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Abstract

Mitochondrial ATP synthase produces the majority of ATP in eukaryotic cells and its dimerization 

is necessary to create the inner membrane folds, or cristae, characteristic of mitochondria. Proton 

translocation through the membrane-embedded F0 region turns the rotor that drives ATP synthesis 

in the soluble F1 region. While crystal structures of the F1 region have illustrated how rotation 

leads to ATP synthesis, the lack of an experimental atomic model for the FO region has prevented 

understanding how proton translocation produces rotation. We determined the structure of the 

dimeric FO complex from Saccharomyces cerevisiae at 3.6 Å resolution by electron 

cryomicroscopy. The structure reveals the proton path through the complex, how the complex 

dimerizes, and suggests how it bends the membrane to produce cristae.

One sentence summary

The structure of mitochondrial ATP synthase FO complex explains dimerization, membrane 

bending, and proton translocation.

During mitochondrial respiration, the protein complexes of the electron transport chain 

pump protons from the mitochondrial matrix to the intermembrane space (IMS). The 

resulting proton motive force across the mitochondrial inner membrane powers the 

adenosine triphosphate (ATP) synthase, a membrane-embedded multi-protein complex. 

Saccharomyces cerevisiae ATP synthase has a subunit composition similar to the 

mammalian enzyme (1). The complex comprises a soluble catalytic F1 region consisting of 

subunits α3β3γδε and a membrane-embedded FO region containing subunits a, b, e, f, g, i/j, 

k, l, 8, and a ring of ten c-subunits (Fig. 1A). During ATP synthesis, proton translocation 

from the IMS to the matrix through the FO region, at the interface of subunit a and the c-

ring, drives rotation of the central rotor subcomplex (subunits γδεc10). This rotation induces 

conformational changes in the α3β3 hexamer of the F1 region that lead to synthesis of ATP 

from adenosine diphosphate (ADP) and phosphate (2). Proton translocation is thought to 
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occur through two offset half-channels, one opening to the IMS and the other to the 

mitochondrial matrix (3, 4). Protons from the IMS half-channel neutralize conserved Glu 

residues in the c10-ring (E59 in S. cerevisiae), travel through the lipid bilayer as the ring 

rotates, and are delivered to the matrix half-channel. The α3β3 complex is prevented from 

rotating along with the central rotor by the peripheral stalk subcomplex, consisting of 

subunits OSCP, d, h, and the soluble region of subunit b. Mammals lack subunits i/j, k, and l, 

but possess the additional subunits DAPIT and 6.8L (5). Mitochondrial ATP synthase 

complexes assemble into long ribbons of dimers (6, 7) that, due to the presence of a domain 

containing subunits e and g in the FO region, bend the mitochondrial inner membrane (7–

11). These bends are needed to form cristae, highly folded membrane structures that 

maximize the surface area available for respiration, giving mitochondria their characteristic 

appearance (6, 7). X-ray crystallography has revealed the atomic structures of most of the 

soluble subunits of mitochondrial and bacterial ATP synthase (2). However, most of the 

membrane-embedded region of the complex (subunits a, b, e, f, g, i/j, k, l, and 8) has resisted 

high-resolution structural characterization. Despite recent advances, the resolution in 

electron cryomicroscopy (cryo-EM) maps of intact ATP synthases has been insufficient to 

allow construction of atomic models (9,12–15).

Cryo-EM has shown that rotary ATPases stop in different rotational states when extracted 

from membranes (9, 13, 15, 16). We hypothesized that this conformational heterogeneity 

limits cryo-EM resolution and that analysis of dissociated FO regions would reduce 

heterogeneity, improve resolution, and enable construction of an experimental atomic model. 

A similar approach was successful with the related Vo complex from the S. cerevisiae V-type 

ATPase (17). However, while yeast V-ATPases dissociate in response to glucose depletion 

(18), ATP synthases do not offer a physiological route to separating the F1 region from the 

FO region. Therefore, we used sodium bromide to dissociate the F1 regions from inside-out 

submitochondrial particles (19). Similar to the natural product digitonin (9), we found that 

the recently described synthetic detergent glyco-diosgenin (GDN) (20) extracts the dimeric 

form of ATP synthase from yeast mitochondrial membranes for both the intact ATP synthase 

and the FO complex (Fig. 1B). Cryo-EM of the FO complex allowed for determination of the 

structure to 3.6 Å resolution (Fig. 1C to E, Fig. S1). Side chain detail could be seen for 

subunits a, f, i/j, 8, the transmembrane α-helix of k, the c-subunits, the transmembrane α-

helices of subunit b, and part of subunit d, allowing construction of atomic models for these 

subunits (Fig. S2, Table S1). Density for subunits e and g allowed construction of poly-

alanine models for these proteins. The recently identified subunit l, which has no known 

function and a sequence similar to subunit k (1), could not be identified in the cryo-EM map. 

Together with existing atomic models of ATP synthase subcomplexes, the Fo complex 

structure determined here allows for construction of a nearly complete ‘mosaic model’ (2) of 

mitochondrial ATP synthase (Fig. S3).

The core subunits of the FO complex, found in both mitochondria and bacteria, are subunits 

a, b, and c. The fold observed for subunit a (Fig. 2A and B, green) matches the fold deduced 

from a low-resolution map of the bovine enzyme combined with evolutionary covariance 

analysis (13). The protein contains five transmembrane α-helices and an amphipathic α-

helix (α-helix #2) that lies along the matrix surface of the detergent micelle. α-helices 3 and 

4, and 5 and 6 form transmembrane hairpins, with the latter being the long and tilted hairpin 
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that is characteristic of rotary ATPases (12, 13, 15, 16, 21). The simpler bacterial ATP 

synthase contains two copies of subunit b, each with a single N-terminal transmembrane α-

helix and an elongated C-terminal region that constitutes most of the peripheral stalk (15). In 

contrast, the mitochondrial enzyme has a single subunit b with two N-terminal 

transmembrane α-helices. The two transmembrane α-helices of the mitochondrial subunit 

do not pack against each other, as suggested previously (13, 9,14). Instead, subunit b begins 

with a short, presumably amphipathic, α-helix and a transmembrane α-helix that form a 

domain with subunits e and g (Fig. 2A, enclosed by a dashed line). A short loop connects 

this domain to the second transmembrane α-helix of subunit b, which packs against subunit 

a. The soluble C-terminal portion of subunit b enters the mitochondrial matrix as part of the 

peripheral stalk (22, 23) and is mostly disordered in the isolated FO complex.

Subunits f and 8, which are essential for mitochondrial respiration, previously had no clear 

function in the ATP synthase. Subunit f (Fig. 2A and C, yellow) consists of a soluble N-

terminal sequence of ~50 residues that binds to the base of the peripheral stalk, followed by 

a single transmembrane α-helix. The transmembrane α-helix of subunit f was mistaken for 

the first transmembrane α-helix of subunit b in lower-resolution cryo-EM studies of the 

bovine (13) and yeast (9, 14) enzymes. Subunit 8 (Fig. 2A and C, pink), known as A6L in 

mammals, is almost entirely α-helical, with the N-terminal part of the helix embedded in the 

membrane in contact with the first α-helix of subunit a and the C-terminal 14 residues 

contributing to the base of the peripheral stalk. Subunits f and 8 can therefore be assigned as 

components of the peripheral stalk. The C-terminal 56 residues of subunit d (Fig. 2A and C, 

brown), which were absent from earlier crystal structures (22, 23), wrap around subunit 8 

and subunit b as they leave the detergent micelle to clamp together the base of the peripheral 

stalk. The structure shows that the base of the peripheral stalk in the mitochondrial ATP 

synthase has a significantly more complicated arrangement of subunits than predicted (22, 

23) or than the bacterial enzyme (15).

Unlike the dimeric ATP synthase from Polytomella sp., which is held together by subunits 

specific to algae (12), the yeast dimer is held together by subunits a, i/j, k, and e (Fig 3A to 

C). The interface formed by subunit i/j, which was mistaken for subunit f in a lower-

resolution structure (9), occurs through two short stretches of ~10 residues that pack together 

in the dimer (Fig. 3A and B, magenta). The lack of homologues for subunit i/j in mammals 

could explain why yeast ATP synthase dimers are more stable than mammalian dimers (9). 

Unexpectedly, subunit a also forms a dimer interface, with each monomer contributing two 

strands of a four-stranded planar structure (Fig. 3A and B, green) with one hydrophobic 

surface and one hydrophilic surface. This motif superficially resembles an antiparallel β-

sheet, with amino acid side chains pointing away from the plane of the motif. The two 

dimerization motifs are stacked together, with the subunit i/j motif in the IMS and the 

subunit a motif on the IMS surface of the detergent micelle. In an alignment of subunit a 

sequences from different species (9), the dimerization motif begins just four residues N-

terminal of the first residue in the bovine and human subunit a, which have significantly 

shorter N-terminal regions than the yeast subunit a. Consequently, the mammalian subunit a 

dimerization motif likely begins immediately before the subunit’s first transmembrane α-

helix. Subunits k and e contribute the final monomer-monomer interaction. Subunit k 

possesses an N-terminal transmembrane α-helix in the map that is well ordered (Fig. 2, 
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orange). Inspection of an unsharpened version of the map, which allows visualization of 

lower-resolution features, shows additional density from subunit k (Fig. 3C, orange). This 

density continues into the IMS to contact subunit e, which extends into the IMS as an α-

helix (Fig. 2A and 3C, blue). The lack of this interaction in the bovine ATP synthase 

monomer may explain why the extended IMS α-helix of subunit e is in different orientations 

in the monomeric bovine ATP synthase and intact dimeric yeast ATP synthase (13, 9). It has 

been proposed that dissociation of ATP synthase dimers triggers opening of the 

mitochondrial permeability transition pore, which can initiate regulated cell death (24). 

Consequently, the dimer contacts described above warrant further investigation for their role 

in this phenomenon.

The unusually-shaped domain containing subunits e, g, and the N-terminal ~50 residues of 

subunit b (Fig. 3D and E) is responsible for bending the mitochondrial inner membrane (11, 

25). Subunit e (Fig. 3D and E, blue) begins with an N-terminal transmembrane α-helix that 

continues ~40 Å into the IMS. Although this feature is conserved from yeast to mammals, it 

does not appear to have a role in proton translocation or rotary catalysis. Subunit g has two 

N-terminal α-helices that lie on the matrix surface of the detergent micelle and a single 

transmembrane α-helix that interacts with subunit e, probably via the conserved GXXXG 

motifs of the two proteins (26, 27). The curved structure of the domain formed by subunits e, 

g, and b offers an explanation for how subunits e and g bend the lipid bilayer and why 

deletion of the genes for these subunits in yeast leads to defects in cristae formation (8). The 

combination of membrane-surface and membrane-embedded α-helices from these subunits, 

with further support from subunit k, creates a curved structure that enforces curvature of the 

lipid bilayer itself. The membrane surface α-helices of subunits g and b are reminiscent of 

the structure of BAR domains, which also induce curvature in lipid bilayers through 

amphipathic α-helices (28).

Proton translocation in ATP synthase involves subunit a and the c-ring. Remarkably, the c10-

ring has a well-defined orientation relative to subunit a (Fig. 4), at least after the rapid 

cooling that occurs during cryo-EM specimen preparation. This constrained orientation 

shows that the highly tilted α-helices of subunit a maintain a tight interaction with the ring, 

although the rotor must still be able to turn during ATP synthesis. Two pores are visible in 

the FO complex that correspond to the two half-channels required for proton translocation 

(3, 4). A cavity on the IMS side of the detergent micelle behind the tilted α-helices 5 and 6 

forms the IMS half-channel (Fig. 4A, left, circled in red) while an opening on the matrix 

side of the detergent micelle between subunit a and the c-ring forms the matrix half-channel 

(Fig. 4A, right, circled in red) (13, 12, 17). The positions of these half-channels are 

consistent with the proton translocation path proposed from lower-resolution studies of 

rotary ATPases (13, 9, 12, 16, 17, 21). R176 from subunit a, the only absolutely-required 

residue of the subunit for enzyme activity (29, 30), extends toward the c-ring (Fig. 4B). X-

ray crystallography and simulations of isolated c-rings have shown that under deprotonating 

conditions the proton-carrying Glu residues adopt an extended conformation with their 

carboxyl groups facing away from the center of the c-ring (31). Under protonating 

conditions these residues fold toward the center of the ring in a conformation known as the 

proton-locked state (32). Although Glu and Asp residues are particularly sensitive to 

radiation damage and may have low density in cryo-EM maps (33), these residues often 
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remain apparent (34, 35) and the E59 residues closest to the c10-ring are readily visible in 

the map (Fig. 4B). From the cryo-EM map (Fig. 4B), the conserved E59 residues of the two 

c-subunits nearest to R176 appear to be in deprotonated (negatively charged) conformations 

(31) but too far from Ri76 for either Glu to form a direct salt bridge with R176. The 

remaining c-subunits appear to be in the proton-bound (neutral) conformation (Fig. 4B). 

Consequently, the resting conformation of the c-ring in the FO structure differs subtly from 

the V-type enzyme where the Glu residue from one of the c-subunits was close enough to 

interact with the conserved Arg (17).

The surface of subunit a that contacts the c-ring is mostly hydrophobic with a patch of 

positive charge from R176 (Fig. 4C, blue), and two patches of negative charge (red) at the 

expected positions of the half-channels. Near the matrix surface, these negative patches are 

due to E162 and D244, while near the IMS surface the negative charge is due to E223, all of 

which are conserved (9) and likely pass protons between the half-channels and the Glu 

residues of the c-ring. Numerous other conserved and functionally characterized residues of 

subunit a surround the locations of the two half-channels (Fig. S4). The positions of the half-

channels and the orientations of the Arg and Glu residues support an emerging model for 

proton translocation: donation of a proton from the aqueous IMS half-channel via E223 

neutralizes the E59 residue of a c-subunit. Neutralization of the Glu residue allows the c-ring 

to rotate due to Brownian motion (3, 4), counter clockwise when viewed from F1 towards FO 

(Fig. 4D), placing the residue in the hydrophobic environment of the lipid bilayer. Rotation 

of the c-ring brings a neutral E59 residue from a different c-subunit into the matrix half-

channel where it is stripped of its proton by R176 of subunit a. This proton is accepted by 

E162 or D244, which in turn lose the proton to the mitochondrial matrix. Loss of the proton 

from the E59 residue in the matrix half-channel resets the motor for the next proton. The 

directionality and force of rotation in this model is governed by the difference in probability 

of a c-subunit binding a proton from either half-channel, which depends on the ΔG of proton 

translocation established by the proton motive force.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overall structure of the FO complex.
A, Cartoon for the ATP synthase dimer with subunits found in the FO region outlined in 

black. B, The detergent glyco-diosgenin (GDN) extracts dimeric S. cerevisiae ATP synthase 

from mitochondrial membranes intact (left) or as the FO complex after sodium bromide 

treatment of the membranes (right). Scale bar, 25 Å. C, Example of map density that 

allowed construction of an atomic model (subunit a, residues A168 to F196 and P212 to 

L242). Scale bars, 5 Å. Top (D) and side (E) views of the FO dimer reveal the arrangement 

of subunits. One monomer is outlined with a dashed line in part D. Scale bar, 25 Å.
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Figure 2. Subunit folds for individual subunits.
A, Matrix view of the FO complex monomer structure, with the domain formed by subunits 

e and g, and the N-terminal α-helices of subunit b enclosed by a dashed line. B, Fold of 

subunit a. C, Side view of the FO monomer showing that subunits 8, f, and b, contribute to 

the base of the peripheral stalk, with subunit d acting as a clip. Scale bar, 25 Å.
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Figure 3. Dimerization and membrane bending.
A, Subunits a and i/j contribute dimerization motifs (enlarged in B). C, The unsharpened 

map shows that subunit k extends into the IMS to contact subunit e. D and E, Together, 

subunits b, e, g, and k create the structure that bends the lipid bilayer by almost 90°. The 

dashed orange line indicates the full length of subunit k. Scale bars, 25 Å.
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Figure 4. Proton translocation mechanism.
A, The unsharpened map reveals cavities in the complex that correspond to the IMS (left) 

and matrix (right) half-channels. B, The E59 residues of the two c-subunits nearest to R176 

are in extended (deprotonated) conformations. The remaining E59 residues are in proton-

bound conformations. C, There are two patches of negative charge on subunit a (left) where 

it interacts with the c-ring (right) that correspond with expected positions of the IMS and 

matrix half-channels. D, During proton translocation, protons follow the path indicated by 

the yellow line (left), entering the IMS half-channel behind transmembrane α-helices 5 and 

6 of subunit a and exiting through the matrix half-channel between α-helices 5 and 6 and the 

c-ring (right). Scale bars, 25 Å.
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