Skip to main content
. Author manuscript; available in PMC: 2019 Aug 11.
Published in final edited form as: Nat Methods. 2019 Feb 11;16(3):243–245. doi: 10.1038/s41592-018-0308-4
Algorithm 1: FFT-accelerated Interpolation-based t-SNE (FIt-SNE)
Input:Collection of points{yi}i=1N,source strengths{qi}i=1N,number of intervalsNint,number of interpolation points per intervalpOutput:ϕ(yi)=Nj=1K(yi,yj)qjfori=1,2,N1For each intervalI,form the equispaced nodesy~j,,j=1,2,pgiven by eq.(7)2forI1toNintdo3Compute the coefficientswm,given bywm,=yiILm,y~(yi)qi,m=1,2,p.4end5Use the fast-Fourier transform to compute the values ofvm,ngiven by(10)[v1,1v2,1vp1,Nintvp,Nint]=K~[w1,1w2,1wp1,Nintwp,Nint],whereK~is the Toeplitz matrix given by(11)K~i,j=K(y~i,y~j),i,j=1,2,Nintp.6forI1toNintdo7Computeϕ(yi)at all pointsyiIviaϕ(yi)=j=1pLj,y~(yi)vj,8end