
Fast Interpolation-based t-SNE for Improved Visualization of
Single-Cell RNA-Seq Data

George C. Linderman1, Manas Rachh1, Jeremy G. Hoskins1, Stefan Steinerberger2, and
Yuval Kluger1,3,*

1Applied Mathematics Program, Yale University, New Haven, CT 06511, USA

2Department of Mathematics, Yale University, New Haven, CT 06511, USA

3Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA

Abstract

t-distributed Stochastic Neighborhood Embedding (t-SNE) is widely used for visualizing single-

cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically

accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of

rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq

based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of

thousands of genes.

1. Main

scRNA-seq enables high-throughput transcriptome profiling at the individual cell level and

is increasingly being used to study cell-to-cell heterogeneity in both physiologic and disease

processes. Data visualization techniques have played a pivotal role in both analyzing the

expression of different marker genes in known cell populations and in identifying new cell

types. Over the last decade data visualization using t-SNE has become a cornerstone of

scRNA-seq analysis. t-SNE is used to embed a scRNA-seq dataset into a low-dimensional

space such that proximal pairs of single cells in the high-dimensional transcriptome space

remain proximal in the low dimensional space. The embedding is often colored by the

expression levels of a gene of interest, one gene at a time.

Several difficulties arise when applying t-SNE to scRNA-seq data. The number of cells

profiled in scRNA-seq experiments has been growing exponentially,1 with recent datasets

measuring the expression of 30,000 genes in over 1,000,000 cells.2 Profiling such large

numbers of cells facilitates the characterization of rare and moderately-sized subpopulations

not apparent in smaller samples. However, existing algorithms for constructing t-SNE

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research,
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
*Corresponding author (Yuval.Kluger@yale.edu).
4.Author Contributions
All authors conceived and designed the project. G.C.L. implemented the method. All authors wrote and edited the manuscript.
5.Competing Interests
The authors declare no competing interests.

HHS Public Access
Author manuscript
Nat Methods. Author manuscript; available in PMC 2019 August 11.

Published in final edited form as:
Nat Methods. 2019 March ; 16(3): 243–245. doi:10.1038/s41592-018-0308-4.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

embeddings are computationally expensive, often necessitating downsampling of the cells

prior to running t-SNE, which can in turn result in rare cell populations being missed.

Furthermore, removal of the few cells which may express a given marker gene can make

even moderately sized populations difficult to identify.

An additional difficulty with applying t-SNE to scRNA-seq data is that overlaying the

expression levels of marker genes on separate 2D t-SNE plots is cumbersome owing to the

large number of marker genes for each dataset. Practically, only a modest number of such

plots can be visually compared.

In this paper, we present two improvements for the application of t-SNE to scRNA-seq data

visualization. First, we present FFT-accelerated Interpolation-based t-SNE (FIt-SNE), an

algorithm for rapid computation of one- and two-dimensional t-SNE based on polynomial

interpolation and further accelerated using the fast Fourier transform. We also present t-SNE

heatmaps, a heatmap-style visualization method based on one-dimensional t-SNE, which

simultaneously visualizes expression patterns of hundreds to thousands of genes.

FIt-SNE.

t-SNE is often run many times with different parameters and initializations, so that the

embedding most consistent with prior knowledge can be chosen. FIt-SNE is a dramatically

accelerated implementation of t-SNE, allowing practitioners to analyze entire datasets as

opposed to first downsampling. By doing so, FIt-SNE allows practitioners to identify known

populations using marker genes which may not be expressed in sufficiently many cells post-

downsampling. For example, we used FIt-SNE to embed a dataset consisting of 1.3 million

mouse brain cells2 and identified two known cell types from the Allen Brain Atlas3 which

cannot be identified using a random subset of 50,000 cells (Figure 1), as the latter does not

have enough cells expressing both markers. Specifically, GABAergic neurons from the

caudal ganglionic eminence which express marker genes Sncg and Slc18a8 and a population

of vascular leptomeningeal cells (VLMC) expressing marker genes Spp1 and Col15a1 can

both be identified using only the full embedding, as opposed to a random subset.

The t-SNE algorithm solves an optimization problem for embedding the cells (points) in a

low-dimensional space based on their transcriptome similarities. Formally, this problem is

equivalent to a physical system of particles (points) in which particles exert repulsive and

attractive forces on each other. Naively implemented, computing the force each particle

exerts on all the other particles is prohibitively slow; we devise approximation schemes for

evaluating the repulsive and attractive forces that can scale to millions of points.

Computation of the repulsive forces between every pair of the N points is the most time-

consuming step in t-SNE. Instead of calculating the interaction of each point with all the

other points (which requires N2 computations), Barnes-Hut (BH) t-SNE4 —the fastest

published t-SNE implementation—uses a tree structure to compress the interaction between

distant cells, hence requiring N log N computations. We take a different approach by

defining a small number p of interpolation nodes, which “mediate” the interaction between

the points. First, we calculate the interaction of each point with those nodes (p · N
computations). Then we compute the interaction of those nodes with each other (p2 naively,

Linderman et al. Page 2

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

p log p using FFTs). Finally, we interpolate from the interpolation nodes to all of the original

points (also p · N computations). Hence, we can approximate the repulsive force in ~ 2p · N
computations, as opposed to N2 or N log N (Table 1 and S1). We prove rigorous bounds on

the approximation error in the Online Methods; in particular, we show that the number of

interpolation nodes p required for a certain level of accuracy is independent of N. We set the

default FIt-SNE parameters to give an approximation at least as accurate as BH t-SNE’s

default setting (Figure S1 and Section §8.3.3).

The attractive force between two points decays exponentially fast as a function of the

distance between them, so that a point only exerts a significant attractive force on its nearest

neighbors. In BH t-SNE, the k–nearest neighbors of each point are identified using vantage-

point (VP) trees5 which tend to be prohibitively expensive for high-dimensional datasets. In

FIt-SNE, there are two options for identifying nearest neighbors—multithreaded VP trees

and approximate nearest neighbors using ANNOy6 (Tables 2 and S2). Multithreaded VP

trees are exactly as accurate as the VP tree implementation of BH t-SNE, just substantially

faster. The use of approximate nearest neighbors is even faster, but could theoretically

obscure subtle detail. In practice, however, we find the resulting embedding quality to be

essentially indistinguishable (Figures S2, S3, S4, and S5).

Although FIt-SNE makes it practical to run t-SNE on datasets with millions of points, the

choice of parameters which lead to an ideal embedding is an active area of research. For

example, when the number of points is large, the attractive forces must be exaggerated

during the beginning stages of t-SNE in order to ensure optimal embedding of large numbers

of points7 (Supplemental Figure S6). While this paper was in revision, a new paper by

Belkina and colleagues (2018)8 proposed an approach for automatically determining the step

size and the optimal number iterations to exaggerate the attractive forces, which they

validate using CyTOF and scRNA-seq datasets. In another very recent work, Kobak and

Berens (2018)9 proposed a protocol for exploratory analysis of scRNA-seq data using FIt-

SNE (including suggested parameter choices), which leads to dramatically improved

embedding quality, particularly with regard to preservation of multi-scale and global

structure.

Heatmaps.

Exploration of scRNA-seq data using t-SNE consists of tiling two-dimensional t-SNE plots,

each colored by the expression pattern of a different marker gene. Although this information

is presented in two dimensions, users are most interested in which genes are associated with

which clusters, not the shape or relative locations of the clusters. It has been shown that t-

SNE preserved the cluster structure of well-clustered data regardless of the embedding

dimension,7 and thus, one-dimensional t-SNEs usually contain the same information as two-

dimensional t- SNEs. Furthermore, multiple one-dimensional t-SNEs, each using different

groups of markers, have been previously used to visualize CyTOF data10 We develop a

related approach which exploits the compactness of a single one-dimensional embedding to

enable simultaneous exploration of expression patterns of hundreds to thousands of genes in

heatmap form. This approach also allows us to discover new marker genes and organize the

Linderman et al. Page 3

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

genes based on their smoothed expression patterns along the one-dimensional t-SNE

representation of the cells.

In t-SNE Heatmaps, we first construct a one-dimensional t-SNE embedding of the cells.

Next, we discretize the one-dimensional t-SNE embedding into b bins, where b is user

specified, and represent each gene by the sum of its expression in the cells contained in each

bin. We then visualize these vectors in heatmap format (i.e. each row is a gene and each

column is a bin) using an interactive visualization tool called heatmaply.12 Notably, unlike

dotplots which present the average expression of genes in each cluster (e.g. Figure 2A of

Shekhar et al. (2016)11), it does not require pre-clustering, and hence can discover patterns

in poorly clustered data that might be missed if averaging across clusters.

Various strategies can be used to select the genes presented in the heatmap. If the user has

prior knowledge as to genes of interest, these genes can be presented, along with genes

whose onedimensional t-SNE binned representation are most similar, allowing for marker

gene discovery. If the user wants to identify genes specific to clusters, a “metagene” can be

constructed, which is 1 on cells in a cluster and 0 elsewhere. Then genes whose one-

dimensional t-SNE binned representation are most similar to these “metagenes” (ie. specific

to a cluster) can be presented in the heatmap. “Metagenes” for combinations of clusters can

also be constructed.

Figure 2 demonstrates t-SNE heatmaps using retinal bipolar cells from Shekhar et al. (2016).
11 In this work, scRNA-seq was used to profile ~ 25,000 mouse retinal bipolar cells and

classify them into 15 types. Using graph-based clustering techniques, cells were clustered,

and marker genes corresponding to each of the putative subtypes of bipolar cells were

subsequently identified. We embedded these bipolar cells using 1D t-SNE and found the 25

genes most associated with the marker genes listed in Table S2 of Shekhar et al. (2016). We

also found the 25 genes most associated with “metagenes” for each cluster in the 2D t-SNE.

The resulting t-SNE heatmap (Figure 2, Supplementary Figures S7, and S8) identified all 16

of the new bipolar cell markers listed in Figure 2A of Shekhar et al. (2016). The clustered

structure of the dataset is evident in the heatmap, and the user can zoom in to identify the

genes that characterize and distinguish different regions of the embedding. We note that the

structure is substantially clearer than a heatmap of the same genes binned using standard

hierarchical clustering, even when the rows are ordered as in the t-SNE heatmaps (Figure

S9).

2. Methods

R, Python, and Matlab implementations of FIt-SNE and an R implementation of t-SNE

heatmaps are available from https://github.com/KlugerLab/. Methods, including statements

of data availability and any associated accession codes and references, are available in the

online version of the paper. The Life Sciences Reporting Summary was also completed.

8. Online Methods

We first briefly review the t-SNE approach and then then present FIt-SNE’s method for

optimizing the computation of the repulsive force in Section §8.3. Section §8.4 presents an

Linderman et al. Page 4

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/KlugerLab/

implementation of out-of-core PCA for the analysis of datasets too large to fit in the

memory. Finally, Section §8.5 provides details of the embedding of 1.3 million mouse brain

cells (Figure 1), Section §8.6 describes the demonstration of t-SNE heatmaps (Figure 2), and

Section §8.7 provides details about our comparison of VP trees to approximate nearest

neighbors on three scRNA-seq datasets.

8.1. t-distributed Stochastic Neighborhood Embedding.

Given a d-dimensional dataset X = {x1, x2, …, xN} ⊂ ℝd, t-SNE aims to compute the low-

dimensional embedding

Y = {y1, y2, …, yN} ⊂ ℝs,

where s ≪ d, such that if two points xi and xj are close in the input space, then their

corresponding points yi and yj are also close. Affinities between points xi and xj in the input

space, pij, are defined as

pi ∣ j =
exp (− ‖xi − x j‖

2 ∕ 2σi
2)

∑k ≠ iexp (− ‖xi − xk‖2 ∕ 2σi
2)

and pi j =
pi ∣ j + p j ∣ i

2N .

Here σi is the bandwidth of the Gaussian distribution is computed based on the user-

specified perplexity Pi (the conditional distribution of all other points given xi). Similarly,

the affinity between points yi and yj in the embedding space is defined using the Cauchy

kernel

qi j =
(1 + ‖yi − y j‖

2)−1

∑k ≠ l (1 + ‖yk − yl‖
2)−1 .

t-SNE finds the points {y1, …, yn} that minimize the Kullback-Leibler divergence between

the joint distribution of points in the input space P and the joint distribution of the points in

the embedding space Q,

C(𝒴) = KL(P‖Q) = ∑
i ≠ j

pi j log
pi j
qi j

.

Starting with a random initialization, the cost function C(𝒴) is minimized by gradient

descent, with the gradient13

∂C
∂yi

= 4 ∑
j ≠ i

(pi j − qi j)qi jZ(yi − y j),

where Z is a global normalization constant

Linderman et al. Page 5

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Z = ∑
k ≠ l

(1 + ‖yk − yl‖
2)−1 .

We split the gradient into two parts

1
4

∂C
∂yi

= ∑
j ≠ i

pi jqi jZ(yi − y j) − ∑
j ≠ i

qi j
2 Z(yi − y j)

where the first sum Fattr,i corresponds to an attractive force between points and the second

sum Frep,i corresponds to a repulsive force

1
4

∂C
∂yi

= Fattr, i − Frep, i .

The computation of the gradient at each step is an N-body simulation, where the position of

each point is determined by the forces exerted on it by all other points. Exact computation of

N-body simulations scales as O(N2), making exact t-SNE computationally prohibitive for

datasets with tens of thousands of points. It should be noted that since the input similarities

do not change they can be precomputed and hence do not dominate the computational time.

8.2. Early Exaggeration.

In the expression for the gradient descent, the sum of attractive and repulsive forces,

1
4

∂C
∂yi

= α ∑
j ≠ i

pi jqi jZ(yi − y j) − ∑
j ≠ i

qi j
2 Z(yi − y j),

the numerical quantity α > 0 plays a substantial role as it determines the strength of

attraction between points that are similar (in the sense of pairs xi, xj with pij large). In early

exaggeration, first α =12 for the first several hundred iterations, after which it set13 to 1. One

of the main results of Linderman and Steinerberger (2017)7 is that α plays a crucial role and

that when it is set large enough, t-SNE is guaranteed to separate well-clustered data and also

successfully embed various synthetic datasets (e.g. a swiss roll) that were previously thought

to be poorly embedded by t-SNE.

8.3. Accelerating computation of repulsive forces in FIt-SNE.

In existing methods, the repulsive forces Frep,i are approximated at each iteration using the

Barnes-Hut Algorithm,17 a tree-based algorithm which scales as O(N log N), where N is the

total number of data points. In this work, we present an interpolation-based fast Fourier

transform accelerated algorithm for computing Frepul,i which scales as O(N). Moreover,

empirical tests show a significant improvement over the Barnes-Hut approach for any sized

system.

Linderman et al. Page 6

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Recall that, {y1, y2, … , yN} is the s-dimensional embedding of a collection of d-

dimensional vectors {x1, … , xN}. At each step of gradient descent, the repulsive forces are

given by

Frep, k(m) = ∑
ℓ = 1
ℓ ≠ k

N yℓ(m) − yk(m)
(1 + ‖yℓ − yk‖2)2 / ∑

j = 1

N
∑

ℓ = 1

N

ℓ ≠ j

1
(1 + ‖yℓ − y j‖

2)
, (1)

where k = 1, 2, … N, m = 1, 2 … s, and yi(j) denotes the jth component of yi. Evidently, the

repulsive force between the vectors {y1, …, yN} consists of N2 pairwise interactions, and

were it computed directly, would require CPU-time scaling as O(N2). Even for datasets

consisting of a few thousand points, this cost becomes prohibitively expensive. Our

approach enables the accurate computation of these pairwise interactions in O(N) time.

Since the majority of applications of t-SNE are for at most two-dimensional embeddings, in

the following we focus our attention on the cases where s = 1 or 2. However, we note that

our algorithm extends naturally to arbitrary dimensions. In such cases, though the constants

in the computational cost will vary, our approach will still yield an algorithm with a CPU-

time which scales as O(N).

We begin by observing that the repulsive forces Frep,k defined in eq. (1) can be expressed as

s + 2 sums of the form

ϕ(yi) = ∑
j = 1

N
K(yi, y j)q j (2)

where the kernel K(y, z) is either

K1(y, z) = 1
(1 + ‖y − z‖2)

, or K2(y, z) = 1
(1 + ‖y − z‖2)2 , (3)

for y, z ∈ ℝs. Note that both of the kernels K1 and K2 are smooth functions of y, z for all y,

z ∈ ℝs. The key idea of our approach is to use polynomial interpolants of the kernel K in

order to accelerate the evaluation of the N–body interactions defined in eq. (2).

8.3.1. Mathematical Preliminaries.—First, we demonstrate with a simple example

how polynomial interpolation can be used to accelerate the computation of the N–body

interactions with a smooth kernel. Suppose that y1,…, yM ∈ (y0, y0 + R) and z1, … , zN ∈
(z0, z0 + R). Let Iy0 and Iz0 denote the intervals (y0, y0 + R) and (z0, z0 + R), respectively.

Note that no assumptions are made regarding the relative locations of y0 and z0; in

particular, the case y0 = z0 is also permitted.

Now consider the sums

Linderman et al. Page 7

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ϕ(yi) = ∑
j = 1

N
K(yi, z j)q j, i = 1, 2, …M . (4)

Let p be a positive integer. Suppose that z 1, …, z p, are a collection of p points on the interval

Iz0 and that y1, …, y p, are a collection of p points on the interval Iy0. Let Kp(y, z) denote a

bivariate polynomial interpolant of the kernel K(y, z) satisfying

K p(y j, z ℓ) = K(y j, z ℓ), j, ℓ = 1, 2, …p .

A simple calculation shows that Kp(y, z) is given by

K p(y, z) = ∑
ℓ = 1

p
∑
j = 1

p
K(y j, z ℓ)L j, y(y)Lℓ, z (z), (5)

where L j, y(y) and Lℓ, z (z) are the Lagrange polynomials

Lℓ, y (y) = ∏
j = 1
j ≠ ℓ

p
(y − y j)/ ∏

j = 1
j ≠ ℓ

p
(yℓ − y j), and Lℓ, z (z) = ∏

j = 1
j ≠ ℓ

p
(z − z j)/ ∏

j = 1
j ≠ ℓ

p
(z ℓ − z j),

ℓ =1, 2 … p. In the following we will refer to the points y1, …, y p, and z 1, …, z p as

interpolation points.

Let ϕ(yi) denote the approximation to φ(yi) obtained by replacing the kernel K in eq. (4) by

its polynomial interpolant Kp, i.e.

ϕ(yi) = ∑
j = 1

N
K p(yi, z j)q j,

for i = 1, 2 … M. Clearly the error in approximating φ(yi) via ϕ(yi) is bounded (up to a

constant) by the error in approximating K(y, z) via Kp(y, z). In particular, if the polynomial

interpolant satisfies the inequality

sup
y ∈ (y0, y0 + R)

z ∈ (z0, z0 + R)

∣ K p(y, z) − K(y, z) ∣ ≤ ε, (6)

then the error ∣ ϕ(yi) − ϕ(yi) ∣ is given by

Linderman et al. Page 8

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

∣ ϕ(yi) − ϕ(yi) ∣ = ∑
j = 1

N
(K p(yi, z j) − K(yi, z j))q j

≤ ∑
j = 1

N
∣ K p(yi, z j) − K(yi, z j) ∣ ∣ q j ∣

≤ ε ∑
j = 1

N
∣ q j ∣ .

A direct computation of φ(y1), … , φ(yM) requires O(M · N) operations. On the other hand,

the values ϕ(yi), i =1, 2, … M, can be computed in O((M + N) · p + p2) operations as

follows. Using eq. (5), ϕ(yi) can be rewritten as

ϕ(yi) = ∑
j = 1

N
∑

ℓ = 1

p
∑

m = 1

p
K(yℓ, z m)Lℓ, y (yi)Lm, z (z j)q j,

= ∑
ℓ = 1

p
Lℓ, y (yi) ∑

m = 1

p
K(yℓ, z m) ∑

j = 1

N
Lm, z (z j)q j ,

for i =1, 2, … M. The values ϕ(y1), …, ϕ(yM), are computed in three steps.

• Step 1: Compute the coefficients wm defined by the formula

wm = ∑
j = 1

N
Lm, z (z j)q j,

for each m = 1, 2, … p. This step requires O(N · p) operations.

• Step 2: Compute the values vℓ at the interpolation nodes yℓ defined by the

formula

vℓ = ∑
m = 1

p
K(yℓ, z m)wm

for all ℓ = 1, 2, … p. This step requires O(p2) operations.

• Step 3: Evaluate the potential ϕ(yi) using the formula

ϕ(yi) = ∑
ℓ = 1

p
Lℓ, y (yi)vℓ,

for all i = 1, 2 … M. This step requires O(M · p) operations.

See Figure S10 for an illustrative figure of the above procedure.

Linderman et al. Page 9

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

8.3.2. Algorithm.—In this section, we present the main algorithm for the rapid

evaluation of the repulsion forces eq. (2). The central strategy is to use piecewise polynomial

interpolants of the kernel with equispaced points, and use the procedure described in Section

§8.3.1.

Specifically, suppose that the points yi, i = 1, 2, … N are all contained in the interval [ymin,

ymax]. We subdivide the interval [ymin, ymax] = ⋃i = 1
Nint I j, into Nint intervals of equal length.

Let y j, ℓ denote p equispaced nodes on the interval Il given by

y j, ℓ = h ∕ 2 + ((j − 1) + (ℓ − 1) ⋅ p) ⋅ h, (7)

where h = 1/(Nint · p), j = 1, 2 … p, and ℓ = 1, 2 …Nint.

Remark 1. The nodes y j, ℓ, j = 1, 2 … p, and ℓ =1, 2, … Nint, defined in eq. (7), are also

equispaced on the whole interval [ymin, ymax].

The interaction between any two intervals I, J, i.e.

∑
y j ∈ J

K(yi, y j)q j, yi ∈ I

can be accelerated via the algorithm discussed in section 8.3.1. This procedure amounts to

using a piecewise polynomial interpolant of the kernel K(y, z) on the domain y, z ∈ [ymin,

ymax] as opposed to using an interpolant on the whole interval. We summarize the procedure

below.

• Step 1: For each interval Iℓ, ℓ = 1, 2, … Nint, compute the coefficients wm,ℓ
defined by the formula

wm, ℓ = ∑
y j ∈ Iℓ

L
m, yℓ(y j)q j,

for each m = 1, 2, … p. This step requires O(N · p) operations.

• Step 2: Compute the values vm,n at the equispaced nodes ym, n defined by the

formula

vm, n = ∑
j = 1

Nint
∑

ℓ = 1

p
K(ym, n, yℓ, j)wℓ, j (8)

for all m = 1, 2, … p, n = 1, 2 … Nint. This step requires O((Nint · p)2)

operations.

Linderman et al. Page 10

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• Step 3: For each interval Iℓ, ℓ =1, 2, … Nint, compute the potential φ(yi) via the

formula

ϕ(yi) = ∑
j = 1

p
L

j, yℓ(yi)v j, ℓ,

for all points yi ∈ Iℓ. This step requires O(N · p) operations.

In this procedure, the functions L
j, yℓ, j = 1, 2, …p, are the Lagrange polynomials

corresponding to the equispaced interpolation nodes on interval Iℓ.

In Step 2 of the above procedure, we are evaluating N–body interactions on equispaced grid

points. For notational convenience, we rewrite the sum eq. (8)

vi = ∑
j = 1

Nint ⋅ p

K(y i, y j)w j , (9)

i = 1, 2, … Nint · p. The kernels of interest (K1 and K2 defined in eq. (3)) are translationally-

invariant, i.e., the kernels satisfy K(y, z) = K(y + δ, z + δ) for any δ. The combination of

using equispaced points, along with the translational-invariance of the kernel, implies that

the matrix associated with the evaluation of the sums eq. (9) is Toeplitz. This computation

can thus be accelerated via the fast-Fourier transform (FFT), which reduces the

computational complexity of evaluating the sums eq. (9) from O((Nint · p)2) operations to

O(Nint · p log (Nint · p)).

Algorithm 1 describes the fast algorithm for evaluating the repulsive forces eq. (2) in one

dimension (s=1) which has computational complexity O(N · p + (Nint · p) log (Nint · p)).

Linderman et al. Page 11

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 1: FFT-accelerated Interpolation-based t-SNE (FIt-SNE)

Input: Collection of points {yi}i = 1
N , source strengths {qi}i = 1

N , number of intervals Nint,

number of interpolation points per interval p

Output: ϕ(yi) = ∑N
j = 1K(yi, y j)q j for i = 1, 2, …N

1 For each interval Iℓ, form the equispaced nodes y j, ℓ, j = 1, 2, …p given by eq. (7)

2 for I 1 to Nint do

3

Compute the coefficients wm, ℓ given by

wm, ℓ = ∑
yi ∈ Iℓ

L
m, yℓ(yi)qi,

m = 1, 2, …p .
4 end
5 Use the fast‐Fourier transform to compute the values of vm, n given by

(10)

v1, 1
v2, 1

⋮
vp − 1, Nint

vp, Nint

= K ⋅

w1, 1
w2, 1

⋮
wp − 1, Nint

wp, Nint

,

where K is the Toeplitz matrix given by
(11) Ki, j = K(yi, y j),

i, j = 1, 2, …Nint ⋅ p .

6 for I 1 to Nint do

7

Compute ϕ(yi) at all points yi ∈ Iℓ via

ϕ(yi) = ∑
j = 1

p
L

j, yℓ(yi)v j, ℓ

8 end

8.3.3. Optimal choice of p and Nint.—Recall that the computational complexity of

Algorithm 1 is O(N · p + Nint · p log (Nint · p)). We remark that the choice of the parameters

Nint and p depends solely on the specified tolerance ε and is independent of the number of

points N. Generally, increasing p will reduce the number of intervals Nint required to obtain

the same accuracy in the computation. However, we observe that the reduction in Nint for an

increased p is not advantageous from a computational perspective—since, as the number of

points N increases, the computational cost is independent of Nint and is only a function of p.

Moreover, for the t-SNE kernels K1 and K2 defined in eq. (3), it turns out that for a fixed

accuracy the product Nint · p remains nearly constant for p ≥ 3. Thus, it is optimal to use p =

3 for all t-SNE calculations. In a more general environment, when higher accuracy is

required and for other translationally invariant kernels K, the choice of the number of nodes

Linderman et al. Page 12

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

per interval p and the total number of intervals Nint can be optimized based on the accuracy

of computation required.

Remark 2. Special care must be taken when increasing p in order to achieve higher accuracy

due to the Runge phenomenon associated with equispaced nodes. In fact, the kernels that

arise in t-SNE are archetypical examples of this phenomenon. Since we use only low-order

piecewise polynomial interpolation (p = 3), we encounter no such difficulties.

In our simulations, we set the values of p = 3 and Nint = max(50, ⌈ymax – ymin⌉). These

values are chosen to ensure that the computation of Frep,i is at least as accurate as the

Barnes-Hut approximation at default setting (θ = 0.5). We test the accuracy of the two

methods by comparing the repulsive forces computed using BH t-SNE and FIt-SNE to the

exact repulsive forces computed using direct algorithm on a dataset with 4000 points. In

Figure S1, we report the relative error of the BH t-SNE and FIt-SNE approximations at

default values and note that the latter achieves the same (or better) accuracy. Since the

approximation error is independent of the number of points (Section §8.3.6), this error

analysis applies to datasets of any size.

8.3.4. Extension to two dimensions.—The above algorithm naturally extends to two-

dimensional embeddings (s=2). In this case, we divide the computational square [ymin, ymax]

× [ymin, ymax] into a collection of Nint × Nint squares with equal side length, and for

polynomial interpolation, we use tensor product p × p equispaced nodes on each square. The

matrix K mapping the coefficients w to the coefficients v which is of size (Nint · p)2 × (Nint ·

p)2, is not a Toeplitz matrix, however, it can be embedded into a Toeplitz matrix of twice its

size. The computational complexity of the algorithm analogous to Algorithm 1 for two-

dimensional t-SNE is O(N · p2 + (Nint · p)2 log (Nint · p)).

8.3.5. Performance comparison.—The datasets for comparing the CPU-time

performance of BH t-SNE and FIt-SNE in Tables 1, 2, S1, and S2 are generated in the

following manner. For each N, we sample N/10 points from 10 gaussians in d–dimensions

with mean c j ∈ ℝd and fixed variance σ = 0.0001. The experiments were performed on two

systems—a 2017 Macbook Pro laptop with 2.9 GHz (Turbo up to 3.6GHz) Intel i7 CPU

with 2 cores (each supporting 4 threads) and 16GB RAM; and a server with Intel Xeon

CPUs with 24 cores clocked at 2.4 GHz and 500GB RAM. In FIt-SNE, the computation of

nearest neighbors when computing input similarities, the summing of attractive forces at

each iteration of gradient descent, and step 3 of the interpolation scheme outlined above are

all multithreaded using C++11 threads, whereas the rest of the computation of the repulsive

forces is done via single thread FFTs owing to the small size of FFTs involved. The poorer

performance of both BH t-SNE and FIt-SNE on the server as compared to the Macbook can

be attributed to the slower single processor clock speed.

8.3.6. Approximation error estimates.—In this section we prove error estimates

related to interpolation by equispaced points on a subinterval of the computational domain.

First we fix x0 and suppose that K(x0, y) is to be approximated on the interval [a, b] by the

p-point Lagrange inter-polant wp(y). For ease of exposition, let f (y) = K(x0, y) where K(x,

Linderman et al. Page 13

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

y) is either K1 or K2 given by eq. (3). Then, a classical theorem in approximation theory (see

Dalquist and Björck (2008)18 for example) states that for all y ∈ (a, b) there exists a ζy ∈ (a,

b) such that

Ep(y) = f (y) − wp(y) =
f (p)(ζy)

p! πp(y),

where f(p) denotes the pth derivative of f, and

πp(y) = ∏
k = 1

p
(y − y j) .

Let h = (b – a)/p and the interpolation nodes on the interval (a, b) are yj = a + (j – 1/2)h, j =

1, …, p.

We bound πp(y) in the following way (see Trefethen (2013)19 for example). Suppose that yj

< y < yj+1. Then

∣ πp(y) ∣ = ∣ y − y1 ∣ ⋅ ∣ y − y2 ∣ … ∣ y − yp ∣

≤ h j⋯2h (y − y j)(y j + 1 − y)2h ⋅ 3h⋯(p − j)h

= hp − 2 j! (p − j)!(y − y j) (y j + 1 − y)

= hp j!(p − j)!
4 .

Clearly this is bounded by hp(p − 1)!
4 . Similarly, if y < y1, or y > yp then

∣ πp(y) ∣ ≤ h
2

3h
2 …2p − 1

2 = (2p)!
22pp!

hp .

In order to bound f(p)(ζy) we first consider the case where f(y) = K1(x0, y). Then

f (y) = 1
1 + ‖y − x0‖2 = 1 ∕ 2

1 + i(y − x0) + 1 ∕ 2
1 − i(y − x0) .

Taking p derivatives we obtain

f (p)(y) = 1
2 p!ip (− 1)p

[1 + i(y − x0)]p + 1
[1 − i(y − x0)]p

and hence

Linderman et al. Page 14

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

∣ f (p)(y) ∣ ≤ p!

Similarly, if f(y) = K2(x0, y) then

f (y) = 1
(1 + ‖y − z‖2)2

= 1 ∕ 4
[1 + i(y − x0)]2

+ 1 ∕ 4
[1 − i(y − x0)]2

− 1 ∕ 4
1 + i(y − x0) − 1 ∕ 4

1 − i(y − x0) ,

from which it follows that

∣ f (p)(y) ∣ ≤ p + 2
2 p! .

Putting the above estimates together gives

∣ Ep(y) ∣ ≤ (2p)!
22pp!

hp p + 2
2 = (2p)!

22pp!
(b − a)p 1

pp
p + 2

2 ,

which holds for both K1 and K2. Using Stirling’s approximation (see Abramowitz and

Stegun (1965),20 for example) it follows that

∣ Ep(y) ∣ ≤ p + 2
2

b − a
e

p
e

1
24p .

We now use this estimate to construct an error bound of the form given in eq. (6). First, for

fixed x ∈ [a, b] let Kr(x, y) denote the polynomial interpolant for y ∈ [c, d]. Then

max
x ∈ [a, b]

max
y ∈ [c, d]

∣ K(x, y) − Kr(x, y) ∣ ≤ p + 2
2

d − c
e

p
e

1
24p .

Similarly, for fixed y ∈ [c, d] let Kl(x, y) denote the polynomial interpolant for x ∈ [a, b], in

which case

max
x ∈ [a, b]

max
y ∈ [c, d]

∣ K(x, y) − Kℓ(x, y) ∣ ≤ p + 2
2

d − c
e

p
e

1
24p .

Note that by construction,

Kr(x, y) = ∑
j = 1

p
L j, [c, d](y)K(x, y j),

and

Linderman et al. Page 15

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kℓ(x, y) = ∑
j = 1

p
L j, [a, b](x)K(x j, y),

where Lj,[c,d], j = 1, … , p are the Lagrange polynomials for the nodes y1, … , yp ∈ [c, d].

As above, let Kp(x, y) denote the polynomial interpolant of K(x, y) which is degree p in both

x and y for x ∈ [a, b] and y ∈ [c, d]. Evidently,

K p(x, y) = ∑
j = 1

p
∑

m = 1

p
L j, [c, d](y)Lm, [a, b](x)K(xm, y j) .

Hence

max
x ∈ [a, b]

max
y ∈ [c, d]

∣ K p(x, y) − Kr(x, y) ∣ ≤ max
x ∈ [a, b]

max
y ∈ [c, d]

∑
j = 1

p
L j, [c, d](y)

K(x, y j) − ∑
m = 1

p
Lm, [a, b](x)K(xm, y j)

= max
x ∈ [a, b]

max
y ∈ [c, d]

∑
j = 1

p
L j, [c, d](y) ∣ K(x, y j) − Kℓ(x, y j) ∣

≤ p + 2
2

b − a
e

p
e

1
24p ∑

j = 1

p
max

y ∈ [c, d]
∣ L j, [c, d](y) ∣ .

A slight modification of the argument presented in Trefethen and Weideman (1991)21 yields

the following bound,

max
y ∈ [c, d]

∣ L j, [c, d](y) ∣ ≤ 82p

p ,

from which it follows that

max
x ∈ [a, b]

max
y ∈ [c, d]

∣ K p(x, y) − Kr(x, y) ∣ ≤ 8 p + 2
2p

2(b − a)
e

p
e

1
12p .

Then

∣ K(x0, y0) − K p(x0, y0) ∣ ≤ ∣ K(x0, y0) − Kr(x0, y0) ∣ + ∣ Kr(x0, y0) − K p(x0, y0) ∣

≤ 8 p + 2
2p

2(b − a)
e

p
e

1
12p + p + 2

2
d − c

e
p

e

1
24p

which is the estimate we require. In particular, if L = b – a = d – c we obtain the bound

Linderman et al. Page 16

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

∣ K(x0, y0) − K p(x0, y0) ∣ ≤ 7(p + 2)
p

2pLp

ep .

Note that if L < e
2 then the error will decay exponentially in p.

In two-dimensions an almost identical analysis shows that the error is bounded by

∣ K(x0, y0) − K p(x0, y0) ∣ ≤ 163(p + 2)
8p3

8pLp

ep .

In principle this guarantees convergence only when L < e
8 . In practice, extensive numerical

evidence suggests that the error decays exponentially in p provided that L < 1.4.

8.4. Out-of-Core PCA.

The methods for t-SNE presented above allows for the embedding of millions of points, but

can only be used to reduce the dimensionality of datasets that can fit in the memory. For

many large, high dimensional datasets, specialized servers must be used simply in order to

load the data. In order to allow for visualization and analysis of such datasets on resource-

limited machines, we present an out-of-core implementation of randomized PCA, which can

be used to compute the top few (e.g. 50) principal components of a dataset to high accuracy,

without ever loading it in its entirety.22 Note that out-of-core PCA was not used in the

analysis above, but we include it as it can be useful for users interested in running t-SNE on

large datasets using a resource-limited machine.

8.4.1. Randomized Methods for PCA.—The goal of PCA is to approximate the

matrix being analyzed (after mean centering of its columns) with a low-rank matrix. PCA is

primarily useful when such an approximation makes sense; that is, when the matrix being

analyzed is approximately low-rank. If the input matrix is low-rank, then by definition, its

range is low-dimensional. As such, when the input matrix is applied to a small number of

random vectors, the resulting vectors nearly span its range. This observation is the core idea

behind randomized algorithms for PCA: applying the input matrix to a small number of

random vectors results in vectors that approximate the range of the matrix. Then, simple

linear algebra techniques can be used to compute the principal components. Notably, the

only operations involving the large input matrix are matrix-vector multiplications, which are

easily parallelized, and for which highly optimized implementations exist. Randomized

algorithms have been rigorously proven to be remarkably accurate with extremely high

probability,25,26 because for a rank-k matrix, as few as l = k + 2 random vectors are

sufficient for the probability of missing a significant part of the range to be negligible. The

algorithm and its underlying theory are covered in detail in Halko et al. (2011).25 An easy-

to-use “black box” implementation of randomized PCA is available and described in Li et al.

(2017),23 but it requires the entire matrix to be loaded in the memory. We present an out-of-

core implementation of PCA in C++/R, oocPCA, allowing for decomposition of matrices

which cannot fit in the memory.

Linderman et al. Page 17

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 2: Out-of-Core PCA (oocPCA)

Input: Matrix A of size m × n stored in slow memory, non‐negative integers its, k, l, b,
where 0 < k ≤ l < min(m, n), and l defaults to k + 2

Output: Orthonormal U of size m × k, non‐negative diagonal matrix Σ of size k × k,

orthonormal V of size n × k, such that A ≈ UΣV∗

1 Generate uniform random matrix Ω of size n × l
2 Form Y0 = AΩ block‐wise, b rows at a time

3 Renormalize with LU factorization L0U0 = Y0
4 for i 1 to its do

5
6
7
8

From Yi = AA∗Li − 1 block‐wise, b rows at a time

if i < its then
∣ Renormalize with LU factorization LiUi = Yi

end
9 end
10 Renormalize with QR factorization QR = Yi

11 Compute SVD of small matrix U′ΣV∗ = Q∗A
12 Set U = QU′

8.4.2. Implementation.—Our implementation is described in Algorithm 1. Given an m
× n matrix of doubles A, stored in row-major format on the disk of a machine with M bytes

of available memory, the number of rows that can fit in the memory is calculated as

b = M
8mn . The only operations performed using A are matrix multiplications, which can be

performed block-wise. Specifically, the matrix product AB, where B is an n × p matrix

stored in the fast memory, can be computed by loading the first b rows of A, and forming the

inner product of each row with the columns of B. The process can be continued with the

remaining blocks of the matrix, essentially “filling in” the product AB with each new block.

In this manner, left multiplication by A can be computed without ever loading the full matrix

A.

By simply replacing the matrix multiplications in the implementation of Li et al. (2017)23

with block-wise matrix multiplication, an out-of-core algorithm can be obtained. However,

significant optimization is possible. The run-time of an out-of-core algorithm is almost

entirely determined by disk access time; namely, the number of times the matrix must be

loaded to the memory. As suggested in Li et al. (2017),23 the renormalization step between

the application of A and A* is not necessary in most cases, and in the out-of-core setting,

doubles the number of times A must be loaded per power iterations. In our implementation,

we remove this renormalization step, and apply AA* simultaneously, hence requiring the

matrix only be loaded once per iteration.

Our implementation is in C++ with an R wrapper. For maximum optimization of linear

algebra operations, we use the highly parallelized Intel MKL for all BLAS functions (e.g.

Linderman et al. Page 18

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

matrix multiplications). The R wrapper provides functions for PCA of matrices in CSV and

in binary format. Furthermore, basic preprocessing steps including log transformation and

mean centering of rows and/or columns can also be performed prior to decomposition, so

that the matrix need not ever be fully stored in the memory.

To demonstrate oocPCA’s performance, we generated a random 1,000,000 × 30,000 rank-50

matrix stored as doubles, which would require 240GB to simply store in the memory, far

exceeding the memory capacity of a personal computer. Using oocPCA we can compute the

top principal components of the matrix with much less memory. Using a 2017 Macbook Pro

laptop with 16GB RAM, solid state drive, and a 2.9 GHz Intel i7 CPU, the rank-50

approximation was computed in 38 minutes.

8.5. FIt-SNE of 1.3 million mouse brain cells.

The scRNA-seq dataset consisting of 1.3 million cells from the cortex, hippocampus, and

ventricular zones of embryonic day 18 mouse brains were downloaded from the 10X

Genomics website and processed using the normalization and filtering steps of Zheng et al.,
14 as implemented by the python package scanpy.15 Scanpy was also used to compute a

neighborhood graph of the observations using a Gaussian kernel with adaptive widths, and

then the points were clustered using the Louvain method. Subsequent analysis of this dataset

was then performed in R. FIt-SNE of all 1,306,127 cells was computed with 4,000 iterations

of gradient descent (2,000 of them being early exaggeration iterations) and other parameters

set to defaults. FIt-SNE with the same parameters was also run on a random subset of 50,000

cells. We sought to identify known cell types from the Allen Brain Atlas (http://

celltypes.brain-map.org/rnaseq/mouse) in the embedding, and gave two examples of cell

populations (see Supplementary Table 9 of Tasic et al. (2018)3) that could be identified in

the full dataset, but not in the downsampled embedding.

8.6. t-SNE heatmap of retinal cells.

The scRNA-seq retinal cells data of Shekhar et al. (2016)11 was downloaded from GEO

(GSE81905). The digital expression matrix was preprocessed using the code provided by the

authors of the original publication (https://github.com/broadinstitute/BipolarCell2016). In

short, libraries containing more than 10% mitochondrially derived transcripts were removed,

cells with ≤ 500 genes were removed, as were genes with expression in ≤ 30 cells or having

≥ 60 transcripts, resulting in 13,166 genes and 27,499 cells. Finally, the data were median

normalized, log-transformed, and the genes were Z-scored. The top 37 principal components

were computed and used as input to 1D FIt-SNE with perplexity 30 and for 1000 iterations.

Finally, the t-SNE heatmap (Figure 2) was computed as described in the main text, with the

marker genes (Tacr3, Rcvrn, Syt2, Irx5, Irx6, Vsx1, Hcn4, Grik1, Gria1, Kcng4, Hcn1,

Cabp5, Grm6, Isl1, Scgn, Otx2, Vsx2, Car8, Sebox, Prkca) from Shekhar et al. (2016)11

listed in Supplemental Table 2. Each marker gene was enriched with the 25 genes with most

similar expression patterns. Genes associated with each cluster in the 2D embedding were

obtained by running dbscan on the 2D t-SNE with the settings ϵ = 2 and a minimum number

of points of 40. For each cluster i, a “metagene” ci of length 27,499 was generated, where

ci(k) = 1 if the kth cell is in the ith cluster and ci(k) = 0 otherwise. These vectors were then

treated as “genes” and enriched in the same fashion as the genes.

Linderman et al. Page 19

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://celltypes.brain-map.org/rnaseq/mouse
http://celltypes.brain-map.org/rnaseq/mouse
https://github.com/broadinstitute/BipolarCell2016

8.7. Comparing approximate nearest neighbors and VP trees on scRNA-seq data.

To evaluate the effect of approximate nearest neighbors on embedding quality of scRNA-seq

data, we compared the resulting embeddings on several scRNA-seq datasets where labels are

predetermined by other sources. For each dataset, we also compute the 1-nearest neighbor

error (1N error), defined as the percentage of cells for which the cell closest to them in the

embedding belongs to a different label. We did the comparison on the 1.3 million mouse

brain cells from above, purified PBMC populations from Zheng et al. (2017),14 and mouse

visual cortex cells from Hrvatin et al. (2018).16

Filtered expression matrices for FACS purified peripheral blood monocyte (PBMC)

populations were downloaded from the 10X website14 and concatenated them to a single

expression matrix. The matrix was filtered to include cells expressing more than 400 genes

and gene expressed in more than 100 cells, resulting in a matrix with 83,992 cells and

12,776 genes. Purified CD4 helper T cells and cytotoxic T cells were removed, as they (by

definition) are supersets of some of the other subtypes, leaving 64,664 cells. After library

and log normalization, the top 25 principal components (PCs) were computed using

randomized SVD.24 FIt-SNE using VP trees and approximate nearest neighbors were was

computed on the the PCs and qualitatively compared in Figure S4.

The scRNA-seq expression matrix of mouse visual cortex cells from Hrvatin et al.16 was

obtained from GEO (GSE102827). Genes with mean expression less than 0.00003 and non-

zero expression in less than 4 cells were excluded, resulting in a matrix with 65,539 cells

and 19,155 genes. The cells were further subsetted to those assigned to subtypes, resulting in

48,266 cells. After library and log normalization, the top 25 principal components were

computed using randomized SVD. FIt-SNE using VP trees and approximate nearest

neighbors were then computed on the PCs and compared in Figure S5.

9. Code Availability

FIt-SNE is available at https://github.com/KlugerLab/FIt-SNE. The code for all experiments

is available at request and will be publicly available at https://github.com/KlugerLab/FIt-

SNE-paper on publication.

10. Data Availability

The 1.3 million mouse brain cells dataset and FACS purified PBMCs of Zheng et al.14 can

be downloaded from 10X Genomics website (https://support.10xgenomics.com/single-cell-

gene-expression/datasets/). Two other public scRNA-seq datasets from NCBI Gene

Expression Omnibus (GEO) were used: Hrvatin et al. (GSE102827) and Shekhar et al.

(GSE81905).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Linderman et al. Page 20

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/KlugerLab/FIt-SNE
https://github.com/KlugerLab/FIt-SNE-paper
https://github.com/KlugerLab/FIt-SNE-paper
https://support.10xgenomics.com/single-cell-gene-expression/datasets/
https://support.10xgenomics.com/single-cell-gene-expression/datasets/

Acknowledgements

The authors would like to thank Vladimir Rokhlin, Dmitry Kobak, Mark Tygert and Jun Zhao for many useful
discussions. The authors also thank Josef Spidlen and Ian Taylor for help with testing FIt-SNE on their CyTOF and
scRNA-seq datasets.

GCL was supported in part by NIH grants #F30HG010102, #1R01HG008383-01A1 and U.S. NIH MSTP Training
Grant T32GM007205, MR was supported in part by AFOSR grant # FA9550-16-10175 and NIH grant
#1R01HG008383-01A1, SS was supported in part by the NSF (DMS-1763179) and the Alfred P. Sloan Foundation,
and YK was supported in part by NIH grant #1R01HG008383-01A1.

References

[1]. Svensson Valentine, Vento-Tormo Roser, and Teichmann Sarah A. Exponential scaling of single-
cell rna-seq in the past decade. Nature protocols, 13(4):599, 2018. [PubMed: 29494575]

[2]. 10X Genomics. Transciptional profiling of 1.3 million brain cells with the chromium single cell 3’
solution. Application Note, 2016.

[3]. Tasic Bosiljka, Yao Zizhen, Graybuck Lucas T, Smith Kimberly A, Nguyen Thuc Nghi,
Bertagnolli Darren, Goldy Jeff, Garren Emma, Economo Michael N, Viswanathan Sarada, et al.
Shared and distinct transcriptomic cell types across neocortical areas. Nature, 563(7729):72,
2018. [PubMed: 30382198]

[4]. van der Maaten Laurens. Accelerating t-SNE using tree-based algorithms. Journal of machine
learning research, 15(1):3221–3245, 2014.

[5]. Yianilos Peter N. Data structures and algorithms for nearest neighbor search in general metric
spaces. In SODA, volume 93, pages 311–321, 1993.

[6]. Bernhardsson Erik. Annoy: Approximate nearest neighbors in c++/python optimized for memory
usage and loading/saving to disk. https://github.com/spotify/annoy, 2017.

[7]. Linderman George C and Steinerberger Stefan. Clustering with t-SNE, provably. arXiv preprint
arXiv:1706.02582, 2017.

[8]. Belkina Anna C, Ciccolella Christopher O, Anno Rina, Spidlen Josef, Halpert Richard, and
Snyder-Cappione Jennifer. Automated optimal parameters for t-distributed stochastic neighbor
embedding improve visualization and allow analysis of large datasets. bioRxiv, page 451690,
2018.

[9]. Kobak Dmitry and Berens Philipp. The art of using t-sne for single-cell transcriptomics. bioRxiv,
page 453449, 2018.

[10]. Cheng Yang, Wong Michael T, van der Maaten Laurens, and Newell Evan W. Categorical
analysis of human t cell heterogeneity with one-dimensional soli-expression by nonlinear
stochastic embedding. The Journal of Immunology, page 1501928, 2015.

[11]. Shekhar Karthik, Lapan Sylvain W, Whitney Irene E, Tran Nicholas M, Macosko Evan Z,
Kowalczyk Monika, Adiconis Xian, Levin Joshua Z, Nemesh James, Goldman Melissa, et al.
Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell,
166(5):1308–1323, 2016. [PubMed: 27565351]

[12]. Galili Tal, O’Callaghan Alan, Sidi Jonathan, Sievert, and Carson. heatmaply: an r package for
creating interactive cluster heatmaps for online publishing. Bioinformatics, 2017.

[13]. van der Maaten Laurens and Hinton Geoffrey. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(11):2579–2605, 2008.

[14]. Zheng Grace XY, Terry Jessica M, Belgrader Phillip, Ryvkin Paul, Bent Zachary W, Wilson
Ryan, Ziraldo Solongo B, Wheeler Tobias D, McDermott Geoff P, Zhu Junjie, et al. Massively
parallel digital transcriptional profiling of single cells. Nature communications, 8:14049, 2017.

[15]. Wolf F Alexander, Angerer Philipp, and Theis Fabian J. Scanpy: large-scale single-cell gene
expression data analysis. Genome biology, 19(1):15, 2018. [PubMed: 29409532]

[16]. Hrvatin Sinisa, Hochbaum Daniel R, Nagy M Aurel, Cicconet Marcelo, Robertson Keiramarie,
Cheadle Lucas, Zilionis Rapolas, Ratner Alex, Borges-Monroy Rebeca, Klein Allon M, et al.
Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex.
Nature neuroscience, 21(1):120, 2018. [PubMed: 29230054]

Linderman et al. Page 21

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/spotify/annoy

[17]. Barnes Josh and Hut Piet. A hierarchical O(N log N) force-calculation algorithm. Nature,
324(6096):446–449, 1986.

[18]. Dahlquist Germund and Björck Åke. Numerical methods in scientific computing, volume i.
Society for Industrial and Applied Mathematics, 8, 2008.

[19]. Trefethen Lloyd N. Approximation theory and approximation practice. Siam, 2013.

[20]. Abramowitz Milton and Stegun Irene A. Handbook of mathematical function: with formulas,
graphs and mathematical tables In Handbook of mathematical function: with formulas, graphs
and mathematical tables. Dover Publications, 1965.

[21]. Trefethen Lloyd N and Weideman JAC. Two results on polynomial interpolation in equally
spaced points. Journal of Approximation Theory, 65(3):247–260, 1991.

[22]. Halko Nathan, Martinsson Per-Gunnar, Shkolnisky Yoel, and Tygert Mark. An algorithm for the
principal component analysis of large data sets. SIAM Journal on Scientific computing, 33(5):
2580–2594, 2011.

[23]. Li Huamin, Linderman George C, Szlam Arthur, Stanton Kelly P, Kluger Yuval, and Tygert
Mark. Algorithm 971: an implementation of a randomized algorithm for principal component
analysis. ACM Transactions on Mathematical Software (TOMS), 43(3):28, 2017.

[24]. Erichson N Benjamin, Voronin Sergey, Brunton Steven L, and Kutz J Nathan. Randomized
matrix decompositions using r. arXiv preprint arXiv:1608.021J8, 2016.

[25]. Halko Nathan, Martinsson Per-Gunnar, and Tropp Joel A. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review,
53(2):217–288, 2011.

[26]. Witten Rafi and Candes Emmanuel. Randomized algorithms for low-rank matrix factorizations:
sharp performance bounds. Algorithmica, 72(1):264–281, 2015.

Linderman et al. Page 22

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
FIt-SNE allows for embedding of the full 1.3 million mouse brain cell dataset (left),

enabling the identification of known cell populations that cannot be identified when

downsampling to a random 50,000 cells (right). (For the left figure, instead of plotting all 1.3

million embedded points, only 100,000 of the cells not expressing the marker genes are

shown, whereas all the cells expressing the marker genes are shown.)

Linderman et al. Page 23

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Schematic and demo of t-SNE Heatmaps. Starting with the expression matrix (A) compute

1D t-SNE, which is plotted in (B) colored by the expression of each gene (with added jitter).

We bin the 1D t-SNE, and represent each gene by its average expression in each bin (C), and

then generate a heatmap of these vectors, so that genes with similar expression patterns in

the t-SNE are grouped together (D). In (E), we demonstrate t-SNE heatmaps using retinal

bipolar cells11

Linderman et al. Page 24

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Linderman et al. Page 25

Table 1.

Time taken for 1000 iterations of the gradient descent phase of 2D t-SNE using Barnes-Hut t-SNE (BH t-SNE)

compared to our implementation (FIt-SNE), as compared on a 2017 Macbook Pro for a given number of points

N. See section 8.3.5 for more details.

N BH t-SNE FIt-SNE

10,000 1 min. < 1 min.

100,000 11 min. < 1 min.

500,000 1 hr. 10 min. 3 min.

1,000,000 3 hr. 9 min. 15 min.

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Linderman et al. Page 26

Table 2.

Time taken to compute input similarities in Barnes-Hut t-SNE (vptree) compared to FIt-SNE using either

multithreaded vantage-point trees (vptreeMT) or a multi-threaded approximate nearest neighbor (annMT)

approach on a 2017 Macbook Pro for a given number of points N.

50 Dimensions 100 Dimensions

N vptree vptreeMT annMT vptree vptreeMT annMT

10,000 < 1 min. < 1 min. < 1 min. < 1 min. < 1 min. < 1 min.

100,000 2 min. < 1 min. < 1 min. 3 min. < 1 min. < 1 min.

500,000 56 min. 15 min. 3 min. 1 hr. 30 min. 20 min. 4 min.

1,000,000 4 hr. 45 min. 1 hr. 15 min. 6 min. 7 hr. 9 min. 1 hr. 40 min. 8 min.

Nat Methods. Author manuscript; available in PMC 2019 August 11.

	Abstract
	Main
	FIt-SNE.
	Heatmaps.

	Methods
	Online Methods
	t-distributed Stochastic Neighborhood Embedding.
	Early Exaggeration.
	Accelerating computation of repulsive forces in FIt-SNE.
	Mathematical Preliminaries.
	Algorithm.

	Table T3
	Out-of-Core PCA.
	Randomized Methods for PCA.

	Table T4
	FIt-SNE of 1.3 million mouse brain cells.
	t-SNE heatmap of retinal cells.
	Comparing approximate nearest neighbors and VP trees on scRNA-seq data.

	Code Availability
	Data Availability
	References
	Figure 1.
	Figure 2.
	Table 1.
	Table 2.

