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Abstract

Maintenance of biomedical ontologies is difficult. We have previously developed a topological-

pattern-based method to deal with the problem of identifying concepts in a reference ontology that 

could be of interest for insertion into a target ontology. Assuming that both ontologies are parts of 

the Unified Medical Language System (UMLS), the method suggests approximate locations where 

the target ontology could be extended with new concepts from the reference ontology. However, 

the final decision about each concept has to be made by a human expert. In this paper, we describe 

the universe of cross-ontology topological patterns in quantitative terms. We then present a 

theoretical analysis of the number of potential placements of reference concepts in a path in a 

target ontology, allowing for new cross-ontology synonyms. This provides a rough estimate of 

what expert resources need to be allocated for the task. One insight in previous work on this topic 

was the large percentage of cases where importing concepts was impossible, due to a configuration 

called “alternative classification.” In this paper, we confirm this observation. Our target ontology 

is the National Cancer Institute thesaurus (NCIt). However, the methods can be applied to other 

pairs of ontologies with hierarchical relationships from the UMLS.
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I. Introduction

Biomedical ontologies lay a solid foundation in various healthcare information systems [1, 

2], especially for encoding diagnoses, laboratory tests, problem lists in Electronic Health 

Records [3, 4] and in administrative documents such as billing statements [5]. Moreover, 
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they also play an important role in knowledge management, data integration, and decision 

support, with their rich semantic relationships between concepts [1]. In Cimino’s 

“desiderata” of biomedical ontologies in the 21st Century [6], domain completeness is 

deemed to be the most desirable property of an ontology. With the non-stop growth of 

medical knowledge, it is essential that curators of a biomedical ontology keep incorporating 

new concepts to improve its domain coverage [6]. The traditional top-down approach for 

ontology development involves iterative discussions among ontology developers and domain 

experts, which is labor intensive and time consuming [7]. Thus, automated and semi-

automated ontology learning methods, which may ease the burden of ontology developers 

and accelerate ontology development, are highly desired [8–12].

The Unified Medical Language System (UMLS) Metathesaurus integrates over 10 million 

terms from about 207 source vocabularies into 3.6 million concepts, such that terms with the 

same meaning are assigned the same Concept Unique Identifier (CUI) [13]. In previous 

research, we have introduced a structural methodology to mine new concepts from a UMLS 

source for inclusion in another UMLS source where they might be “missing” [14, 15]. This 

methodology leverages the native term mappings of the UMLS to identify cross-ontology 
topological patterns that are indicative of a possible import. We found candidate concepts for 

import into SNOMED CT and domain experts confirmed the validity of this method [14, 

15]. We extended this work subsequently with a focus on the National Cancer Institute 

thesaurus (NCIt), a major reference terminology for cancer [16–18].

Cross-ontology patterns rarely identify a unique location where a reference concept should 

be inserted. Rather, the patterns provide several choices. A human expert has to determine 

which, if any, of the choices is correct and desirable. It is of interest to identify the number 

of possible placement choices, to estimate the difficulty of the task for the human expert. 

The work by He and Geller [17] was a preliminary analysis of the number of different ways 

that concepts from a reference ontology, taking part in a cross-ontology topological pattern, 

can be inserted into a target ontology. The results of He and Geller showed that if the 

possibility of new cross-ontology synonyms is excluded, the number of possible insertions 

can be described by a combinatorial formula [17].

However, it was observed that two ontologies might use two different terms to describe the 

same real-world concept, which makes them synonyms. While the UMLS is an extensive 

repository of synonyms, cases were observed where two “real world synonymous terms” 

were not recorded as synonyms, neither in the reference ontology, nor in the target ontology. 

This may be due to the imperfect semi-automated ontology integration of the UMLS. The 

previous work [17] dealt only with the situation of inserting a reference concept between 
target concepts. In this paper, we allow for the possibility of new cross-ontology synonyms 

and derive a result for the number of choices that a human expert faces in this extended 

scenario.

When a concept is imported as a synonym, the number of concepts in the target ontology 

stays the same and more details are added to one target concept, namely the new synonym. 

One of the surprising results of previous work [14–16] was the large percentage of 

alternative classifications that were encountered. At this point, we will demonstrate 
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“alternative classifications” with an example. The concept Gastrointestinal Diseases may be 

shared between two ontologies. In one and only one ontology it has the immediate sub-

concept (child) Gallbladder and biliary tree disorders. In the other ontology (and only there), 

Gastrointestinal Diseases has the sub-concept Gastrointestinal polyps. These two concepts 

are hierarchically incompatible, because Gallbladder and biliary tree disorders specializes 

Gastrointestinal Diseases by anatomical location. On the other hand, Gastrointestinal polyps 
specializes Gastrointestinal Diseases by disease kind. Thus, there is no “clean and easy” way 

to combine these two children in one ontology. Moreover, if one follows down two separate 

paths in the two ontologies, a unique, more specialized concept may be encountered that is 

again shared by both ontologies. The problem of alternative classifications is that they 

inhibit insertion and cross-ontology synonyms. Thus, there is an interest in better 

understanding the prevalence and nature of alternative classifications in pairs of ontologies.

Our task has some similarity with ontology integration/alignment [19], which was originated 

in the database integration area [20]. The goal of database integration is to integrate both the 

tables and the attributes from different databases. The goal of ontology integration is 

typically to create one target ontology that contains all the knowledge of two source 

ontologies [21]. Note that in this work we focus on concept imports, which is different from 

ontology integration. The goal of import is to “cherry pick” concepts from one ontology that 

could be deemed missing in another ontology.

The main contribution of this paper is the extended catalog of useful topological patterns for 

which we show that they can identify more concepts for importing into a target ontology. 

The other contributions of this paper are as follows. First, we state numeric results about the 

occurrence of cross-ontology topological patterns found in the UMLS that involve the NCIt 

as target ontology. Second, we generalize the analysis of He and Geller [17] to include cases 

where cross-ontology synonyms are allowed. We present a recursive formula that allows us 

to compute the number of possible insertion/synonym choices into the target ontology, 

which allows us to estimate the difficulty of the task for a human expert. Third, we present 

the results of a study by a medical ontology/terminology expert, evaluating two samples of 

cross-ontology topological patterns that confirm the large percentages of alternative 

classifications that were observed in previous studies. Last but not least, the uptake of our 

methods by the curators of major medical ontologies/terminologies would lead to more 

comprehensive ontologies.

II. Background and Related Work

A. The National Cancer Institute Thesaurus

The NCIt contains over 100,000 concepts that are hierarchically organized in 19 distinct 

domains related to cancer research, e.g., neoplastic diseases, molecular abnormalities, and 

genes. It is a central reference ontology of NCI’s Enterprise Vocabulary Services (EVS) 

[22]. As new concepts are entering healthcare usage, NCIt needs to be extended as needed 

by its users. NCI EVS exploits internal quality assurance (QA) mechanisms as well as 

external participation in the QA process of NCIt.
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Quality assurance of the NCIt has been conducted by NCI and external researchers [22]. 

Min et al. constructed a partial-area taxonomy that highlighted potential modeling errors and 

inconsistencies in NCIt [23]. Cohen et al. conducted an automated comparative audit of the 

gene hierarchy of NCIt with the Entrez Gene database [24]. Mougin and Bodenreider 

assessed the consistency of the relationships in NCIt by storing the NCIt concepts in an RDF 

triple store [25]. Jiang et al. evaluated the data quality of common data elements in the 

context of cancer research by integrating the NCI Cancer Data Standards Repository, NCIt 

concepts, and the UMLS Semantic Network with a Semantic Web-based framework for 

SPARQL-enabled evaluation [26]. An especially notable fact is that the NCI manages its 

own version of the Metathesaurus, specialized for the needs of cancer research [27].

B. Related Work on UMLS Hierarchical Relationships and Imbalanced Granularity

Previous research on ontology quality assurance (OQA) often emphasized hierarchical/

taxonomic relationships (e.g., “IS-A”). As early as in 2003, Bodenreider performed an 

analysis of redundant hierarchical relationships across families of ontologies in the UMLS 

and their semantic consistency [28]. Gu et al. [29] detected the transitive structural 

relationships in the Foundational Model of Anatomy (FMA) and categorized possibly 

incorrect relationships into five major categories: circular, mutually exclusive, redundant, 

inconsistent, and missed entries in the FMA. Imbalanced granularity of hierarchical 

relationships is a barrier for semantic interoperability [30], ontology mapping [7], and data 

integration [7]; meanwhile, it provides opportunities for ontology enhancement [2, 6, 15]. 

The existing OQA methods for investigating the imbalanced granularity of hierarchical 

relationships are limited. Sun and Zhang used string matching to construct rules and further 

used the rules to identify granularity differences among large biomedical ontologies [31, 32].

Cornet proposed an information-content-based method to improve the conceptual content of 

an ontology and balance the granularity levels between hierarchies [33]. Our topological-

pattern-based method aims to identify useful concepts for importing into an ontology with 

the use of hierarchical relations and the native term mappings in the UMLS [14–16]. The 

topological patterns with imbalanced granularity between ontologies can efficiently and 

effectively highlight potentially useful concepts for ontology enrichment. However, due to 

the fact that a large percentage of the cases are alternative classifications, the true positive 

rate for concept import is low.

C. Related Work on Ontology Enrichment and Learning

The development of an ontology is divided into seven tasks, the discovery of 1) terms, 2) 

synonyms, 3) concepts, 4) hierarchical concepts, 5) relations, 6) hierarchical relations, and 

7) axioms [34]. As early as 2004, Smith and Fellbaum used online health information 

sources to build the Medical WordNet from two corpora, namely Medical FactNet and 

Medical BeliefNet [35]. Recent work on semi/fully-automated ontology learning focuses on 

the extraction of terms and predicates (i.e., triples) from a text corpus [12, 36, 37]. For 

example, our group recently developed an open source text mining tool called simiTerm to 

identify the terms in a text corpus that are contextually and syntactically similar to existing 

terms in an ontology [11]. Hoxha et al. [8] developed Ontofier, an unsupervised ontology 

learning framework that uses agglomerative hierarchical clustering to learn domain 
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taxonomies from biomedical texts. These methods, which focused on building lightweight 

ontologies, do not intend to enrich existing ontologies with new concepts and cannot identify 

the locations for them in the existing ontology. Our proposed method, which leverages the 

taxonomic structure of ontologies and the native term mapping of the UMLS, can fill this 

gap by identifying new concepts and new synonyms for an existing ontology, as well as the 

ways in which they should be added.

III. Methods

A. Basic-Cross Ontology Structure

We are operating on topological patterns that span pairs of ontologies within the UMLS. To 

make these patterns comprehensible to the reader, we provide an abstract example in Figure 

1. We are singling out two ontologies within the UMLS, called the reference ontology and 

the target ontology. The goal of the research is to extend the target ontology with concepts 

from the reference ontology.

In the illustrative example in Figure 1, the concepts A, B, β, X, Y, and Z all appear in the 

UMLS. The concepts X, Y, and Z appear in the reference ontology, but not in the target 

ontology. The concept β exists in the target ontology, but not in the reference ontology. The 

concepts A and B exist in both the reference ontology and the target ontology.

The main criteria for selecting a reference ontology and a target ontology are that both must 

be organized around an IS-A hierarchy backbone and must exhibit a sufficient overlap in 

content with each other. Furthermore, the target ontology is selected based on scientific or 

commercial interest in extending it. Due to our own limitations, we consider only English-

language ontologies.

Looking at Figure 1, the question arises whether X or Y or Z or all of them should be 

considered as missing in the target ontology. This is not necessarily the case. It could happen 

that

• X or Y or Z is a synonym of β. In this paper, these are allowable cases that are 

included in the analysis.

• There is an error in the reference ontology or there is an error in the target 

ontology, meaning that Figure 1 is not a correct reflection of the real world.

• It could be that β and X are alternative classifications of the concept A. In other 

words, in an alternative classification there are two hyponyms (subclass) β and X 

of the same concept A so that β IS-A A and X IS-A A. However, β is neither a 

hyponym of X nor is β a hypernym (superclass) of X.

The decision whether X, Y and Z are valid imports into the target ontology or whether one 

of the other cases applies can only be made by a medical expert with a good knowledge of 

the underlying domain. We note that this is a two-step decision, as explained below.

Figure 1 is approximately ◊ (diamond) shaped. (In previous work, we referred to this as a 

“trapezoid.”) In this research, we are mining such diamond structures between pairs of 
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UMLS sources. Every such diamond could indicate the possible import of concepts into the 

target ontology. We stress that Figure 1 is an example structure, and much more complex 

diamond structures do exist in the UMLS. Not every diamond is guaranteed to indicate 

reference concepts that should be imported into the target ontology. Specifically, there are 

the following considerations.

• Some of the diamond structures overlap, which could lead to concepts being 

suggested twice or multiple times for import. Such duplicate concepts have to be 

eliminated, because a new concept should be imported only once. This was 

considered in our algorithms.

• As noted, there might be alternative classifications that preclude importing a 

concept and also exclude concepts from being cross-ontology synonyms.

• Semantically valid concepts might be undesirable for import according to the 

curators of the target ontology, e.g., because they would be without an interesting 

use case for the owners of the target ontology. Ontology curators do not wish to 

“clutter up” an ontology with unused concepts, even if those are “correct” 

concepts within the domain of the ontology.

Because of the above issues, the final decisions have to be made by a domain expert. In this 

paper, we are attempting to quantify the difficulty of the task of the expert. The more choices 

an expert has, the more work s/he has to do to decide whether to go ahead with importing a 

specific concept or not. Thus, we quantify the choices in this paper.

B. Selection Decision and Placement Decision

We analyze cross-ontology diamonds. Figure 1 is an illustrative example. We will use 

“diamond” to mean “cross-ontology diamond.” Diamonds may be of different sizes.

Definition 1: The two concepts of the cross-ontology diamond that are shared between the 

reference ontology and the target ontology are called anchor concepts. (A and B).

Definition 2: The concept that is more specific than all other concepts in a diamond is called 

the bottom anchor (B).

Definition 3: The concept that is more general than all other concepts in a diamond is called 

the top anchor (A).

Definition 4: All concepts strictly between the bottom anchor and the top anchor that exist 

in the reference ontology, but not in the target ontology, are called reference concepts (X, Y, 

Z).

Definition 5: All concepts strictly between the bottom anchor and the top anchor that exist 

in the target ontology, but not in the reference ontology, are target concepts (β).

Definition 6: The path of all reference concepts including the anchor concepts is called the 

reference path.
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Definition 7: The path of all target concepts including the anchor concepts is called the 

target path.

Definition 8: A diamond with j reference concepts and l target concepts is called a j/l-
diamond. It holds that j > 0 and l > 0 for all diamonds. (Figure 1 shows a 3/1-diamond.)

Definition 9: An alternative classification is a diamond in which the top anchor has one 

child that is a reference concept (Y) and one child that is a target concept (β) such that for 

semantic reasons β cannot be made a synonym of Y, nor can it be made a child of Y, nor a 

parent of Y.

Definition 10: The decision which reference concepts in a diamond should be imported into 

the target path is called the selection decision.

Definition 11: The decision where, in relation to existing target concepts, the selected 

reference concepts should be located in the target path is called the placement decision.

Definition 12: When all reference concepts are placed in the target ontology, i.e., when 

effectively no selection is performed, this is called a full placement. For example, in Figure 

1, the selection decision consists of determining whether X alone, Y alone, Z alone, or a 

subset of {X, Y, Z} should be imported into the target ontology. If all of {X, Y, Z} are 

placed, this corresponds to full placement.

If the selection decisions are independent from each other then there are n decisions to be 

made for n reference concepts. In practice, the expert will often not be able to make a 

decision in isolation. For example, in Figure 1, an expert might decide that Y is too similar 

to X to warrant its inclusion, but X and Z are needed in the target path.

C. Placement Decision without Synonyms

In previous work [17], we showed that the total number of placement choices (#PC), 

assuming that there are no synonyms, is computed by

# PC = m + k
m

= (m + k)!
m! ∗ k! (1)

To make this paper self-contained here is a proof sketch. After importing m reference 

concepts into the target ontology, when there are already k concepts between the anchors on 

the target path, there will be a total of m + k concepts between the anchor concepts. Let us 

assume that there are m + k empty positions and we are assigning the m reference concepts 

first to these empty positions. After this assignment, there will be k empty positions left 

unfilled. The order of the k target concepts is fixed, because they must be in exactly the same 

order as before the import, although they might be separated by imported concepts. Thus, 

there is only one choice how to place the k target concepts after the m reference concepts 

have been placed. Therefore, the question is reduced to how many ways there are to place 

the m reference concepts in the m+k spaces. Figure 2 contains four sub-diagrams. The 
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configurations numbered (1), (2), and (3) correspond to the three different possible 

placements.

Now we invert the direction of the arrows in Figure 2. (For space reasons, this is only done 

for configuration 3.). Therefore, the problem is equivalent to the different ways how m 
elements can be chosen from a set of m + k elements, which is a well-known problem in 

combinatorics, solved by formula (1).

In our research, we have discovered diamonds with eight reference concepts. Hypothetically, 

if an expert decides that all should be imported into a specific target path, and there would 

be two target concepts then there are 45 placement choices, in the worst case.

# PC = 10
8 = (10)!

8! ∗ 2! = 45 (2)

D. Placement Decisions with Synonyms

We now advance to the case where new cross-ontology synonyms are permitted. Full 

placement in the example case of Figure 1 allows for the following target paths in Figure 3.

If the target ontology contains two concepts α, β between the anchor concepts, then the 

number of possible placements increases considerably. Capturing the number of placements 

requires a recursive definition as follows. The three base cases are:

p(n, 0) = 1 (3)

p(0, k) = 0 (4)

p(1, k) = 2 * k + 1 (5)

The recursive case is defined by:

p n, k = p n−1, k + 2*p n−1, k − 1 + 2*p n−1, k − 2 + … + 2*p n−1, k − k n > 1,
k > 0

(6)
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p(n, k) = p(n − 1, k) + 2 ∗ ∑w = 1
k p(n − 1, k − w) (7)

Now in formulas (3)–(7), p(.,.) stands for the number of possible placements. The value n 
indicates the number of concepts according to the selection decision. Therefore, n is less or 

equal to the number of reference concepts. The number k counts the target concepts. Several 

paths with different values of k may exist.

Proof: Base case 1, i.e., Formula (3): k=0 indicates that there are no intermediate concepts 

between A and B in the target path. Thus there is only one way to perform full placement, 

independent of the number of concepts between A and B in the reference path, because the 

order of concepts may not change during import.

Formula (4) is the base case where there are no reference concepts that can be placed in the 

target ontology. Thus, there is no placement possible and there are 0 choices.

The last base case, Formula (5), assumes that there is only one reference concept. For 

arguments sake, we will refer to it as X. X can be placed immediately above every one of the 

k target concepts. Thus, there are k choices. Similarly X can be declared a synonym of every 

one of the k target concepts. Lastly, X can also be placed right above the bottom anchor, i.e., 

below the lowest of the k target concepts, in one single way. Combining these three 

possibilities there are k+k+1 possible cases, as shown in (5).

We are proving the recursive case (6) by structural induction on n. We assume that the 

number of placements p(n–1, *) is already known, whereby * may be any value from 0 to k. 

As we have a simple formula for any value of k (Formula (5)) only n needs to be reduced by 

recursion.

Without loss of generality, we assume that the nth concept (the new concept) is the top 

concept on the side of the reference ontology. Let this concept be X, as in Figure 1. If X is 

imported at the top-most possible position, right below A, then all previous placements of n–

1 concepts are still possible. This explains the term p(n–1, k) in (7).

Subcase 1: If X is imported as a synonym of the topmost target concept β, then this 

effectively ties up one target concepts for the n–1 other reference concepts. Thus the 

previous n–1 concepts can be placed only as if there were k–1 target concepts, explaining 

the term p(n–1, k–1).

Subcase 2: If X is imported immediately under the top-most target concept, there are again 
p(n–1, k–1) placement choices, because the concept X does not interfere with any other 

placements below X. Theoretically all n–1 reference concepts could be included between X 

and β. This is exactly the same situation as in Subcase 1.

Summing Subcase 1 and Subcase 2 explains the term 2 * p(n–1, k–1). The same pattern of 

reasoning can now be repeated by assigning X as synonym of the second-to-top-most target 
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concept, or right below it. Repeating all these steps down to the bottom anchor constitutes 

the remaining terms of (7).

We observe that p(n, k) grows very quickly (Table I).

E. Counting Cross-Ontology Diamonds

In this work, we used the 2015AA version of the UMLS Metathesaurus. The NCIt is used as 

the target ontology. The NCIt version in the UMLS is 2014 03E. The main criteria for 

selecting a reference ontology include: 1) the reference ontology must be in English; 2) the 

reference ontology must be organized with an IS-A hierarchy backbone; 3) the reference 

ontology must exhibit sufficient overlap in content with NCIt.

We first identified seven English source terminologies with “PAR” (parent-child) 

relationships and “INVERSE_IS_A” relationship attributes, including MEDCIN, Gene 

Ontology (GO), Anatomical Therapeutic Chemical Classification System (ATC), Medical 

Entities Dictionary (CPM), Current Procedural Ontology (CPT), SNOMED CT, Veterinary 

Extension of SNOMED CT (SNOMED VET), and Foundational Model of Anatomy 

Ontology (FMA). The University of Washington Digital Anatomist (UWDA) would fit the 

three criteria given above, however, it is part of FMA and was therefore excluded.

We first identified all the diamonds in the UMLS that involve the above reference ontologies 

with NCIt as target ontology. The UMLS may contain cycles of IS-A relationships [38]. We 

eliminated any cycles in the diamonds by detecting repeating Concept Unique Identifiers 

(CUIs) in the IS-A paths. The numbers of diamonds will be reported in the Result Section. A 

diamond with j reference concepts and l target concepts is called a j/l-diamond. With 

increasing values of j and l, the runtime of the mining program may grow to the point where 

no results are returned within our experimental time frame. Thus, only the following 

diamonds were mined: 1/2, 1/3, 1/4, 1/5, 1/6, 2/1, 2/2, 2/3, 2/4, 2/5, 2/6, 2/7, 2/8, 2/9, 3/1, 

3/2, 3/3, 3/4, 3/5. In general, the number of diamonds goes down with growing j and l. Thus, 

the loss of limiting these two parameters is minimal.

After all existing j/l -diamonds were identified; we chose random samples of 50 3/1 and 50 

1/3-diamonds based on the limited availability of the human expert. The medical ontology 

expert YC investigated the content of both the reference ontology and the target ontology, 

and assessed the relationships between the reference concepts and the target concepts. The 

ontology expert chose one of the following options: 1) One of the reference concepts can be 

imported into NCIt; 2) One of the reference concepts is a synonym of a target concept in 

NCIt; 3) the reference concepts and the target concepts define alternative classifications of 

the top concept; and 4) There is an error in the reference ontology or there is an error in the 

target ontology. For the options 1), 2), and 4), the ontology expert was also asked to give 

rationales for making such a choice.

When embarking on this research program [14], alternative classifications were assumed to 

be outliers. However, previous studies [15–18] resulted in surprisingly large percentages of 

alternative classifications. The results of this paper confirm these previous findings with 
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68% and 60% cases being alternative classifications in the sample of 50 1/3 and 50 3/1 

samples respectively.

IV. Results

A. Mining the Diamonds

Due to our special interest in the NCIt, we are limiting ourselves to this one target ontology. 

We have found the following numbers of diamond structures with the NCIt as target 

ontology as given in Table II. The column OTHERS sums up the number of diamonds for all 

other reference ontologies except MEDCIN, GO and SNOMED CT. We discovered 170 

diamonds with one reference concept and three target concepts (1/3-diamonds) between the 

whole SNOMED CT and the NCIt (Table II). In total, we discovered 251 1/3-diamonds. In a 

1/3-diamond there is only one selection choice. If the decision is made to include the 

reference concept, then there are seven placement choices (Formula 5).

Combining the results from Table I with the findings in Table II for SNOMED CT, the 

aggregate numbers of placement decisions are given in Table III.

Let us reaffirm the meaning of the total number in Table III. A human expert who is given 

suggestions by an algorithm how to insert SNOMED CT concepts and who is also given 

target paths in NCIt for those insertions nevertheless has to make a staggering number of 

decisions how to actually perform such an import. Naturally, there is a difference between 

the theoretical worst case placement decisions and the actual decisions of a human expert. In 

many cases, intuition and understanding of the medical context will allow an experienced 

user to quickly eliminate whole sets of possible insertions, even if they are semantically 

valid. It should also be noted that in many cases no placement decisions need to be made at 

all, as many diamonds constitute alternative classifications. Thus the staggering number of 

183,359 would never be reached in practice.

B. Expert Analysis of Two Samples

We randomly selected a sample of 50 1/3-diamonds, meaning that there was one reference 

concept from a reference ontology (e.g., SNOMED CT) and there were three target concepts 

in NCIt. A human expert (YC) determined that this sample contained 34 cases (68%) of 

alternative classifications, 10 (20%) cases where an intermediate concept could be inserted 

into NCIt, and six (12%) cases of synonyms. The synonyms, however, were not unique. The 

same synonym was recognized in several diamonds. Thus, the number of unique synonyms 

was three. For example, considering SNOMED CT as the reference ontology, the domain 

expert suggested that the concept Malignant epithelial tumor of ovary in SNOMED CT 

could be inserted between the concepts Malignant neoplasm of ovary AND Malignant 
Ovarian Surface Epithelial-Stromal Tumor in NCIt. As for synonyms the concept Congenital 
atresia of intestinal tract present in SNOMED CT was identified to be a synonym of 

Intestinal Atresia in NCIt.

We also randomly selected a sample of 50 3/1-diamonds. YC determined that this sample 

contained 30 cases (60%) of alternative classifications, 11 (22%) cases where an 

intermediate concept could be inserted into NCIt and 9 (18%) cases of synonyms. The 
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unique numbers of insertion and synonym cases are 7 and 9, respectively. In the 3/1 diamond 

shown in Figure 4, the ontology expert YC suggested that the reference concept Disorder of 
skeletal system (C0263661) can be inserted as the parent of the target concept Non-
Neoplastic Bone Disorder (C1134997).

V. Discussion

Alternative classifications were initially assumed to be outliers in this research program. We 

found that they were not outliers, but in some cases constituted the majority of a sample. 

With 483 3/4-diamonds between SNOMED CT and NCIt and 129 possible placements when 

allowing insertion of reference concepts and new cross-ontology synonyms a staggering 

number of 62,307 choices becomes possible.

One limitation of this work was given by computing resources. It is possible that with more 

powerful computational resources and/or smarter algorithms a small number of diamonds 

could be found that are larger than the 2/9 and the 3/5-diamonds that defined the limits in 

this study. Another limitation of this work is that ontology experts are required to make 

decisions on the relationships between reference concepts and target concepts. In future 

work, we can use some extrinsic sources such as WordNet to help identify the relationships 

between concepts (e.g., synonyms).

In a diamond, if one reference concept is a synonym of the target concept, the descendants 

of the reference concept may also be imported, namely as descendants of the target concept. 

This creates its own set of complications and is left for future work.

All previous work [14–18] and the current paper rely on vertical densities to define 

topological structures. An initial study of horizontal density differences has been conducted 

(in press) [39]. An analysis of 64 (30+34) alternative classifications has indicated that IS-A 

links might carry additional information that is never made explicit. Several cases each of 

IS-A “by disease kind,” “by procedure kind” and “by anatomical location” were identified. 

A quantitative analysis of these different kinds of novel annotations for IS-A links will 

remain a topic of future research. Lastly, it would be interesting to compare the predictions 

made by the formula of placement decisions with the real time taken by an expert to perform 

the actual insertions.

VI. Conclusion

We have presented progress in the study of cross-ontology topological patterns (“diamonds”) 

for the purpose of extending the domain coverage of important ontologies such as the NCI 

thesaurus. We have confirmed the existence of 7975 such patterns between SNOMED CT 

and NCIt. Altogether, there are 8878 diamonds, with most of the balance supplied by 

MEDCIN and GO. We derived a recursive formula that expresses the many choices of 

placing new concepts into a target ontology, either between existing concepts or as new 

synonyms of existing concepts. The large number of placement choices indicates that the 

task of ontology curators is difficult. Sufficient human resources should be allocated.
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In two samples of 50 diamonds, 34 and 30 alternative classifications, respectively, were 

identified by a human expert, confirming strongly that alternative classifications are not 

outliers. SNOMED CT and NCIt use surprisingly different structures within the same 
general ontology framework to describe information that is also similar in content. In future 

work, we will investigate the kinds of alternative classifications in pairs of ontologies to 

identify possible useful cases for ontology enhancement.
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Fig. 1. 
A Topological Structure in the UMLS, called a Cross-Ontology Diamond. The arrows 

represent “IS-A” hierarchical relationships.
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Fig. 2. 
Three Possible Cases of Placement and Inversion Case (3)
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Fig. 3. 
The target paths after the full placement in the sample case of Figure 1.
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Fig. 4. 
A concrete example of a 3/1-diamond in which a reference concept in SNOMED CT can be 

inserted as a parent of the target concept in NCIt. The bold horizontal arrow indicates the 

point of insertion.
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TABLE I.

Growth of p(n, k).

n K p(n, k)

2 2 13

2 3 25

3 2 25

3 3 63

2 4 41

4 2 41

4 3 129

3 4 129

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2019 March 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

He et al. Page 21

TABLE II.

THE NUMBERS OF DIAMOND STRUCTURES WITH THE NCIT AS THE TARGET ONTOLOGY IN 

THE UMLS.

Diamond Reference Ontology Total

MEDCIN GO SNOMED CT OTHERS

1/2 119 3 464 36 622

1/3 71 1 170 9 251

1/4 52 0 65 0 117

1/5 3 0 30 0 33

1/6 0 0 3 0 3

2/1 90 25 1682 16 1813

2/2 106 22 825 21 974

2/3 64 11 364 9 448

2/4 63 4 189 0 256

2/5 0 0 98 0 98

2/6 0 0 28 0 28

2/7 0 0 5 0 5

2/8 0 0 2 0 2

2/9 0 0 1 0 1

3/1 19 10 769 19 817

3/2 16 30 1582 25 1653

3/3 16 13 856 6 891

3/4 19 3 483 2 507

3/5 0 0 359 0 359

Total 638 122 7975 143 8878
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TABLE III.

Aggregate numbers of placement decisions

Kind of Diamond SNOMED CT Diamonds of this Kind Placement Decisions per Diamond Total Placement Decisions

2/2 825 13 10725

2/3 364 25 9100

3/2 1582 25 39550

3/3 856 63 53928

2/4 189 41 7749

3/4 483 129 62307

Total 183359
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