 

reported will offer a navigation function for every time instant. This is not the same as 

having a time-varying Lyapunov function for the kinematic system x. = u under collision 

avoidance constraints. More work along is needed to establish the latter, but the 

methodology reported here is a big step in this direction.

With this clarified, let us review some advantages of the reported constructions. (a) In the 

case of dynamic environments, unlike heuristic approaches, the potential field generated by 

(6) does not have spurious attractors away from the destination manifold; (b) despite, again, 

the time-varying nature of the navigation scenario, collision avoidance is ensured globally, 

even without knowledge of the target’s trajectory or enforcing visibility constraints; (c) no 

involved analytic integral calculations are required; (d) no configuration-space discretization 

is required, therefore circumventing complexity issues related to resolution and memory 

requirements; (e) due to the analytic nature of (6) bounded (kinematic) inputs are needed, 

under the assumption that the robot’s maximum speed exceeds that of its target; (f) even for 

time-invariant cases, and compared with the original time-invariant construction [2] that 

utilizes Boolean combinations to represent semi-analytic obstacles, the reported method 

offers computational savings.

VI. CONCLUSION

The methodology of navigation functions on star worlds [2] can be extended to cases where 

the destination configuration is time-varying. The construction presented for this purpose in 

this paper preserves the main features of the classical approach, guaranteeing the absence of 

local minima when certain topological conditions are satisfied. Compared to earlier work 

along this direction which treated the case of sphere worlds with time-varying destinations 

[47], the present paper establishes the diffeomorphic nature of star-to-sphere and purging 

transformations, thus allowing the constructed potential fields to inherit the properties 

established in sphere worlds. In the process of reconstructing those transformations, novel, 

analytically and computationally expedient modeling formalisms were established for star-

shaped obstacles. A new ROS toolkit is now publicly available for two-dimensional 

starshaped workspaces [57].
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Appendix

Consider the vector qi − q with q ∉ 𝒮. The tangent space of ℱ at q, Tqℱ, can be expressed as 

the direct sum Tqℱ = span{qi − q} ⊕ span{qi − q}⊥. Every y ∈ Tqℱ can be uniquely expressed 

as a sum of two components, one in each orthogonal subspace, such that y = y1 + y2, with y1 

∈ span{qi − q}, and y2 ∈ span{qi − q}⊥. Denote y the unit vector along y.
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A. Proof of Lemma 4

Let y be a unit vector at q ∈ 𝒜(ϵ). Setting 

w(σ j, ∇σ j) ≜ Σ j = 0
M {σ j(q − q j)∇v j

⊺ + (v j − 1)(q − q j)∇σ j
⊺} for brevity, one has [53, Lemma 4.5] 

Dhλ
y = 1 − Σ j = 0

M σ j(v j − 1) y + w(σ j, ∇σ j)y. If λ > max j ∈ {0, …, M}{N0 j(ϵ, δ), N1 j(ϵ, δ)}, then 

σj(q, λ) < δ and ∥∇σj(q, λ)∥ ≤ δ [53, Lemmas 4.6, 4.7]. Consequently, 

∥ w(σ j, ∇σ j) ∥ < δΣ j = 0
M ∥ q − q j ∥ ( ∥ ∇v j ∥ + ∣ v j − 1 ∣ ). Note that 

δ0′ ≜ 2max𝒜(ϵ){Σ j = 0
M ∥ q − q j ∥ }( ∥ ∇v j ∥ + ∣ v j − 1 ∣ ) −1

 exists by continuity, and if δ ≤ δ0′

then ∥ w(σ j, ∇σ j) ∥ < 1
2 . Selecting δ, a bound for all σj with j ∈ {0, …, M} is established in 

𝒜(ϵ):σ j ≤ 2(1 + M)max j{ ∣ v j − 1 ∣ } −1
, implying 1 − Σ j = 0

M σ j(v j − 1) ≥ 1
2 . Define:

δ0 ≜ min
j ∈ {0, …, M}

δ0′ , [2(1 + M)max
j

{ ∣ v j − 1 ∣ }]−1

Λ0(ϵ) ≜ max
j ∈ {0, …, M}

{N0 j(ϵ, δ0), N1 j(ϵ, δ0)}

and select λ ≥ Λ0. Then Dhλ
y ≠ 0. ◻

B. Proof of Lemma 5

Dhλ
(q) = (q − qi)(vi − 1)∇σi

⊺

Dh1(q, λ)

+ Σ
j = 0, j ≠ i

M
{(v j − 1)σ jI + (q − qi)[σ j∇v j + (v j − 1)∇σ j]

⊺} + (1 − σi + σivi)I + (q − qi)σi∇vi
⊺

Dh2(q, λ)

Dh1 (q, λ) is ensured positive semidefinite if

βi ≤
(q − qi) ⋅ ∇βi

6 ∥ q − qi ∥ Σ j = 0, j ≠ i
M ∥ ∇β j ∥

β j
+ 4

Jr(q, t) + rt
2

Jr(q, t)

≜ ζ(q)

For q ∈ 𝒪i(ϵ) it is βi < ϵ, so the condition βi < ζ(q) is guaranteed as long as

ϵ ≤ min min
𝒪i(ϵi0)

ζ(q), ϵi0 ≜ ϵi1′
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(The detailed expression of ϵi1′  is found in [53, Lemma 4.12].)

For Dh2 (q, λ) now, one expands it to

Dh2
(q, λ) = σiviI − σivi(q − qi)(q − qi)

⊺

Dh21
(q, λ)

+ (1 − σi)I +
σivi

1 + βi
(q − qi)∇βi

⊺ + Σ
j = 0, j ≠ i

M
{(v j − 1)σ jI + (q − q j)[σ j∇v j + (v j − 1)∇σ j]

⊺}

Dh22
(q, λ)

Working similarly in parts, separate Dh21 (q, λ) to show that it is always positive 

semidefinite:

y⊺Dh21
(q, λ)y = σivi 1 − x ⋅ (q − qi)

2 ≥ 0

The second term, Dh22 (q, λ) can be made positive definite:

Dh22
(q, λ) =

σivi
1 + βi

(q − qi)∇βi
⊺ + Σ

j = 0, j ≠ i
M λ(v j − 1)Jr(q, t)β‒i

[Jr(q, t)β‒ j + λβ j]
2(q − q j)∇βi

⊺

Dh221
(q, λ)

+ (1 − σi)I + Σ
j = 0, j ≠ i

M
σ j(v j − 1)I + σ j(q − q j)∇v j

⊺ +
λβi

[Jr(q, t)β‒ j + λβ j]
2 Xi j

∗ (q)⊺

Dh222
(q, λ) ≜ Hi(q, λ)

For the positive definiteness of y⊺Dh221
y it suffices to show

λvi ∥ q − qi ∥
3 > (1 + β j)Jr(q, t)β‒i Σ

j = 0, j ≠ i

M ∣ v j − 1 ∣ ∥ q − q j ∥
β j

2

vi ∥ q − qi ∥
3 > (1 + βi)βi Σ

j = 0, j ≠ i

M ∣ v j − 1 ∣ ∥ q − q j ∥
β j

2

(13)

Recall that q ∈ 𝒪i(ϵi0), and let Ei ≥ ϵi0 be the positive geometric constants of Definition 4. 

For q ∈ 𝒪i(Ei), we have βi < Ei and βj > Ej. The upper branch of (13) is satisfied for λ > Λi1 

where
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Λi1 ≜ max
𝒪i(Ei)

3(1 + βi)Jr(q, t)β‒i
vi ∥ q − qi ∥ Σ

j = 0, j ≠ i
M ∣ v j − 1 ∣ ∥ q − q j ∥

β j
2

while the lower branch of (13) is satisfied by setting Ei < ϵi1, where ϵi1 is the (positive) 

solution of the second-order algebraic equation x2 + x + A = 0 in which 

A ≜ min𝒪i(Ei)
vi ∥ q − qi ∥

3Σ j = 0, j ≠ i
M ∣ v j − 1 ∣ ∥ q − q j ∥

β j
2

. Detailed expressions for Λi1 and ϵi1 are in [53, 

Lemma 4.12].

Finally, to make Dh222 (q, λ) positive semidefinite, one directly applies [53, Lemma 4.11] 

—the adapted version of [1, Lemma B.1.2]. That lemma guarantees the existence of a 

continuous function Λi
∗:𝒪i(Ei) ℝ+, for which if λ ≥ max𝒪i(Ei)

Λi
∗(q) ≜ Λi1′ , the bilinear form 

u⊺Dh222
(q, λ)v⊺ is positive semidefinite for 0 < u ⋅ v ≤ 1. To complete the proof, one then 

selects ϵ ≤ mini ∈ {0, …, M}{ϵi1, ϵi1′ } < Ei and λ ≥ maxi ∈ {0, …, M}{Λi1, Λi1′ }. ◻

C. Proof of Lemma 6

Let y = y1 + y2, where y1 ∈ span{q − qi} and y2 ∈ span{q − qi}⊥. Observe now that

y2
⊺Dhλ

y ≥ 1
2vi ∥ y2 ∥ + λJr(q, t)β‒i(∇βi ⋅ y) × Σ

j = 0, j ≠ i
M (v j − 1)[y2 ⋅ (q − q j)]

(Jr(q, t)β‒ j + λβ j)
2

K1(q, λ, t)

+ Σ
j = 0, j ≠ i

M
y2

⊺ (σ jv j − σ j)I + (q − q j)σ j∇v j
⊺ +

λβ jXi j
∗ (q)

(Jr(q, t)β‒ j + λβ j)
2 y + 1

2vi ∥ y2 ∥

K2(q, λ, t)

Now K1(q, λ, t) is positive semidefinite if 

∥ y2 ∥
λ

1
2 λvi − Jr(q, t)β‒i( 2 + 1) ∥ ∇βi ∥ Σ j = 0, j ≠ i

M ∣ v j − 1 ∣ ∥ q − q j ∥

β j
2 > 0, ensured for a 

sufficiently large λ:3 λ > max𝒪i(ϵi0){ζ′′′(q)} ≜ Λi2′ . Now bound K2(q, λ, t) from below as 

K2(q, λ, t) ≥ 1
2 3vi∇βi ⋅ (q − qi) −

βi
λ Σ j = 0 j ≠ i

M {
Jr(q, t)β‒i j( ∣ v j − 1 ∣ + ∥ q − q j ∥ ∥ ∇v j ∥ )

β j

+
∥ Xi j

∗ (q) ∥

β j
2 }

 which 

can be made positive semidefinite, if

3A detailed expression for ζ′′′(q) is found in [53, Lemma 4.13].
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ϵ < ϵi2 ≜ min min
𝒪i(ϵi0)

∇βi ⋅ (q − qi) , ϵi0

λ ≥ max max
𝒪i(ϵi0)

{ζ′(q, t)}, Λi2′ ≜ Λi2′′

making K2(q, λ, t) positive semidefinite. ◻

D. Proof of Lemma 7

For q ∈ 𝒜ℒ(ϵ), σj with j ∈ ℒ is upper bounded by 1
2 ∣ ℒ ∣ , and thus σd = 1 − Σ j ∈ ℒσ j ≥ 1

2 . 

Letting now δ0′ ≜ 2maxℱ{Σ j ∈ ℒ( ∥ D f i
∥ + ∥ f j − q ∥ )}

−1
 and setting δ0 ≜ min{δ0′ , 1

2 ∣ ℒ ∣}, 

one can pick Λ0(ϵ) ≜ max j ∈ {0, …, M}{N0 j(ϵ, δ0), N1 j(ϵ, δ0)} and take μ ≥ Λ0, so that 

D f μ
y = Σ j ∈ ℒ σ jD f j

+ ( f j − q)∇σ j
⊺ y + σdy is bounded away from zero, making Dfμ non-

singular on 𝒜ℒ(ϵ) − 𝒮. ◻

E. Proof of Lemma 8

Pick an obstacle 𝒪i and define a cone inside Tqℱ𝓌, the tangent space of ℱ at point q, as 

follows: Ci ≜ {y ∈ Tqℱ: ∥ y2 ∥ ≤ ri ∥ y1 ∥ } with ri being a positive constant. Invoke the 

following supplemental lemma:

Lemma 9. Given a star forest in ℱ, there are two positive constants Λi and ϵi, such that if μ 

≥ Λi, then ∀q ∈ 𝒪i(ϵi) − 𝒮 and for any unit vector y ∈ Ci, it is y⊺D f μ
(q)y1 > 0.

Proof. The Jacobian of the purging transformation is

D f μ
= σiD f i

+ ( f i − q)∇σi
⊺ + 1

2(1 − σi)I
DF1

+ 1
2(1 − σi)I + Σ

j ∈ ℒ − {i} σ j(D f j
− I) + ( f j − q)∇σ j

⊺

DF2

For any ray scaling map fi(q) = vi(q − qi) + qi and unit vector y = y1 + y2 ∈ Ci, and with αi ≥ 

0 in 𝒪ϵi0
 for some appropriately small ϵi0 > ϵi1 > 0 [53, Lemma 5.6], 

D f i
⋅ y1 = αi(q − qi)(q − qi)

⊺y1. It follows that y⊺D f i
y1 = y1 ⋅ (q − qi)

2αi ≥ 0 for q ∈ 𝒪(ϵi1). 

Expand DF1 into (vi − 1)(q − qi)∇σi
⊺ + 1

2 (1 − σi)I and note that for all q ∈ 𝒪i(ϵi1) it is vi ≤ 1 [2, 
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Lemma D.2.1]. A sufficient condition for y⊺DF1
y1 ≥ 0 is that 

βi <
Δi

maxℱ{ ∥ q − qi ∥ }max𝒪i(ϵi1){ ∥ ∇(β‒iβ i) ∥ (β‒iβ i)}
≜ ϵi2. For DF2, and for a unit vector 

y = y1 + y2 ∈ Ci, it is ∥ y1 ∥2 ≥ 1
1 + ri

2 ≕ Δ2. There exists Λi2(Δ) > 0 [53, Lemma 5.8] such 

that if μ ≥ Λi2(Δ) it is y⊺DF2
y1 ≥ 0 for all q ∈ 𝒪i(Ei) − 𝒮. Set Λi ≜ Λi2(Δ) and ϵi ≜ min{ϵi1, 

ϵi2}. ◻

Given ϵ < ϵi1 and μ > Λi1, Lemma 9 thus implies that D f μ
(q)y ≠ 0, ∀q ∈ 𝒪i(ϵi1) − 𝒮 and 

y ∈ Ci. The same be stated for vectors outside the cone Ci:

Lemma 10. Consider a star forest ℱ, pick an obstacle 𝒪i and take any unit vector 

y ∈ Tqℱ − Ci. Decompose y in two ways: y = y1 + y2 = z1 + z2 with y1 ∈ span{qi − q}, y2 ⊥ 

y1, z1 ∈ span ∇βi, z2 ⊥ z1. Then there exist a positive constant Λi such that for all μ ≥ Λi and 

an appropriate ri > 0, it is y⊺D f μ
(q)z2 > 0.

Proof. The Jacobian of fμ is [2, Lemma D.1.4]

D f μ
= σiD f i

+ ( f i − q)∇σi
⊺ + 1

2(1 − σi)I

≜ [D f ]1

+ 1
2(1 − σi)I + Σ

j ∈ ℒ − {i} σ j(D f j
− I) + ( f j − q)∇σ j

⊺

≜ [D f ]2

Since ∣ x ⋅ (q − qi) ∣ = ∥ x1 ∥ ∥ q − qi ∥, it holds that 

x⊺ D f i
y2 ≥ ∥ y2 ∥ (vi ∥ y2 ∥ − ∥ x1 ∥ ∥ q − qi ∥ ∥ ∇vi ∥ ) and thus x⊺ D f i y2 ≥ 0 if 

∥ y2 ∥ > vi
−1 ∥ q − qi ∥ ∥ ∇vi ∥ ∥ x1 ∥. For x ∈ Tqℱ − Cq, there is some ri ≡ ri1, for which 

∥x2∥ > ri1∥x1∥.4 Let this

ri1 ≜ 1
2(1 − 1 − [∇βi ⋅ (q − qi)]

2)
−1

From the definition of the star-shape collar, 

∇βi ⋅ (q − qi) ≥
Δi

maxℱ{ ∥ ∇βi ∥ }maxℱ{ ∥ q − qi ∥ } ≜ Δi > 0, from which (cf. [53, (5.18)]) it then 

follows that ∥ y2 ∥2 ≥ {1 − 1
4 ( 1 − Δi

2 + 1)
2
} ∥ x2 ∥2 and consequently, 

4Invoke [53, Lemma 5.10] with u = (q − qi) and v = ∇βi.

Li and Tanner Page 23

IEEE Trans Robot. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



∥ x2 ∥ 1 − 1
4 ( 1 − Δi

2 + 1)
2

>
∥ q − qi ∥ ∥ ∇βi ∥

vi
∥ x1 ∥. One can then enlarge the cone Cq with 

∥x2∥ > ri2∥x1∥ using

ri2 ≜
maxℱ{ ∥ q − qi ∥ }max𝒪i(Ei)

{ ∥ ∇vi ∥ vi}

1 − 1
4( 1 − Δi

2 + 1)
2

The term max𝒪i(Ei)
{ ∥ ∇vi ∥ vi} can be upper bounded [53, Lemma 5.11]. Now expanding 

D f 1 = μ
β‒iβ i + μβi

1
2 βiI +

vi − 1

β‒iβ i + μβi
(βi(q − qi)∇(β‒iβ i)

⊺ − β‒iβ i(q − qi)∇βi
⊺)  and with y2 ⊥ ∇βi, 

one has the bound for the bilinear form 

x⊺ D f 1y2 ≥
μβi ∥ y2 ∥

β‒iβ i + μβi

1
2 ∥ y2 ∥ −

∣ vi − 1 ∣

β‒iβ i + μβi
∥ x1 ∥ ∥ q − qi ∥ ∥ ∇(β‒iβ i) ∥ , the positive 

semidefiniteness of which is implied by 

β‒iβ i ∥ y2 ∥ ≥ 2 ∣ vi − 1 ∣ ∥ q − qi ∥ ∥ ∇(β‒iβ i) ∥ ∥ x1 ∥. Maximizing ∥y2∥ using the bound 

involving Δi, one can further inflate the cone Cq with ∥x2∥ ≥ ri3∥x1∥ using

ri3 ≜

2max𝒪i(Ei)
∣ vi − 1 ∣ ∥ q − qi ∥ ⋅ max𝒪i(Ei)

∥ ∇(β‒iβ i) ∥

(β‒iβ i)

1 − 1
4( 1 − Δi

2 + 1)
2

For [Df]2, verify first that ∥ y2 ∥2 ≥ 1 − 1
4 ( 1 − Δi

2 + 1)
2
 and set (cf. [53, Lemma 5.8]) 

Δ ≜ 1 − 1
4 ( 1 − Δi

2 + 1)
2
 to force x⊺ D f 2y2 ≥ 0. The proof is completed by choosing

ri ≜ max{ri1, ri2, ri3} Λi ≜ Λi(Δ)

◻

The same process that was used in the proof of Lemma 10 applies here to lead to the 

conclusion that D f μ
(q)y ≠ 0 for y ∉ Ci. The two lemmas together suggest a choice of

ϵi ≜ min{ϵi1, Ei} Λi ≜ max{Λi1, Λi2}

to make Dfμ (q) nonsingular in 𝒪(ϵ) − 𝒮 as long as ϵ < ϵi and μ ≤ Λi. ◻
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Fig. 1: 
An example of a potential field generated by a navigation function in a simple rectangular 

environment: (a) contour plot, and (b) three dimensional rendering.
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Fig. 2: 
How the purging transformation works. Intersecting star shapes form a parent-child 

hierarchy, and then the inverse of the transformation shown above draws the interior of the 

child within its parent, and maps the boundary of the child to the portion of the boundary of 

the parent which is in the overlap of the two shapes.
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Fig. 3: 
(a) an example of a star shape; all points on the boundary are “visible” from an interior point 

called the center, i.e., the ray from center to boundary does not intersect the boundary 

anywhere else. (b) the (inverse of a) star-to-sphere transformation is a bijective mapping that 

relates the boundary of a star to that of a sphere.
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Fig. 4: 
The pediatric rehabilitation clinical study environment.
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Fig. 5: 
(a) Environment layout for the first simulation study. (b) Environment layout for the second 

simulation study (left), and a zoomed view of the circled area (right).
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Fig. 6: 
Time-varying navigation functions of the first example: the resulting navigation function 

(left), the modeling star world navigation function after applying a purging transformation 

(middle), and the modeling sphere world navigation function after applying a star-to-sphere 

transformation (right).
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Fig. 7: 
Time-varying navigation functions of the second example from the resulting navigation 

function in star forests to its the modeling sphere world navigation function.
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Fig. 8: 
Simulations for different target movement and initial robot configurations. The paths of 

target and robot are shown in the figures on the upper row, and the evolution of the artificial 

potential v and robot-target d is shown, for each case, in the bottom row.
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Fig. 9: 
Contour plots of the time-varying navigation function at different instances of simulation 

time, as the target moves around in the workspace.
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Fig. 10: 
GAZEBO simulation of a quadrotor (top right) intercepting a moving ground target (bottom 

center). The time-varying navigation function provides motion directions to the aerial 

vehicle.
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Fig. 11: 
Two experimental trials with a unicycle robot (larger robot) chasing a moving target (smaller 

robot).
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