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Abstract

Temperature gradients in cities can cause inter-neighborhood differences in the timing of pollen 

release. However, most epidemiological studies examining allergenic pollen utilize daily 

measurements from a single pollen monitoring station with the implicit assumption that the 

measured time series of airborne pollen concentrations applies across the study areas, and that the 

temporal mismatch between concentrations at the counting station and elsewhere in the study area 

is negligible. This assumption is tested by quantifying temperature using satellite imagery, 

observing flowering times of oak (Quercus) and mulberry (Morus) trees at multiple sites, and 

collecting airborne pollen. Epidemiological studies of allergenic pollen are reviewed and 

temperatures within their study areas are quantified. In this one-year study, peak oak flowering 

time was well explained by average February nighttime temperature (R2 = 0.94), which varied by 

6° C across Detroit. This relationship was used to predict flowering phenology across the study 

region. Peak flowering ranged from April 20 – May 13 and predicted a substantial portion of 

relative airborne oak pollen concentrations in Detroit (R2 = 0.46) and at the regional pollen 

monitoring station (R2 = 0.61). The regional pollen monitoring station was located in a cooler 

outlying area where peak flowering occurred around May 12 and peak pollen concentrations were 

measured on May 15. This provides evidence that the timing of pollen release varies substantially 

within a metropolitan area and challenges the assumption that pollen measurements at a single 

location are representative of an entire city. Across the epidemiological studies, 50% of study 

areas were not within 1° C (equal to a lag or lead of 4 days in flowering time) of temperatures at 

the pollen measurement location. Epidemiological studies using a single pollen station as a proxy 

for pollen concentrations are prone to significant measurement error if the study area is 

climatically variable.
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1 INTRODUCTION

Pollen exposure is a major trigger of allergic rhinitis (AR), allergic conjunctivitis, and 

allergic asthma (Erbas et al., 2012; La Rosa et al., 2013; Linneberg et al., 2002; Salo et al., 

2011). AR alone affects an estimated 10 – 23 % of people in North America and Europe 

(Bauchau and Durham, 2004; Mims, 2014), and rates are increasing globally (Björkstén et 

al., 2008). Pollen allergies reduce peoples’ quality of life, economic productivity, and place 

large burdens on healthcare systems (Meltzer, 2016; Meltzer et al., 2009; Nathan, 2007; 

Reed et al., 2004). Due to the importance of this public health issue, substantial efforts are 

made to quantify allergenic pollen exposures. A central component of this effort are 

networks of pollen counting stations, including 71 pollen counting stations currently 

comprising the National Allergy Bureau (NAB) network in the United States and ~400 

active pollen counting stations in the European Aeroallergen Network. Pollen concentration 

measurements from these stations usually are assumed to be representative of the broader 

metropolitan areas in which they occur (e.g., Darrow et al. 2012, Qin et al. 2013, Osborne et 

al. 2017, Wang et al. 2017b) or the region (e.g., Gleason et al. 2014, Jariwala et al. 2014, Ito 

et al. 2015). Time series of daily pollen concentrations measured at pollen counting stations 

are the most commonly used proxy for pollen exposure in epidemiological studies.

Evidence suggests that most pollen only travels relatively short distances from source plants. 

Pollen measurements consistently show reduced pollen concentrations at farther distances 

from source plants (Adams-Groom et al., 2017; Bricchi et al., 2000; D. Frenz, 2000; Nowak 

et al., 2012; Raynor et al., 1970). Efforts to understand the spread of genetic material in 

agricultural systems have shown that pollen follows dispersal dynamics of other particles of 

similar size and density (Klein et al., 2003; J. Wang et al., 2017; Ye et al., 2016); these 

models predict low pollen concentrations at distances of tens to hundreds of meters due to 

settling and diffusion. Even though inter-regional transport of pollen is well documented and 

can be important in certain contexts (D’Amato et al., 2007; Zink et al., 2012), most evidence 

supports that pollen release from local plants is the best predictor of local airborne pollen 

concentrations. Thus, differences in pollen release over space and time are likely to 

contribute to heterogeneity in pollen levels across urban areas. This is further supported by 

studies showing substantial intra-urban variation in pollen concentrations driven by local 

plant community composition (Gonzalo-Garijo et al., 2006; Hjort et al., 2015; Katz and 

Carey, 2014; Weinberger et al., 2015; Werchan et al., 2017).

One potential source of variation in pollen concentrations is the timing of flowering 

(Devadas et al., 2018). Phenology (the timing of life history events) has been well studied 

(Polgar and Primack, 2011), and the flowering of temperate trees primarily depends on 

temperature although precipitation and photoperiod can play important roles (Gerst et al., 

2017; Ibáñez et al., 2010; Wozniak and Steiner, 2017). Temperature is generally higher in 

urban areas than surrounding rural areas; the urban heat island effect is widespread and has 
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been documented extensively (Imhoff et al., 2010; Rizwan et al., 2008). Because 

temperature is the main driver of temperate tree phenology, spring generally arrives earlier in 

cities than surrounding areas (Jochner and Menzel, 2015; Neil and Wu, 2006). Earlier 

flowering also has been observed for several tree species in urban areas compared to trees in 

nearby cooler rural areas (Lu et al., 2006; Massetti et al., 2015; Mimet et al., 2009; Roetzer 

et al., 2000). The amount of impervious surface area has been used as a proxy for 

temperature, and can predict spring phenology (Massetti et al., 2015). Thus, intra-urban 

temperature gradients can cause temporal mismatches in pollen release, potentially resulting 

in systematic heterogeneity in pollen concentrations within a city. If so, using pollen 

concentrations measured at a single station as a proxy for concentrations across a city could 

result in substantial measurement error of pollen exposure.

This study investigates the significance of intra-urban temperature gradients on differences 

in flowering time and airborne pollen concentrations and the potential impact on 

epidemiological analyses that include allergenic tree pollen. We hypothesize that: 1) trees in 

warmer neighborhoods within a city flower earlier; 2) airborne tree pollen concentrations are 

higher when more local trees are flowering; and 3) intra-urban temperature gradients within 

the study areas of epidemiological analyses are large enough to affect results. To test these 

hypotheses, we conduct a field study and characterize flowering times of two tree genera as 

a function of the intra-urban temperature gradient. Predicted flowering times are compared 

to pollen levels measured at 13 sites across the study area and at the regional NAB pollen 

monitoring station. We then assess the potential for temporal mismatches in airborne pollen 

concentrations between pollen monitoring stations and study areas in 11 epidemiological 

studies of allergenic pollen.

2 METHODS

2.1 STUDY AREA DESCRIPTION

In spring 2017, we conducted a field study in Detroit, Michigan, USA (42°19′N, 83°02′W), 

which covers 370 km2 with elevations from 175 to 205 m. Detroit has a humid continental 

climate: its annual average temperature is 10.6 °C (average monthly temperature of −3.2 °C 

in January and 23.6 °C in July), and its average precipitation is 940 mm/yr. Within the 

Detroit metropolitan area, air temperature during the summer is correlated with both 

impervious surface area and distance to water (Oswald et al., 2012).

2.2 PHENOLOGY FIELD CENSUS

We chose three regions in Detroit at varying distances from the Detroit River, and within 

each region selected three neighborhoods with high densities of oak trees using a street tree 

database (described below). In total, 115 oak (Quercus) trees were monitored at nine sites 

(SI 1), which had a variety of impervious surface area at different scales. Oaks were selected 

because they are common in urban areas, are frequently included in epidemiological 

analyses of allergenic pollen, and are estimated to cause over 21,000 emergency room visits 

in the United States each year (Anenberg et al., 2017). In addition, 22 white mulberry 

(Morus alba L.) trees were monitored; this allergenic species (Muñoz et al., 1995; Targow, 

1971) is common in urban areas and flowers slightly after oaks. Within each of the nine 
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neighborhoods, at least nine oak trees were monitored, selected by the following criteria: 

accessible for monitoring, not obviously unhealthy or damaged, and a diameter of >10 cm at 

1.37 m height. Species composition of the selected trees included Quercus rubra L. 

(Northern red oak; n=67), Quercus palustris Munchh. (pin oak; n=28), Quercus alba L. 

(white oak; n=8), Quercus macrocarpa Michx. (burr oak; n=7), Quercus bicolor Willd. 

(swamp white oak; n=3), and Quercus velutina Lam. (black oak; n=2). Of these, 84 % were 

in the red oak group (Erythrobalanus) and the remainder were in the white oak group 

(Leucobalanus); this composition approximately matches oak street tree composition across 

Detroit (75% red oak group, SI 2). White mulberry trees were monitored in all nine 

neighborhoods, but the number of trees per neighborhood was lower (ranging from 1 – 8 

trees).

Phenology measurements were made twice per week at each site. Foliar and floral 

phenological measurements of trees are often made by visually estimating the percentage of 

a plant at a particular phenological stage (e.g., Fotiou et al. 2011; Koenig et al. 2012; Lu et 

al. 2006; Vitasse et al. 2009). Here, we visually estimated the percentage of flowers that 

were immature (catkins not yet fully extended, anthers tightly closed), mature (catkins fully 

extended, some anthers open, anthers fully inflated), or senesced (anthers empty, open, and 

turning brown, catkins appears dried out) for each tree. To ensure consistency, observers 

would independently evaluate the phenological stage of a subset of trees, and arrive at a 

consensus estimate. Flower maturity varies substantially as a function of height within 

individual trees (Tal, 2011), so higher parts of the tree canopy were observed using 

binoculars. For 35 of the oak trees, we also selected 6 ground accessible twigs, and 

monitored the percentage of opened flowers within the catkins on those twigs. However, 

field observations showed that these low hanging flowers tended to flower later than the rest 

of the canopy (SI 3); due to that and the small sample size of trees we do not consider them 

further. Logistical constraints prevented us from repeatedly monitoring trees near the pollen 

counting station in Saint Claire Shores, but a phenology census of 23 oak trees was 

conducted on May 17. While one census does not allow us to be certain when peak 

flowering occurred, trees in Detroit had a similar percent flowering on May 7; if the duration 

of flowering is similar, peak flowering in Saint Claire Shores should be approximately May 

13. Field measurements were recorded using Collector for ArcGIS (ESRI, Redlands, CA) on 

a tablet (Ipad Mini, Apple, Cupertino, USA), and locations were collected using a 1 m 

accurate GPS (GNSS Surveyor, Bad Elf, Tariffville, CT).

2.3 REMOTE SENSING DATA

Land surface temperature (LST) was quantified across Detroit using preprocessed 1 km2 

resolution MODIS imagery (Wan, 2008; Wan et al., 2002) available through Google Earth 

Engine (Gorelick et al., 2016). LST is the temperature of observed surfaces including soil, 

vegetation, and buildings (Li et al., 2013). Many phenological studies have predicted plant 

phenology using LST (e.g., Chen et al. 2018; Hanes and Schwartz 2011; Zhang et al. 2004), 

often because LST is readily available from remote sensing imagery whereas air temperature 

is measured at sparsely-located weather stations. While air and land surface temperature are 

well correlated (Cai et al., 2017; Mildrexler et al., 2011), there is also a direct mechanistic 

link between LST and phenology: LST is directly related to energy exchanges between the 
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atmosphere and soil (Quattrochi and Luvall, 1999; Simó et al., 2018) and soil temperature 

affects root phenology and plant reproductive phenology (Chen et al., 2016; Delpierre et al., 

2016; Greer et al., 2006). LST measured by MODIS sensors on the Aqua and Terra satellites 

was extracted for each site (using coordinates of the site centroid) during each month from 

2007 through 2017 and then reprojected to WGS84. The overpass time for Terra is 

approximately 10:30 and 22:30 whereas for Aqua the overpass times are 1:30 and 13:30; the 

imagery catalogues are MOD11A2 and MYD11A2 (version 5). The 10-year average for 

each month, a useful time frame for detecting spatial differences in temperature with 

MODIS data (Parmentier et al., 2014), was based on approximately 30 images, each of 

which is an average of clear sky imagery collected over an 8-day repeat cycle, with a one to 

two day revisit period. The 10-year average allows better comparisons between sites than 

MODIS images from a shorter period of time (e.g., the study year) would allow, as images 

often have missing data due to cloud cover and are sensitive to highly variable short-term 

conditions. As per Parmentier et al. (2014), these temperature averages may best be thought 

of as “monthly climatologies” and here are used to capture general patterns in differences in 

temperature over space. We also investigated whether changes in land use over the 10-year 

period could have affected our results by assessing differences between 10 and 5 year 

average temperatures. We focused on winter and spring given the importance of these 

seasons for oak spring phenology (Gerst et al., 2017).

2.4 POLLEN COLLECTION

In the field study, airborne pollen concentrations in Detroit were measured on 11 days 

between April 26 and May 23, 2017. Samplers were deployed to 13 sites where permission 

was obtained from land owners and placed at least 5 m from the nearest building (excluding 

small sheds). Sampling was conducted approximately three times per week from the late 

morning (11:00) to the early afternoon (2:00). Sampling was not conducted while raining; if 

rain occurred while sampling, samples were discarded. On each day, one particular section 

of the city (4 or 5 sites) was sampled; this sampling design decreased transportation time 

between samplers. Samplers were deployed sequentially at each site for two 90-minute 

periods and average concentrations across that period were used in the analysis; 48 samples 

were obtained.

Pollen was collected using custom-built rotorod-style samplers that have been used 

previously in similar studies (Huang et al., 2015; J. Wang et al., 2017; Ye et al., 2016). The 

samplers were attached to tripods at a height of 1.5 m above ground. The 2.9 × 20.0 mm 

sampling surface was a transparent acrylic rod covered with a thin layer of Trident Pure 

Silicone Grease (Trident Diving Equipment, Chatsworth, CA, USA). Rotation speed was 

measured using a digital tachometer (AGPTek, DT2234C) on all samplers before and after 

sampling. Rods were stored in custom air-tight boxes before and after deployment.

Quality assurance measures to assess the measurement reproducibility are detailed in SI 4. 

Briefly, field blanks controlled for field and lab contamination, collocated rotorods 

quantified the effects of minor differences in location, and precision was assessed with intra-

sampler rod comparisons. Differences in collection efficiency between rotorods (which spin 

a sampling surface rapidly through the air) and Burkard samplers (which suck air through a 
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small orifice) depend on wind conditions and particle size (Di-Giovanni, 1998; D. A. Frenz, 

2000; Miki et al., 2017), but mean differences for the study conditions are expected to be < 

20 % (D. A. Frenz, 2000).

For identification, sampling rods were placed in a customized holder, stained with Calberla 

solution, and viewed at 400 × using a Meiji ML 2000 microscope. Pollen of Quercus and 

Morus were identified using reference samples we collected and other pollen identification 

resources (Hepworth et al., 1983; Smith, 1984). Oak pollen was counted along three 

transects (0.46 × 20.00 mm; 48% of the collection surface) on each rod; all four rods from 

each sampler deployment were analyzed. Due to initial identification concerns, Morus 
pollen was counted separately in one short transect on each rod (0.46 × 2.90 mm; 16% of the 

collection surface); comparisons between rods indicated that this area was sufficient for this 

very abundant pollen (SI 4). In cases, there were substantial amounts of dust on the sampling 

surface; these samples were discarded as per standard rotorod sampling practices (Sterling 

and Lewis, 1998). When a rod was discarded, the other rods from that sampling location and 

date were used to determine airborne pollen concentrations; in only one case were all four 

rods discarded. All rods were glued to slides for archival purposes.

Average daily pollen concentration data were provided by the nearest NAB station, located 

in Saint Claire Shores (45.509, −82.905). Pollen is collected following the standard NAB 

protocol using a Burkard sampler located on the building roof, approximately 7 m above 

ground. Samples are collected approximately five days a week during the main pollen 

season, and pollen are identified to the genus level.

2.5 DATA AND STATISTICAL ANALYSIS

The airborne concentration of pollen grains, P (pollen m−3), was calculated as

P = C
V × R × M

where C = number of pollen grains on the slide; V = volume of air sampled for each 

revolution of the sampling arm (m3/revolution); R = rotational speed (RPM); M = sampling 

duration (min) (Frenz et al., 1996; Huang et al., 2015; J. Wang et al., 2017; Ye et al., 2016).

To identify causes of variation in the timing of flowering, the peak flowering day (i.e., the 

day with the largest observed portion of mature flowers) was calculated for each tree and we 

took the mean of this at each site. Differences in the percent of mature flowers at each site 

on each day were calculated using ANOVA and Tukey tests. To analyze peak flowering day 

as a function of temperature at the site level, we ran all possible single variable linear 

regressions (5 months of temperature climatologies for images collected at four times of day, 

for a total of 20 separate single variable models) and selected the model with the best fit 

using Akaike Information Criterion (AIC; Akaike 1974). The best single variable model was 

used to predict peak flowering time for the study area. All possible two and three variable 

regressions were also run using the OLSSR R package (Hebbali, 2018). The proportion of 

flowers that were active (i.e., fully mature but not senesced) across Detroit on each day was 

calculated as an empirical function of days before or after peak (reported in SI 5), based on 
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an average across all sites. Individual tree flowering time was analyzed as a function of 

several variables including site temperature, impervious surface area surrounding each tree 

at several spatial scales (30, 50, 100, 200, 400, 800, and 1,600 m), and tree size. Oaks and 

mulberry were analyzed separately. Airborne oak and mulberry pollen concentrations in 

Detroit were analyzed as a function of estimated flowering intensity at that site and day 

using a linear model (a description of how flowering intensity was estimated is described 

above). Flowering intensity at the site was calculated as the average percent of estimated 

mature flowers within circles with the following radii: 0, 500, 1,000, 2,000, 3,000, 4,000, 

and 5,000 m; separate linear models were made for each spatial scale, and the model with 

the lowest AIC was selected. To account for potential bias caused by monitoring trees near 

roads (i.e., we did not include trees in backyards, which might systematically flower later), 

we also assessed models that included lags of 0, 1, 2, 3, and 4 days. To standardize for 

unknown differences in pollen production at each site (e.g., tree abundance) each site was 

scaled to the observed maximum value. The same approach was used to compare airborne 

pollen at the NAB station with estimated local flowering. The analyses of airborne pollen do 

not include the effects of weather, which is beyond the scope of this study.

Statistical analyses were conducted in R version 3.5.1 (R Core Team, 2013) and data 

visualizations were created using ggplot2 (Wickham, 2009). Mapping was conducted in R, 

ArcMap (ESRI, Redlands, CA), and Google Earth Engine (Gorelick et al., 2016).

2.7 ASSESSMENT OF POTENTIAL MEASUREMENT ERRORS ON THE LITERATURE

Temperature variation within the study area of an epidemiological investigation of allergenic 

pollen is rarely reported, but is needed to understand whether the study’s results could be 

affected by differences in the timing of pollen release. The potential for pollen exposure 

misclassification increases with large temperature differences within a study area or between 

a study area and the pollen measurement station, as was the case in Detroit. To assess 

potential impacts on the allergenic pollen epidemiological literature, we quantified the 

temperature variation in recent epidemiological studies that examined airborne pollen 

concentration time series. Studies were identified using a Google Scholar search on January 

3, 2018 with keywords “allergenic pollen” & “pollen concentrations” & “health outcomes”. 

The resulting 214 articles were reviewed, and studies were retained if they analyzed a health 

outcome (e.g., hospital visits, medication usage, or medication prescription), included pollen 

as a main topic of analysis, specified location of the pollen monitoring station (required for 

our analysis), reported original data, were peer-reviewed, and were written in English. 

Studies were further restricted to those examining trees, the growth form included in our 

field study, and to studies using daily pollen measurements as larger time steps (e.g., weekly 

or monthly) might have significantly lower ability to resolve health responses attributable to 

pollen. The 11 selected studies are provided in Table 1. Although limited, this sample size 

should be sufficient to assess the relevance and applicability of our results to exposure 

misclassification. For each of the 11 studies, we delineated the study area (generally a 

municipal area) and determined coordinates of the study locations using ArcGIS 10.3 (ESRI, 

Redlands, CA, USA). For the four studies using hospital or clinic data that did not report the 

hospital catchment area, the study area was defined by a radius of 5 km surrounding the 

hospital (excluding major water bodies), which is similar to average distances traveled in 
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urban areas (Buchmueller et al., 2006). Radii of 2 and 10 km were also evaluated. 

Temperatures were extracted for each study area and at the pollen station using methods 

detailed in the remote sensing section.

3 RESULTS

3.1 FLOWERING PHENOLOGY VARIATION

The timing of flowering among sites across Detroit differed substantially (Fig. 2) and 

significantly (SI 5). We also found substantial inter-individual variation in the timing of 

flowering, e.g., mature oak flowers were found between April 22 and May 16 (Fig. 2). The 

flowering period for individual oak trees varied from 4 – 10 days (SI 5); this is a coarse 

estimate because each individual was only observed twice a week.

3.2 FLOWERING PHENOLOGY, TEMPERATURE, AND ENVIRONMENT

The day of peak flowering for oaks at a site was strongly correlated to temperature, and the 

temperature metric with the highest correlation was February nighttime land surface 

temperature from the Terra satellite (R2 = 0.94, p < 0.0001; Fig. 3). Temperatures from other 

months and from the Aqua satellite also had strong relationships (SI 6) and provided 

qualitatively similar predictions of flowering phenology (data not shown). Average 

temperature over five and ten years were quite similar, although the five-year average had 

substantially higher variability (SI 6). Only single variable models were considered given the 

small sample size (9 sites) and the incremental gain in model fit with additional covariates, 

e.g., the “best” two-variable model included Terra night time temperatures in February and 

March and increased R2 to 0.96. The day of peak flowering had little association with 

impervious surface area at all spatial scales or with tree diameter (R2 < 0.1; SI 7). Red oaks 

tended to flower before white oaks, but their responses to temperature were similar (SI 8).

Using February night-time temperatures, we estimated peak flowering day for oak trees 

across the Detroit metropolitan region (Fig. 1, dashed isolines). February night-time 

temperature ranged from −10 – −4 °C (mean = −7.6 °C) throughout Detroit. Estimated peak 

flowering dates ranged from April 20 – May 13 (mean = May 3). February night 

temperatures in 17% of Detroit (by area) fell outside the range of temperatures at our 

measurement sites, thus requiring extrapolations from the data used. At the NAB station in 

Saint Claire Shores there was an excellent fit between predicted (May 11, based on 

temperature) and calculated day of peak flowering (May 12, based on field data from the 

census) as shown by the asterisk in Fig. 3 (note that this data point was not included in the 

linear regression).

For mulberry, the 22 monitored trees reached peak flowering between May 4 and May 20, 

with an average of May 14 (SI 9). May night-time temperature was the temperature metric 

that best predicted individual peak mulberry flowering time (R2 = 0.22, p < 0.05), which we 

used to estimate flowering time across the city (SI 9). Predicted peak flowering in Detroit 

ranged from days May 9 – May 25 (mean = May 15), but note that the relationship this is 

based on had low predictive power. Figures comparing NAB pollen concentrations and 

observed flowering phenology in Detroit are reported in SI 10.
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3.3 AIRBORNE POLLEN CONCENTRATIONS

Airborne pollen concentrations in Detroit were significantly correlated with estimated 

flowering at the collection site for both oak (R2 = 0.46, p < 0.001) and mulberry (R2 = 0.68, 

p < 0.0001; Fig. 4, panels A and B; comparisons for each pollen monitoring site are reported 

in SI 11). Correlations were strongest for oak when flowering was estimated at the exact site 

of pollen collection, but for mulberry the strongest correlation was for flowering within 5 km 

of the site (SI 12). Including a lag of 3 days in estimated flowering intensity improved the 

model fit for oak (R2 = 0.46, p < 0.0001 vs. R2 = 0.25, p < 0.001) but lags did not improve 

model fit for mulberry (SI 13). Absolute concentrations of oak pollen in Detroit averaged 

207 grains/m3 (range: 0.5 – 1,220 grains/m3) and peaked between April 26 and May 11 (SI 

14). Mulberry pollen in Detroit averaged 1,475 grains/m3 (range: 0 – 10,352 grains/m3) and 

was abundant between May 2 and May 18 (SI 14). Pollen concentrations at the NAB station 

were significantly correlated with active flowering (Fig. 4, panels C and D) for oak (R2 = 

0.61, p < 0.0001) and mulberry (R2 = 0.89, p < 0.0001). As for Detroit, active flowering had 

the most explanatory power at the same spatial scales (oak: 0 m, mulberry: 5 km) and with 

the same lags (oak: 3 days, mulberry: 0 days). The highest pollen concentrations of oak were 

measured at the NAB station on May 15 and May 13 (compared to a predicted peak day of 

flowering of May 11 without the lag or May 14 with the lag, and the estimate of May 12 

based on the local field census). For mulberry, the predicted day of peak flowering at the 

NAB station was May 25 but peak pollen concentrations were measured at the NAB station 

on May 17 (not including the 5 km buffer). While these analyses account for some spatial 

differences in pollen levels (e.g., by scaling to the site maximum), they do not address 

effects of wind speed, wind direction, temperature, precipitation, and possibly other 

variables that varied during the sampling period (SI 15). While many variables can affect the 

relationship between airborne pollen and flowering time, Fig. 4 suggests that maximum 

airborne pollen concentrations are most likely when flowers are mature. The figure 

illustrates this relationship using several different curves.

3.4 EVALUATION OF POLLEN MEASUREMENTS IN THE LITERATURE

Table 1 provides differences in temperature between study locations and pollen stations in 

the 10 selected epidemiological studies of tree pollen. The range of temperatures within 

study areas ranged from 2.7 – 13.8° C (average = 5.0° C). The proportion of study area 

within ±1° C of the pollen counting station (an equivalent of ± 4 days for oak flowering in 

our study) ranged from 0 – 90 % (average = 55 %). Changing the size of the study area 

radius (for the four studies that did not provide this) to 2 and 10 km changed the across-

study average proportion of study area within 1° C to 55 % (2 km) and 50 % (10 km); more 

details on temperatures at those two distances are included in SI 16. Within studies, the 

difference in temperature between the station and the mean of the study area ranged from 

−0.9 to 2.3° C (mean of absolute values = 1.0° C). Cooler temperatures at the study area 

compared to at the pollen counting station would lead to later than expected flowering, 

whereas warmer temperatures at the study area compared to the pollen station would lead to 

earlier than expected flowering. Lags or average pollen over multiple days was used in all 

but two of the studies (Jariwala et al., 2014; X. Wang et al., 2017). The lags and day 

averages extended as long as 10 days before the health outcome was measured (Guilbert et 

al., 2016); no studies used leads.
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4 DISCUSSION

4.1 TEMPERATURE AND PHENOLOGY

Oak floral phenology is well predicted by temperature (Fu et al., 2012; Massetti et al., 2015; 

Mimet et al., 2009). Early spring temperatures are especially important determinants of oak 

tree flowering phenology in Eastern North America (Gerst et al., 2017), and others have 

reported strong associations between February and March temperatures and tree flowering 

time (Chmielewski and Rotzer, 2001; Fitter et al., 1995). Plant phenology responds 

differently to temperature at different times of day (Kalcsits et al., 2009; Lu et al., 2006; Yin 

et al., 1996), which may explain the relative predictive power of the temperature metrics 

(e.g., temperature measured at 1:30 vs. 22:30), but the sensitivity of oak phenology to these 

differences is unknown. The mean phenological responses of oak trees to temperature are 

consistent between our study (4-day shift in flowering per degree Celsius; hereafter referred 

to as days °C−1) and other studies: 4.2 days °C−1 (Menzel, 2003, based on time series from 

many locations), 4.1 – 4.4 days °C−1 (Polgar et al., 2014, based on time series from one 

location) 6.5 days °C−1 (Vitasse et al., 2009, based on time series from many locations). This 

result is similar to the average phenological response to temperature for many common 

woody plants in eastern North American, 5 days °C−1 (Polgar et al. 2014). Temperature 

variation attributed to the Detroit River may affect the timing of phenology and explain why 

impervious surface area was not a strong predictor of phenology, contrary to Massetti et al., 

(2015) where a strong relationship between impervious surface area and flowering time was 

found. In our studyhe correlation between February night temperature and impervious 

surface area was weak. While we studied a single year, the underlying urban heat island 

effect that causes these patterns is relatively stable across years (Liu et al., 2007; Wilby et 

al., 2011). Similarly, while the date of budburst can vary substantially among years, the 

order in which particular trees develop within a year is very consistent (Cole and Sheldon, 

2017; Wesołowski and Rowiński, 2006), so these intra-urban patterns are expected to be 

consistent across years. Individual tree phenology within sites was unpredictable, potentially 

due to unmeasured variables such as tree genetics and microclimates (Fotiou et al., 2011). 

High inter-tree variability and the low number of monitored mulberry trees likely explains 

why temperature was not a better predictor of mulberry phenology.

4.2 AIRBORNE POLLEN

Airborne pollen concentrations in Detroit were predicted by estimated flowering time for 

oak trees (R2 = 0.46) and mulberry (R2 = 0.70). Thus, intra-urban differences in flowering 

phenology result in systematic differences in airborne pollen concentrations, which can be 

observed with even intermittent pollen sampling. The true relationships between predicted 

flowering time and airborne pollen concentrations are expected to be stronger than reported 

here, given that we do not account for the substantial inter-daily variation in airborne pollen 

caused by meteorology (Hamid et al., 2014; Martin et al., 2010; Menut et al., 2014; Negrini 

et al., 2011). Daily weather conditions also would act to synchronize anther anthesis and 

pollen release, and therefore airborne pollen concentrations at the NAB station and at 

sampling locations in Detroit, but the importance of this process appears low compared to 

temporal differences in floral maturation. Although a direct comparison of pollen 

measurements in Detroit and the NAB station is limited due to differences in sampling time 
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(3 hours vs 24 hours), sampler height (1.5 m vs. 7 m), and method (Rotorod vs Burkard), it 

is noteworthy how poorly these time series align; in linear regressions NAB pollen 

measurements explained very little variation in pollen measurements in Detroit for oak (R2 = 

0.07) and mulberry (R2 = 0.04). The underlying relationships between floral phenology and 

airborne pollen concentrations may also be somewhat masked by limitations of the pollen 

sampling methodology (e.g., scaling pollen concentrations within each site, sampling for 

only three hours a day, and using predictions of flowering rather than observed flowering). 

Introducing a lag in flowering time of 3 days substantially improved the ability of the 

phenological model to predict airborne oak pollen concentrations in both Detroit (R2 = 0.46 

vs. R2 = 0.25) and at the NAB station (R2 = 0.61 vs. R2 = 0.34). This suggests that the 

monitored oak trees in Detroit flowered systematically earlier than unmonitored trees; this 

fits with other observations of earlier development for trees near more pavement (Chen et 

al., 2016). Ideally, future work will include congeneric tree abundance as a covariate; 

anecdotally, sites with the highest oak pollen concentrations were surrounded by oak trees. 

Future studies would benefit from 24 hour sampling periods as pollen concentrations can 

vary substantially on hourly time scales (Norris-Hill and Emberlin, 1991; Wang and Yang, 

2009). Even with these pollen sampling limitations, there were strong associations between 

estimated flowering and airborne pollen at the NAB station for oak and mulberry 

(respectively, R2 = 0.61 and R2 = 0.89), which corroborates the relationships found among 

temperature, flowering, and airborne pollen concentrations.

Airborne pollen concentrations are determined by pollen inputs from both local and external 

plants; the larger the ratio of local to external pollen, the more intra-urban differences in 

flowering phenology will matter. Pollen input from external regions depends on the quantity 

of pollen produced and its transport to the study area. Oaks are very abundant in forests 

across much of the United States and are expected to be some of the most prolific producers 

of pollen on a national scale (Wozniak and Steiner, 2017), potentially leading to relatively 

high external inputs of oak pollen. In cities, absolute oak abundance is low to moderate 

(Pennington et al., 2010; White et al., 2014; Woodall et al., 2010), potentially resulting in a 

relatively lower ratio of local to external pollen compared to other genera. Our results show 

evidence of some long-distance transport of pollen (i.e., the moderate concentrations of oak 

pollen recorded at the NAB station from April 10 to 17 were well before local flowering 

began). In contrast, pollen from genera that tend towards urban areas, e.g., mulberry 

(Pennington et al., 2010; White et al., 2014; Woodall et al., 2010), may be driven more by 

local release of pollen. This could explain why mulberry pollen in Detroit was better 

predicted by estimated local flowering than oak pollen was. Overall though, peak pollen 

concentrations in Detroit for both oaks and mulberries are best explained in the context of 

local pollen release.

Relatively large external pollen inputs could overwrite local differences in pollen release; 

evidence for this could potentially be detected by mismatches between floral phenology and 

airborne pollen. In general though, local phenology and airborne pollen tend to be strongly 

correlated (Hidalgo et al., 2003; Jato et al., 2002; Latorre, 1999; Latorre and Bianchi, 1998; 

Veriankaite et al., 2010). Observed mismatches between floral phenology and pollen are 

likely caused by long-distance pollen dispersal overwhelming the signal of local pollen 

release (Latorre, 1999; Latorre and Bianchi, 1998), but alternate processes such as 
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insufficient phenological monitoring of local populations (i.e., unobserved flowering) or 

unmeasured intra-genus variation in flowering phenology (Fairley and Batchelder, 1986; 

Latorre and Bianchi, 1998) could lead to the same pattern. Observed floral phenology tends 

to match local pollen concentrations, implying that local pollen production is generally more 

important than external inputs for tree pollen at breathing height. The relative importance of 

local pollen is also expected to be affected by the sampling height (Fernández-Rodríguez et 

al., 2014; Soldevilla et al., 1995; Spieksma et al., 2000), but monitoring station altitudes (5 – 

15 m according to NAB guidelines or 15 – 20 m according to European Aeroallergen 

Network guidelines) often are not substantially higher than tree canopies (e.g., oak trees in 

our study system frequently reach 25 m). Thus, measurements of tree pollen as used in 

epidemiological studies are expected to be strongly influenced by local trees and may not be 

representative of a broader area.

4.3 IMPLICATIONS FOR EPIDEMIOLOGICAL STUDIES OF ALLERGENIC POLLEN

Time series of flowering phenology and relative pollen concentrations varied substantially 

across Detroit. This highlights the problem with the standard practice of analyzing health 

outcomes throughout a heterogeneous metropolitan area or region based on measurements of 

pollen concentrations from a single location. In this case, a typical allergenic pollen 

epidemiological analysis would have falsely assumed that mulberry pollen concentrations in 

Detroit were negligible until May 16 (the beginning of peak pollen concentrations at the 

NAB station; SI 10). In fact, pollen measurements in Detroit show very high mulberry pollen 

concentrations in Detroit as early as May 2, and many sites had declining pollen 

concentrations by the time of peak pollen concentrations at the NAB station. This 

measurement error could have incorrectly led to the conclusion that mulberry pollen is a less 

important allergen than it is. Given that Juglans and grasses flower soon after oaks and 

mulberries, it would be easy to confound their effects with oaks and mulberry.

The large temperature differences between pollen collection locations and substantial 

proportions of study areas found in six of the eleven reviewed studies (Darrow et al., 2012; 

Gleason et al., 2014; Ito et al., 2015; Jariwala et al., 2014; Konishi et al., 2014; Qin et al., 

2013) may have resulted in exposure measurement errors similar to estimates described for 

Detroit. Most studies reviewed here (7 out of 11) included time lags in the analyses in order 

to account for delays between exposures and health outcomes. This practice could also help 

correct for directional bias between pollen counting stations and the study area. However, 

choosing universal time lags (usually of up to a few days) will not be able to account for 

large differences within a study area. This is problematic in large study regions and in study 

areas that have strong temperature gradients (e.g., coastal cities). Although none of the 

studies we reviewed here did so, our findings suggest that lead effects should be investigated 

in models to account for pollen stations that are phenologically behind study areas, as is the 

case in Detroit, New York City (Ito et al., 2015; Jariwala et al., 2014), and Tokyo (Konishi et 

al., 2014). Large temperature differences between the station and the study area could result 

in differences in pollen composition, potentially confounding associations between 

particular tree genera and health outcomes (e.g., Ito et al. 2015). In general, the temporal 

mismatches we document here are likely to be especially important for trees, which tend to 

have much shorter flowering periods than weeds and grasses (Hepworth et al., 1983).
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HIGHLIGHTS

• Intra-urban temperature gradients cause large differences in tree flowering 

time

• Flowering time predicts airborne pollen concentrations

• Epidemiological investigations of allergenic pollen may experience 

substantial measurement error due to differences in temperature, flowering 

time, and airborne pollen within cities
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Fig. 1. 
Pollen collection sites (black dots), phenology monitoring sites (hollow symbols), and the 

NAB station (*) are shown. The city of Detroit’s boundary is shown in black. Colors show 

average February night time land surface temperatures (°C) in Detroit. Dashed lines show 1 

week differences in flowzering time, based on model predictions.
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Fig. 2. 
Flowering period for monitored oak trees in each site (gray lines and symbols) and across all 

sites (thick black line).
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Fig. 3. 
Peak flowering for all monitored oaks (large symbols: site means, dots: individual trees) as a 

function of average February night-time temperature. Estimated day of peak flowering for 

oak trees near the pollen counting station is also displayed (asterisk), but not included in the 

linear regression.
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Fig. 4. 
Airborne oak pollen in Detroit and at the NAB station as a function of active flowers. Each 

point represents pollen collected at a particular site and day. A three-day lag in flowering is 

included for oaks and a 5 km buffer for flowering is included for mulberry.
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Table. 1:

Selected studies and temperature variability within them. The study area is the geographic area from where 

health outcomes were reported (* denotes studies that used health outcomes from particular hospital(s); 

calculation of the study area in these cases is described in the text). The calculation of the difference between 

the mean temperature of the study area and the pollen monitoring station used absolute values. Temperature is 

February night land surface temperature from Modis (Terra satellite).

Study

Temperature of study area (mean and 
range, ° C)

Temperature of pollen 
monitoring station (° 

C)

Difference between 
study area and 

station (° C)

Area within 1° 
C of station (%)

Darrow et al. 2012 3.6 (1.5 – 7.2) 4.5 −0.9 57

Gleason et al. 2014 −3.3 (−9.3 – 4.6) −3.4 0.2 29

Guilbert et al. 2016 −0.6 (−2.1 – 0.5) −0.2 −0.3 87

Ito et al. 2015 −1.9 (−3.8 – 2.9) −4.5 2.7 0

Jariwala et al. 2014* −2.3 (−3.3 – −0.8) −4.5 2.3 0

Konishi et al. 2014* 3.8 (2.4 – 5.5) 1.6 2.2 1

Osborne et al. 2017 0.7 (−1.9 – 3.1) 1.3 −0.6 71

Qin et al. 2013 −4.2 (−6.0 – 0.7) −2.5 −1.7 10

Sakata et al. 2017* 3.7 (2.5 – 6.0) 3.3 0.4 84

Sun et al. 2016 2.9 (1.2 – 5.9) 3.0 −0.1 90

Wang et al. 2017* −1.5 (−3.3 – −0.6) −0.9 −0.5 78

mean 0.4 −0.2 1.1 46
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