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Summary

Understanding the molecular programs that guide differentiation during development is a major 

challenge. Here, we introduce Waddington-OT, an approach for studying developmental time 

courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. 

We apply the method to reconstruct the landscape of reprogramming from 315,000 scRNA-seq 

profiles, collected at half-day intervals across 18 days. The results reveal a wider range of 

developmental programs than previously characterized. Cells gradually adopt either a terminal 

stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations 

related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer 

subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates, 

and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming 

efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a 

framework applicable to diverse temporal processes in biology.

Graphical Abstract
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Introduction

Waddington introduced two metaphors that shaped biological thinking about cellular 

differentiation: first, trains moving along branching railroad tracks and, later, marbles rolling 

through a developmental landscape (Waddington, 1936, 1957). Studying the actual 

landscapes, fates and trajectories associated with cellular differentiation and de-

differentiation — in development, physiological responses, and reprogramming — requires 

us to answer questions such as: What classes of cells are present at each stage? What was 

their origin at earlier stages? What are their likely fates at later stages? What regulatory 

programs control their dynamics?

Approaches based on bulk analysis of cell populations are not well suited to address these 

questions, because they do not provide general solutions to two challenges: discovering cell 

classes in a population and tracing the development of each class.

The first challenge has been largely solved by the advent of single-cell RNA-Seq (scRNA-

seq) (Tanay and Regev, 2017). The second remains a work-in-progress. Because scRNA-seq 

destroys cells in the course of recording their profiles, one cannot follow expression the 

same cell and its direct descendants across time. While various approaches can record 

information about cell lineage, they currently provide only very limited information about a 

cell’s state at earlier time points (Kester and van Oudenaarden, 2018).

Comprehensive studies of cell trajectories thus rely heavily on computational approaches to 

connect discrete ‘snapshots’ into continuous ‘movies.’ Pioneering work to infer trajectories 

(Saelens et al., 2018) has shed light on various biological systems, including whole-

organism development (Farrell et al., 2018; Wagner et al., 2018), but many important 

challenges remain. First, with few exceptions, most methods do not explicitly leverage 

temporal information (Table S6). Historically, most were designed to extract information 

about stationary processes, such as adult stem cell differentiation, in which all stages exist 

simultaneously. However, time-courses are becoming commonplace. Second, many methods 

model trajectories in terms of graph theory, which imposes strong constraints on the model, 

such as one-dimensional trajectories (“edges”) and zero-dimensional branch points 

(“nodes”). Thus, gradual divergence of fates is not captured well by these models. Third, few 

methods account for cellular growth and death during development (Table S6).

Here, we describe a conceptual framework, implemented in a method called Waddington-

OT, that aims to capture the notion that cells at any time are drawn from a probability 

distribution in gene-expression space, and each cell has a distribution of both probable 

origins and probable fates (Figure 1). It uses scRNA-seq data collected across a time-course 

to infer how these probability distributions evolve over time, by using the mathematical 

approach of Optimal Transport (OT).

We apply this framework to the challenge of understanding cellular reprogramming, 

following transient overexpression of a set of transcription factors (TFs) (Takahashi and 

Yamanaka, 2016). We aim to address questions such as: What classes of cells arise in 

reprogramming? What are the developmental paths that lead to reprogramming and to any 

alternative fates? Which cell intrinsic factors and cell-cell interactions drive progress along 
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these paths? Can the information gleaned be used to improve the efficiency of 

reprogramming toward a desired destination?

Reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs) (Takahashi and 

Yamanaka, 2006) has been largely characterized to date by fate-tracing of cells based on a 

handful of markers, together with genomic profiling studies of bulk populations (O’Malley 

et al., 2013; Polo et al., 2012). Some studies (Mikkelsen et al., 2008; O’Malley et al., 2013; 

Parenti et al., 2016) have noted strong upregulation of several lineage-specific genes from 

unrelated lineages (e.g., neurons), but it has been unclear whether this reflects coherent 

differentiation of specific cell types or disorganized gene expression (Kim et al., 2015; 

Mikkelsen et al., 2008). A recent study (Zhao et al., 2018) profiled ~36,000 cells with 

scRNA-seq in chemical rather than TF-based reprogramming, but identified only a single 

bifurcation event.

Analyzing >315,000 cells sampled densely across 18 days of reprogramming mouse 

embryonic fibroblasts (MEFs) into iPSCs, we find that reprogramming unleashes a much 

wider range of developmental programs and subprograms than previously characterized. 

Using Waddington-OT to reconstruct the landscape of differentiation trajectories and 

intermediate states that give rise to these diverse fates, we describe a gradual transition to 

either stroma-like cells or a mesenchymal-to-epithelial transition (MET) state. Trajectories 

emerge from the MET state to iPSCs, extraembryonic cells and neural cells. Based on the 

trajectories, we infer TFs predictive of various fates and suggest paracrine interactions 

between the stromal cells and other cell types. We experimentally showed that two top 

predictions indeed enhance reprogramming efficiency.

Results

Reconstruction of probabilistic trajectories by Optimal Transport

Our goal is to learn the relationship between ancestor cells at one time point and descendant 

cells at another time point: given that a cell has a specific expression profile at one time 

point, where will its descendants likely be at a later time point and where are its likely 

ancestors at an earlier time point? We model a differentiating population of cells as a time-

varying probability distribution (i.e., stochastic process) on a high-dimensional expression 

space. By sampling this probability distribution ℙt at various time points t, we wish to infer 

how the differentiation process evolves over time (Figure 1A). From a large number of cells 

at a given time point (Figure 1B), we can approximate the distribution at that time point, but, 

because different cells are sampled independently at different time points, we lose the joint 

distribution of expression between pairs of time points, called temporal coupling. Absent 

any constraint on cellular transitions, we cannot infer the temporal coupling, but if we 

assume that cells move short distances over short time periods, then we can infer the 

temporal coupling by using the mathematical technique of optimal transport (Figure 1A, 

Methods S1).

Optimal transport was originally developed to redistribute earth for the purpose of building 

fortifications with minimal work (Monge, 1781) and soon applied by Napoleon in Egypt. 

Kantorovich generalized it to identify an optimal coupling of probability distributions via 
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linear programming (Kantorovich, 1942), minimizing the total squared distance that earth 

travels, subject to conservation of mass constraints.

However, the application to cells differs in one key respect: unlike earth, cells can 

proliferate. We therefore modify the classical conservation of mass constraints to 

accommodate cell growth and death (Methods S1). Leveraging techniques from unbalanced 

transport (Chizat et al., 2018), we estimate cellular growth and death rates based on prior 

estimates from signatures of cellular proliferation and apoptosis (Methods S1, STAR 

Methods).

Using optimal transport, we calculate couplings between consecutive time points and then 

infer couplings over longer time-intervals by composing the transport maps between every 

pair of consecutive intermediate time points. The optimal-transport calculation (i) implicitly 

assumes that a cell’s fate depends on its current position but not on its previous history (i.e., 

the stochastic process is Markov) and (ii) captures only the time-varying components of the 

distribution (see Discussion).

We define trajectories in terms of “descendant distributions” and “ancestor distributions”. 

For any set C of cells at time ti, its “descendant distribution” at a later time ti+1 is the mass 
distribution over all cells at time ti+1 given by transporting C according to the temporal 

coupling (Figure 1C). Conversely, its “ancestor distribution” at an earlier time ti−1 is the 

mass distribution over all cells at time ti−1, obtained by “rewinding” time according to the 

temporal coupling (Figure 1D). Shared ancestry between two cell sets is revealed by 

convergence of the ancestor distributions (Figure 1E). The trajectory from C is the sequence 

of descendant distributions at each subsequent time point, and similarly the trajectory to C is 

the sequence of ancestor distributions (Figure 1C,D). Thus, we use the inferred coupling to 

calculate a distribution over representative ancestors and descendants at any other time. We 

can then determine the expression of any gene or gene signature along a trajectory by 

computing the mean expression level weighted by the distribution over cells at each time 

point.

To identify TFs that regulate the trajectory, we sample cells from the joint distribution given 

by the couplings to train regulatory models. One approach uses ‘local’ information, 

identifying TFs that are enriched in cells having many vs. few descendants in a target cell 

population. A second approach builds a global regulatory model, composed of modules of 

TFs and modules of target genes, to predict expression levels of gene signatures at later time 

points from expression levels of TFs at earlier ones (Figure 1F).

We implemented our approach in a method, Waddington-OT, for exploratory analysis of 

developmental landscapes and trajectories, including a public software package (Methods 

S1). The method: (1) Performs optimal-transport analyses on scRNA-seq data from a time 

course, by calculating temporal couplings and using them to find ancestors, descendants and 

trajectories; (2) Infers regulatory models that drive the temporal dynamics; (3) Uses Force-

Directed Layout Embedding (FLE) to visualize the cells in 2D (Jacomy et al., 2014; Weinreb 

et al., 2016; Zunder et al., 2015), and (4) Annotates cells by types, ancestors, descendants, 

trajectories, expression, and more.
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A dense scRNA-seq time course of iPS reprogramming

We generated iPSCs via a secondary reprogramming system (Figure 2A). We obtained 

MEFs from a single female embryo which constitutively expresses a Dox-inducible 

polycistronic cassette carrying Pou5f1 (Oct4), Klf4, Sox2, and Myc (OKSM), and an EGFP 

reporter incorporated into the endogenous Oct4 locus (Oct4-IRES-EGFP). We plated MEFs 

in serum, added Dox on day 0 to induce the OKSM cassette (Phase-1(Dox)), withdrew Dox 

at day 8, and transferred cells to either serum-free N2B27 2i medium (Phase-2(2i)) or 

maintained them in serum (Phase-2(serum)). Oct4-EGFP+ cells emerged on day 10 as a 

reporter for successful reprogramming to endogenous Oct4 expression (Figure 2A, S1A).

We performed two time-course experiments. In the first, we collected 65,781 scRNA-seq 

profiles at 10 time points across 16 days, with samples taken every 48 hours. In the second, 

we profiled 259,155 cells collected at 39 time points across 18 days, with samples taken 

every 12 hours (every 6 hours between days 8 and 9) (Figure 2A, STAR Methods, Table S1). 

The two experiments were consistent (STAR Methods, Figure S1B, Figure S1C). We 

focused on the second experiment (Table S1), retaining 251,203 high quality cells, 

sequenced at a depth enabling robust analysis, as shown by downsampling (STAR Methods). 

Comparison to bulk RNA-seq indicated that, with few exceptions, there is minimal sampling 

bias among cell types (STAR Methods).

Overview of the developmental landscape

We visualized the 251,203 cells in a two-dimensional FLE (Figure 2B), annotated according 

to condition (Figure 2C) sampling time (Figure 2D, Movie S1), and expression scores of 

gene signatures (Figure 2E). We identified notable features, discussed below, including sets 

of cells classified as pluripotent-, epithelial-, trophoblast-, neural-, and stromal-like by 

expression of characteristic signatures (Figure 2E,F, Table S2). The proportions of these 

subsets differ between serum and 2i conditions (Figure 2G).

Using Waddington-OT, we identified trajectories to these cell sets (Figure 2H). The 

ancestors of stromal-like cells begin to diverge from the rest as early as day 1.5, and the 

distinction sharpens over the next several days (Figure 2I). By contrast, the ancestors of the 

pluripotent-, epithelial-, trophoblast-, and neural-like populations are indistinguishable until 

after day 8, when the cells appear to undergo a mesenchymal-to-epithelial transition (MET), 

as we detail below.

The model is predictive and robust

Because current experimental approaches for tracing cell lineage do not describe the 

transcriptional profile of a cell set’s ancestors, we developed a computational approach to 

validate the model. Given three time-points t1 < t2 < t3, we used OT to predict the 

distribution of cells at time t2, by interpolating the trajectory from t1 to t3 (STAR Methods). 

We compared our prediction to batches of observed cells at time t2, they were are roughly as 

good as could be expected given batch-to-batch variation (Figure 2J and S1D-F). As 

expected, the quality of interpolation decreases over longer intervals (Figure S1D).
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Our analysis is robust to data perturbations and parameter settings. We down-sampled the 

cells and reads at each time point, perturbed our initial estimates for cellular growth and 

death rates, and perturbed the parameters for entropic regularization and unbalanced 

transport (Figure S1G-I, STAR Methods). In all cases, the interpolation results are stable 

across wide range.

In initial stages of reprogramming, cells progress toward stromal or MET fates

Reprogramming begins with all cells exhibiting a rapid increase in cell-cycle signatures and 

a decrease in MEF identity (Figure 2E). Over time, cells assume either Stromal or MET 

identities (Figure 3A,B,C). Cells in the Stromal Region (SR) show distinctive signatures of 

extracellular matrix (ECM) rearrangement, senescence, cell cycle inhibitors, and a secretory 

phenotype (SASP) (Figure 3D,E). By contrast, the MET Region contains cells with 

increased proliferation and loss of fibroblast identity (Figure 3D,F).

While expressing signatures of embryonic mesenchyme and long-term cultured MEFs 

(Figure S2A), the SR does not simply reflect “MEF reversion” (Figure S2B). In particular, 

signatures of neonatal muscle and neonatal skin are enriched 20 to 30-fold in the SR.

The proportion of stromal cells peaks on days 10.5 to 11 and then declines through day 18 

(Figure 2G). This is not due to cells exiting the SR (Figure S2C), but rather low proliferation 

and expression of an apoptosis signature.

Among the differentially expressed genes along the two trajectories were early markers of 

successful MET, including known markers such as Fut9 (which synthesizes the glycoantigen 

SSEA-1) and novel candidates such as Shisa8, the most differentially expressed gene at day 

1.5. It is expressed in 50% of cells most likely to transition to MET (top quartile) but only 

5% of cells in the bottom quartile (Table S3). At later time points, both Shisa8 and Fut9 are 

strongly expressed along the trajectory toward successful reprogramming, and lowly 

expressed in other lineages (Figure S2D). Shisa8 is a little-studied mammalian-specific 

member of the single-transmembrane, adapter-like Shisa family, that play developmental 

roles (Pei and Grishin, 2012).

Trajectory analysis allows us to trace how these fates are gradually established: the ancestor 

distributions of cells in the Stromal and MET Regions differ by 30% at day 3 and by 60% at 

day 6 (Figure 2I). A powerful predictor of a cell’s fate is its expression level of the OKSM 

transgene, whose expression level explains ~50% of the variance in the log fate ratio 

between MET vs. stromal fate by day 2 and 75% by day 5 (Figure S2E). The divergence is 

gradual rather than a sharp branch point.

Regulatory analysis identifies TFs associated with the two trajectories. Three TFs (Dmrtc2, 
Zic3, and Pou3f1) show higher expression along the trajectory to the MET Region (Figure 

3C,F,G). Zic3 is required for maintenance of pluripotency (Lim et al., 2007), Pou3f1 for 

self-renewal of spermatogonial stem cells (Wu et al., 2010), and Dmrtc2 for germ cell 

development (Gegenschatz-Schmid et al., 2017). Four TFs (Id3, Nfix, Nfic, and Prrx1) show 

higher expression in cells with stromal fate (Figure 3B,E,G) which is maintained only in 

stromal cells following dox withdrawal. Nfix represses embryonic expression programs in 
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early development, while Nfic and Prrx1 are associated with mesenchymal programs 

(Froidure et al., 2016; Messina et al., 2010). Higher expression of Id3 along the trajectory 

toward stromal cells may seem surprising, because its forced expression increases 

reprogramming efficiency (Liu et al., 2015). Id3 might cause increased efficiency by acting 

in stromal cells, which secrete factors that enhance iPSC reprogramming (below), or in non-

stromal cells, in which it is expressed through day 8, albeit at lower levels.

iPSCs emerge through a tight bottleneck from cells in the MET Region

The iPSC trajectory encompasses ~40% of all cells at day 8.5, but only ~10% of cells at day 

10 in 2i conditions and only ~1% at day 11 in serum conditions. This suggests that only a 

small and distinct subset of cells transitioning out of the MET Region has the potential to 

become iPSCs. These iPSC progenitors have not yet fully acquired the pluripotency 

signature but are changing rapidly toward this fate. They reside along certain thin ‘strings’ in 

the FLE representation (Figure 2H, white arrow and 4A, green). While the FLE shows what 

appears to be alternate paths (e.g., through trophoblasts), the vast majority of ancestors of 

iPSCs do not go through these routes by our model (especially in 2i), highlighting a key 

difference between the OT-model and visualization-based interpretation.

By day 11.5-12.5, some cells begin to show a clear signature of pluripotency, including 

canonical marker genes such as Nanog, Zfp42, Dppa4, Esrrb and an elevated cell-cycle 

signature (Figure 4B,C). In 2i conditions, these iPS-like cells account for 12% of cells by 

day 11.5 and 80-90% from days 15 through 18 (Figure 2G), reflecting rapid proliferation. In 

serum conditions, the trend is similar, but the process is delayed and less efficient: the 

pluripotency signature is found in 3.5% of cells by day 12.5 and peaks at just 10-15% from 

days 15.5 through 18.

Recent studies reported that a small subset of cells in 2i conditions show a signature 

characteristic of the embryonic 2-cell (2C) stage (Kolodziejczyk et al., 2015). In our data 

~1% of iPSCs showed a 2C signature in both 2i and serum conditions (Table S2, Figure 

S3A).

Clustering genes by expression trend along the trajectory to iPSCs revealed groups of 

activated genes regulating pluripotency and repressed genes involved in metabolic changes 

and RNA processing (Figure S3B). We identified 24 candidate markers of fully 

reprogrammed cells (including Ooep, Fmr1nb, Lncenc1, and Tcl1) (Table S4).

Regulatory analysis identifies a sequence of TF activity along the trajectory to iPSCs (Figure 

4C). The earliest predictive TFs are expressed on days 9-10 (Nanog, Sox2, Mybl2, Elf3, 
Tgif1, Klf2, Etv5, Cdc5l, Klf4, Esrrb, Spic, Zfp42, Hesx1, and Msc). A second wave is 

activated on days 12-14, including Obox6, Sohlh2, Ddit3, and Bhlhe40. Notably, Obox6 and 

Sohlh2 are not expressed in the trajectories to any other cell fate, and have roles in 

maintenance and survival of germ cells (Park et al., 2016; Rajkovic et al., 2002), but have 

not been previously implicated in pluripotency.

Finally, our trajectory analysis directly identifies the correct order of events in X-

chromosome reactivation (Pasque et al., 2014): Xist is downregulated, then pluripotency-
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associated proteins are expressed, and finally the X-chromosome is reactivated (Figure 

4D,E, STAR Methods).

Development of extra-embryonic-like cells during reprogramming

Another cell subset emerges from the MET Region, gains a strong epithelial signature by 

day 9, and expresses a trophoblast signature (Figure 5A-C) by day 10.5, peaking at day 12.5 

(~20% of all cells) (Figure 2G and 5B).

Previous studies have noted the expression of some trophoblast-related genes (Cacchiarelli 

et al., 2015), but trophoblasts have not previously been characterized in reprogramming. We 

observe a remarkable diversity of subtypes. In normal development, the extraembryonic 

trophoblast progenitors (TPs) give rise to the chorion, which forms labyrinthine trophoblasts 

(LaTBs), and the ectoplacental cone, which forms spongiotrophoblasts (SpTBs) subtypes 

and trophoblast giant cells (TGCs), including spiral artery trophoblast giant cells (SpA-

TGCs). Scoring our cells for signatures and markers of these cells (Figure S4A, Table S2, 

Figure 5C), we find TPs and SpTBs in 2i and serum and SpATGs in serum (Figure S4A), 

with cells that express LaTBs markers in a separate cluster (~200 cells in 2i but not serum) 

(Figure S4A). Another 181 cells from a single collection expressed a signature for primitive 

endoderm (XEN-like cells) (Figure S4B), as previously reported (Parenti et al., 2016).

Regulatory analysis identified TFs at day 10.5 that are predictive of subsequent trophoblast 

fate (Figure 5B). Several regulate trophoblast self-renewal (Gata3, Elf5, Mycn, Mybl2) 

(Kidder and Palmer, 2010) and early trophoblast differentiation (Ovol2, Ascl2, Phlda2, 
Cited2) (Latos and Hemberger, 2016; Tunster et al., 2016; Withington et al., 2006). Others 

are known to be expressed in trophoblasts, but have no known roles in trophoblast 

differentiation (Rhox6, Rhox9, Batf3 and Elf3).

Other TFs are predictive of specific subtype fates. Ancestors of TPs expressed Gata3, Pparg, 
Rhox9, Myt1l, Hnf1b, and Prdm11. These are all expressed in placenta, but only the first 

two have known roles in trophoblast differentiation (Ralston et al., 2010; Parast et al., 2009). 

Ancestors of SpTBs or LaTBs expressed Gata2, Gcm1, Msx2, Hoxd13, and Nr1h4. Gata2 is 

necessary for regulation of trophoblast programs (Ma et al., 1997). Gcm1 and Msx2 have 

roles in LaTB differentiation, EMT and trophoblast invasion (Liang et al., 2016; Simmons 

and Cross, 2005), respectively. Nr1h4 is expressed in placenta. Ancestors of SpA-TGCs 

expressed Hand1, Bbx, Rhox6, Rhox9, and Gata2. Hand1 is necessary for trophoblast giant 

cell differentiation and invasion (Scott et al., 2000). Bbx is a core trophoblast gene induced 

by Gata3 and Cdx2 (Ralston et al., 2010).

RNA expression reveals genomic aberrations in trophoblast-like and stromal cells

Trophoblasts are known to selectively amplify specific functional genomic regions by 

endocycles of replication (Hannibal and Baker, 2016), and we hypothesized that they might 

harbor detectable genomic aberrations. Similarly, because our stromal cells express stress 

and apoptosis genes that are often associated with DNA damage, we speculated they too 

may have aberrations.
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We thus analyzed the scRNA-seq data to infer large copy number aberrations from coherent 

increases or decreases in gene expression (STAR Methods). We found evidence for whole-

chromosome aneuploidy in 4.0% of trophoblast cells and 2.1% of stromal cells (vs. 1.1% of 

all other cells), mostly suggesting loss or gain of a single copy (Figure 5D).

We next searched for evidence of sub-chromosomal aberrations. We found evidence for 

events in 6.9% of trophoblasts and 3.2% of stromal cells (vs. 1.2% in most other cell types 

and 0.4% in neural cells) (Figure 5E). Our method has high specificity, but only 45% 

sensitivity (Figure S4C, STAR Methods).

In trophoblasts, one region, containing 74 genes appears to be highly enriched for sub-

chromosomal aberrations (Figure 5F; 8.6% of trophoblasts); it includes Wnt7b, required for 

normal placental development (Parr et al., 2001); Prr5, which mediates Pdgfb signaling 

required for labyrinthine cell development (Woo et al., 2007); and several ‘core trophoblast 

genes’ (Cyb5r3, Cenpm, Srebf2, Pmm1). The top 15 recurrent events also included the 

amplification of the prolactin gene cluster on chromosome 13 in 1% of cells. Thus, the 

trophoblast-associated mechanisms of genomic alteration may occur in the trophoblast-like 

cells.

Stromal cells frequently amplified a region containing cell cycle inhibitors Cdkn2a, Cdkn2b, 

and Cdkn2c, and frequently lost a region contained Cdk13, which promotes cell cycling, and 

Mapk9, loss of which promotes apoptosis. These genomic alterations may reflect and 

contribute to stromal cell function.

Neural-like cells also emerge from the MET Region during reprogramming in serum

In serum (but not 2i) conditions, neural-like cells also emerge from the MET Region, 

forming a prominent spike in the FLE (Figure 5G). Their ancestors diverge from the 

ancestors of trophoblasts and iPSCs by day 9 (Figure 2I), and undergo a rapid transition at 

day 12.5, losing epithelial signatures, gaining neural signatures, and entering the “neural 

spike” (Figure 5G,H). Cells near the base of the spike express radial glial and neural stem-

cell markers, and cells further out along the spike express markers of neuronal differentiation 

(Figure S4D,E).

In normal development, neuroepithelial cells lose their epithelial identity and turn into radial 

glial cells (RGCs), which then give rise to astrocytes, oligodendrocytes, and neurons. We 

used scRNA-seq from mouse brain to derive signatures for these three mature cell types 

(Table S2), as well as three types of RGCs expressing Id3, Gdf10, or Neurog2 (Figure S4D) 

(STAR Methods).

About 70% of neural-like cells express at least one of the six signatures. Cells with the three 

radial glial signatures appear first, concurrent with the loss of epithelial identity and gain of 

neural lineage identity on day 12.5 (Figure 5I). Cells expressing mature neurons and glia 

signatures emerge on day 14 and increase thereafter. Their ancestors are concentrated in the 

RGCs on day 13.5, especially Gdf10 RGCs. While the glial populations overlap 

substantially, the neurons form a distinct population with substantial substructure, including 

excitatory and inhibitory neurons (Figure 5J and S4C-E, STAR Methods).
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Regulatory analysis identified TFs predictive of neural fate, many with known roles in early 

neurogenesis (Rarb, Foxp2, Emx1, Pou3f2, Nr2f1, Myt1l, Neurod4), late neurogenesis 

(Scrt2, Nhlh2, Pou2f2), survival of neural subtypes (Onecut1, Tal2, Barhl1, Pitx2), and 

neural tube formation (Msx1, Msx3).

The developmental landscape highlights potential paracrine signals

We next asked how these cell types might interact as they reprogram concurrently. For 

example, secretion of inflammatory cytokines is known to enhance reprogramming 

(Mosteiro et al., 2016).

Our data reveals rich potential for paracrine signaling (Figure 6A,B, Figure S5A, Table S5). 

We defined an interaction score based on concurrent expression of ligand-receptor pairs 

across cell sets (Figure 6A,B and S5A,B, STAR Methods). We observed high interaction 

scores for several SASP ligands in stromal cells with receptors expressed in iPSCs, such as 

Gdf9 with Tdgf1 and Cxcl12 with Dpp4 (Figure 6C,F, S5C).

Neural-like cells exhibit potential interactions involving Cntfr (Figure 6D,G, S5D), an Il6-

family co-receptor whose activation plays critical roles in neural differentiation and survival 

(Elson et al., 2000). On day 11.5, a day before neural-like cells appear, their ancestors 

upregulate expression of Cntfr; expression is 4.6-fold higher in epithelial cells that are neural 

ancestors versus those that are not. Stromal cells begin expressing three activating ligands 

for Cntfr (Crlf1, Lif, Clcf1) on day 10.5. These events may help trigger the program of 

neural differentiation in a subset of epithelial cells in serum. The same ligand-receptor 

interactions are seen in 2i conditions, but the MEK inhibitor in 2i medium would be 

expected to block Cntfr signaling and subsequent neural differentiation.

Trophoblast-like cells show potential interactions for Csf1 and Csf1r (Figure 6E,H, S5E). In 

early placental development, Csf1 is expressed in maternal columnar epithelial cells and 

Csf1r is expressed in fetal trophoblasts, suggesting a functional role of this interaction in 

trophoblast development. Many other top-ranked interactions for trophoblasts are between a 

single receptor (Cxcr2) and a multi-member ligand family (Cxcl5, Cxcl1, Cxcl2, Cxcl3, and 

Cxcl15) (Figure 6E,H, S5E). Cxcr2 is necessary for trophoblast invasion in human (Wu et 

al., 2016).

Experimental validation confirms that transcription factor Obox6 and cytokine GDF9 
enhance reprogramming

We experimentally tested one of the TFs and one of the paracrine interactions that our 

analyses predicted might promote reprogramming.

We first tested the TF Obox6, which was the TF most strongly correlated with 

reprogramming success among those not previously implicated in the process (Figure 7A, 

S6A). Obox6 is a homeobox gene of unknown function that is preferentially expressed in the 

oocyte, zygote, early embryos and embryonic stem cells (Rajkovic et al., 2002). While it is 

expressed in a small fraction of cells (<1%) before day 12, almost all cells expressing it 

(94%) are biased toward the MET Region (Figure 7A, S6A).

Schiebinger et al. Page 11

Cell. Author manuscript; available in PMC 2020 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To test whether Obox6 can boost reprogramming efficiency, we expressed it together with 

OKSM during days 0-8. We infected our secondary MEFs with a Dox-inducible lentivirus 

carrying either Obox6, the positive control Zfp42 (Rajkovic et al., 2002; Shi et al., 2006), or 

no insert as a negative control. Both Obox6 and Zpf42 increased reprogramming efficiency 

of secondary MEFs by ~2-fold in 2i and even more so in serum (Figure 7B,C, and Figure 

S6B-F). Assays in primary MEFs showed similar increases (Figure S6E,F). Our results 

support a potential role for Obox6 in reprogramming.

We next tested the cytokine GDF9, the ligand with the highest paracrine interaction score for 

the iPSC lineage, which is predicted to interact with the receptor Tdgf1 (Figure 6C,F). Tdgf1 
is known to help maintain the pluripotent state (Klauzinska et al., 2014), but a role in the 

establishment of pluripotency has not been reported, and efforts to increase reprogramming 

efficiency through addition of GDF9 at the initial stages of reprogramming (days 0-2) were 

unsuccessful (Gonzalez-Munoz et al. 2014).

In our reprogramming landscape, Gdf9 and Tdgf1 are expressed in the ancestors of iPSCs 

and stromal cells, respectively, beginning at day 8. The strength of the predicted interaction 

increases until day 14 (Figure S5C). We tested whether addition of recombinant mouse 

GDF9 enhances reprogramming in serum by adding the cytokine daily, starting at day 8 

(STAR Methods). We measured the abundance of cell types at day 15 (STAR Methods).

In multiple independent experiments, GDF9 substantially increased reprogramming 

efficiency in a dose-dependent manner, with the highest dosage producing an average 

increase of 4-to-5-fold as assayed by (i) counting number of Oct4-GFP positive colonies, (ii) 

bulk RNA-seq and (iii) scRNA-seq (Figure 7D-F and S6G-I). These results support a role 

for Gdf9 in reprogramming.

Interestingly, GDF9 also increased the fraction of cells with neural fates (Figure 7F, S6I), 

possibly in a competitive way with iPSCs. While Gdf9 has no reported function in 

neurogenesis, the Tgfβ superfamily has been reported to play important roles in various 

neural lineages specification and maintenance (Aigner and Bogdahn, 2008); this observation 

warrants further attention.

Discussion

Understanding the trajectories of cellular differentiation is essential for studying 

development and for regenerative medicine. Here, we describe an analytical approach to 

reconstructing trajectories, and its application to a dataset of 315,000 cells from dense time-

courses of reprogramming fibroblasts into iPSCs, shedding light on this problem, and 

providing a template for studies in other systems.

An optimal transport framework to model cell differentiation

Waddington-OT describes transitions between time points in terms of stochastic couplings, 

derived from optimal transport. This yields a natural concept of trajectories in terms of 

ancestor and descendant distributions, without strict structural constraints on the nature of 

these processes. This allows us to recover shared vs. distinct ancestry between two cell sets, 
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and to infer TFs involved in activating expression programs (Figure 1). Moreover, it can be 

applied to even a single pair of time points. We validated Waddington-OT by its ability to 

accurately infer cellular populations at held-out time points and its results are robust across 

wide variation in parameters.

To set Waddington-OT in context, we comprehensively reviewed 62 other approaches (Table 

S6), which fall into three classes: category 1 (33 tools) is not applicable to developmental 

time-courses with scRNA-seq; category 2 (25 tools) is applicable but does not incorporate 

time information; and category 3 (4 tools) leverages time information, but does not model 

cell growth rates over time. When we applied several of the most widely used methods from 

categories 2 and 3 on our data, the results revealed key limitations (STAR Methods, Figure 

S7). Category 2 methods produced trajectories that are completely inconsistent with the time 

course—making huge leaps across time points and, in some cases, going backward in time. 

For example, Monocle2 produced trajectories in which Day 0 cells give rise to Day 18 cells, 

which then give rise to Day 8 cells. Similar problems are evident in a Monocle2 analysis in a 

recent analysis of chemical reprogramming (Zhao et al., 2018), in which the program places 

late-stage cells at the beginning of the trajectory. Category 3 methods encounter a distinct 

challenge, as they do not account for the higher growth of iPSCs and consequently infer that 

many apoptotic stromal cells must transition to iPSCs. In addition, two of these Category 3 

tools produced trajectories to incoherent final destinations, consisting of mixtures of very 

different cell types.

Waddington-OT is the only approach that incorporates temporal information and models cell 

growth over time (which we can consider a new Category 4). It is the only approach that 

produced reasonable trajectories on our data, suggesting that these features are critical for 

robust analysis of developmental processes. Moreover, it brings the powerful framework of 

optimal transport to biology and is the first application of OT to estimate the temporal 

coupling of a stochastic processes in any field.

Optimal-transport analysis is only intended to capture the time-varying components of a 

distribution ℙt. For systems in dynamic equilibrium, ℙt does not change over time and 

optimal transport would infer that each cell is stationary. (An example would be cells that 

are asynchronously undergoing cell division. Although each cell is changing, the overall 

distribution ℙt is constant across time.) Our focus is on out-of-equilibrium systems, where 

the distribution ℙt undergoes major changes over time.

Tracking cell differentiation trajectories and fates in a diverse reprogramming landscape

Although the reprogramming of fibroblasts to iPSCs has been intensively studied, our work 

provides insights that could only be obtained from large-scale profiling of single cells across 

dense time courses and appropriate analysis.

We uncovered remarkable diversity in the reprogramming landscape, with large classes of 

cells having distinct biological programs related to distinct states and tissues. Earlier studies 

based on bulk RNA analysis have detected expression of individual lineage-specific genes, 

but could not identify coherent cell types (Mikkelsen et al., 2008; O’Malley et al., 2013; 
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Parenti et al., 2016). Further work will be need to characterize the cells’ full identity and 

relation to natural types.

This extensive diversity raises several key questions, including: (1) What are the 

differentiation and fate trajectories that span these cell subsets? What are their ancestors and 

when do they diverge? (2) What cell intrinsic regulatory mechanisms may drive each fate, 

especially TFs? (3) How do cells of different types affect each other’s development through 

paracrine signaling?

Our trajectory and regulatory analyses provide a systematic view of differentiation 

trajectories (Figure 7G). Cells gradually progress towards two initial fates: MET or Stromal 

(Figure 7G, blue and purple). There is an explosion of diversity following dox withdrawal at 

day 8: the MET state gives rise to iPSC-, trophoblast-, neural-, and epithelial-like cells. The 

ancestors of iPSCs pass through a narrow bottleneck before proliferating into iPSCs. Other 

cells in the MET region first assume an epithelial-like state which gives rise to trophoblasts 

and neural cells (in serum).

By characterizing events that occur along the trajectory toward any cell class, we identify 

TFs that regulate cell fates (Figure 7G). Along each trajectory, we rediscover known TFs 

known to play a role in the differentiation or reprogramming process, validating our 

approach, but also identify several TFs not previously implicated in the process. We 

demonstrate the role of Obox6 in increasing reprogramming efficiency.

Finally, we identify a rich potential for paracrine interactions with stromal cells which may 

play key roles in the initial differentiation and maintenance of iPS-, neural- and trophoblast-

like cells.

Of these interactions, we experimentally validated that GDF9 increases reprogramming 

efficiency.

Future prospects for models and studies of differentiation and development

Our method can be extended to capture additional features of differentiation. First, the 

framework currently assumes that a cell’s trajectory depends only on its current gene-

expression levels. One could incorporate other types of information like epigenomic state. 

Second, our framework for learning regulatory models assumes that trajectories are cell 

autonomous, but might be extended to incorporate intercellular interactions, such paracrine 

signaling, by using optimal transport for interacting particles (Ambrosio et al., 2008; 

Santambrogio, 2015) (Methods S1). Third, various methods exist for obtaining lineage 

information about cells, based on the introduction of barcodes at discrete time points or 

continuously (Kester and van Oudenaarden, 2018). Barcodes can be used to recognize cells 

that descend from a recent common ancestor cell, but do not currently directly reveal the full 

gene-expression state of the ancestral cell. However, they might be incorporated into our 

optimal-transport framework to better estimate temporal couplings. Finally, our method can 

be refined to analyze all time points simultaneously, rather than just consecutive pairs; this 

can be particularly useful for situations where the number of cells at different time points 

varies significantly.
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In summary, our findings indicate that the process of reprogramming fibroblasts to iPSCs 

unleashes a much wider range of developmental programs and subprograms than previously 

characterized. In Waddington’s metaphor, the reprogrammed cells roll through a rich 

landscape of valleys. Ultimately, the analysis of natural and artificial trajectories has much to 

teach us about the genetic circuits that control organismal development and regulate cellular 

homeostasis.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to the Lead 

Contact Eric Lander at lander@broadinstitute.org.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Secondary MEFs—OKSM secondary Mouse embryonic fibroblasts (MEFs) were derived 

from E13.5 female embryos with a mixed B6;129 background. The cell line used in this 

study was homozygous for ROSA26-M2rtTA, homozygous for a polycistronic cassette 

carrying Oct4, Klf4, Sox2, and Myc at the Colla1 locus and homozygous for an EGFP 

reporter under the control of the Oct4 promoter (Stadtfeld et al., 2010). Briefly, MEFs were 

isolated from E13.5 embryos from timed- matings by removing the head, limbs, and internal 

organs under a dissecting microscope. The remaining tissue was finely minced using 

scalpels and dissociated by incubation at 37°C for 10 minutes in trypsin-EDTA (Thermo 

Fisher Scientific). Dissociated cells were then plated in MEF medium containing DMEM 

(Thermo Fisher Scientific), supplemented with 10% fetal bovine serum (GE Healthcare Life 

Sciences), non-essential amino acids (Thermo Fisher Scientific), and GlutaMAX (Thermo 

Fisher Scientific). MEFs were cultured at 37°C and 4% CO2 and passaged until confluent. 

All procedures, including maintenance of animals, were performed according to a mouse 

protocol (2006N000104) approved by the MGH Subcommittee on Research Animal Care.

Primary MEFs—Primary MEFs were derived from E13.5 embryos with a B6.Cg-

Gt(ROSA)26Sortm1(rtTA*M2)Jae/J × B6;129S4-Pou5f1tm2Jae/J background. Both male and 

female embryos were used. Primary MEFs were homozygous for ROSA26-M2rtTA, and 

homozygous for an EGFP reporter under the control of the Oct4 promoter. MEFs were 

isolated as mentioned above.

METHOD DETAILS

Modeling developmental processes with optimal transport—We developed a 

probabilistic framework to analyze developmental time courses with single cell RNA seq 

data. We present here the basic elements of the method, and we refer the reader to Methods 

S1 for a complete and self-contained description written for a mathematical audience.

The framework is based on the notion of a developmental process, which is a special type of 

stochastic process (with a modified notion of temporal coupling to accommodate cellular 

growth and death). The temporal coupling specifies the mass transferred from one region of 

gene expression space to another over time. For example, a single cell is represented by a 
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single unit of mass concentrated at one point in gene expression space. Over time—as this 

cell develops, divides, and differentiates—the mass is transported to different locations of 

gene expression space to form the descendant distribution of the cell.

In order to infer temporal couplings from data, we introduce a key modeling assumption 

which we refer to as the optimal transport principle. We assume that the true coupling is well 

approximated by optimal transport couplings over short time scales. Intuitively, this says that 

the developmental process is proceeding in a locally linear fashion in the space of 

probability distributions (when this space is equipped with the metric induced by optimal 

transport).

Given data in the form of samples at various time points along a developmental time-course, 

we can estimate the optimal transport couplings by solving a finite dimensional convex 

optimization problem. With enough data, this converges to a close approximation of the true 

coupling over short time scales. If we assume the process is Markov, then we can compose 

adjacent time points and estimate temporal couplings over longer intervals.

This mathematical model is described in Chapter I of Methods S1. Chapter I is organized as 

follows. Section 1 reviews the concept of gene expression space and introduces a 

probabilistic framework for time series of expression profiles. Section 2 introduces our key 

modeling assumption to infer temporal couplings of developmental processes. Over short 

time scales, the true coupling is well approximated by optimal transport couplings. Section 3 

shows how we can estimate the optimal transport coupling from data by solving a convex 

optimization problem. Section 4 describes how to interpret transport maps and temporal 

couplings. Specifically, Section 4.1 shows how to compute ancestors and descendants of 

specific subpopulations of cells. Section 4.2 establishes a connection between entropic OT 

and Brownian motion of indistinguishable particles. Finally, Section 4.3 shows how OT 

generalizes Waddington’s classical picture of a developmental landscape. Flow through 

Waddington’s landscape is a gradient flow in gene expression space, which can only 

describe cell autonomous processes. On the other hand, OT can describe much more general 

gradient flows in the space of probability distributions on gene expression space, and 

therefore OT can model processes which involve cell-cell interactions.

We document the capabilities of the software package Waddington-OT in Chapter II of 

Methods S1. Chapter II is organized as follows. Section 2 shows how to compute transport 

maps. This takes as input a cost function, an entropy parameter, cell growth rates, and an 

unbalanced parameter. Section 3 shows how to compute trajectories. Section 4 shows how to 

fit local and global regulatory models. Section 5 shows how to interpolate the distribution of 

cells at held-out time points. This can be used to validate the transport maps.

Experimental methods

Reprogramming assay: For the reprogramming assay, 20,000 low passage MEFs (no 

greater than 3-4 passages from isolation) were seeded in a 6-well plate. These cells were 

cultured at 37°C and 5% CO2 in reprogramming medium containing KnockOut DMEM 

(GIBCO), 10% knockout serum replacement (KSR, GIBCO), 10% fetal bovine serum (FBS, 

GIBCO), 1% GlutaMAX (Invitrogen), 1% nonessential amino acids (NEAA, Invitrogen), 
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0.055 mM 2-mercaptoethanol (Sigma), 1% penicillin-streptomycin (Invitrogen) and 1,000 

U/ml leukemia inhibitory factor (LIF, Millipore). Day 0 medium was supplemented with 2 

μg/mL doxycycline Phase-1(Dox) to induce the polycistronic OKSM expression cassette. 

Medium was refreshed every other day. At day 8, doxycycline was withdrawn, and cells 

were transferred to either serum-free 2i medium containing 3 μM CHIR99021, 1 μM 

PD0325901, and LIF (Phase-2(2i)) (Ying et al., 2008) or maintained in reprogramming 

medium (Phase-2(serum)). Fresh medium was added every other day until the final time 

point on day 18. Oct4-EGFP positive iPSC colonies should start to appear on day 10, 

indicative of successful reprogramming of the endogenous Oct4 locus.

Sample collection: We profiled a total of 315,000 cells from two time-course experiments 

across 18 days in two different culture conditions: in the first we profiled 65,781 cells 

collected over 10 time points separated by ~48 hours; in the second we profiled 259,155 

cells collected over 39 time points separated by ~12 hours across an 18-day time course (and 

every 6 hours between days 8 and 9). In the larger experiment, duplicate samples were 

collected at each time point. Cells were also collected from established iPSCs cell lines 

reprogrammed from the same MEFs, maintained either in Phase-2(2i) conditions or in 

Phase-2(serum) medium. For all time points, selected wells were trypsinized for 5 mins 

followed by inactivation of trypsin by addition of MEF medium. Cells were subsequently 

spun down and washed with 1× PBS supplemented with 1% bovine serum albumin. The 

cells were then passed through a 40 micron filter to remove cell debris and large clumps. 

Cell count was determined using Neubauer chamber hemocytometer to a final concentration 

of 1000 cells/μl.

Single-cell RNA-seq: ScRNA-seq libraries were generated from each time point using the 

10× Genomics Chromium Controller Instrument (10× Genomics, Pleasanton, CA) and 

Chromium™ Single Cell 3’ Reagent Kits v1 (65,781 cells experiment) and v2 (259,155 cells 

experiment) according to manufacturer’s instructions. Reverse transcription and sample 

indexing were performed using the C1000 Touch Thermal cycler with 96-Deep Well 

Reaction Module. Briefly, the suspended cells were loaded on a Chromium controller 

Single-Cell Instrument to first generate single-cell Gel Bead-In-Emulsions (GEMs). After 

breaking the GEMs, the barcoded cDNA was then purified and amplified. The amplified 

barcoded cDNA was fragmented, A-tailed and ligated with adaptors. Finally, PCR 

amplification was performed to enable sample indexing and enrichment of the 3’ RNA-Seq 

libraries. The final libraries were quantified using Thermo Fisher Qubit dsDNA HS Assay 

kit (Q32851) and the fragment size distribution of the libraries were determined using the 

Agilent 2100 BioAnalyzer High Sensitivity DNA kit (5067-4626). Pooled libraries were 

then sequenced using Illumina Sequencing. All samples were sequenced to an average depth 

of 87 million paired-end reads per sample (see Experimental Methods), with 98 bp on the 

first read and 10 bp on the second read. In the larger experiment, we profiled 259,155 cells 

to an average depth of 46,523 reads per cell.

Lentivirus vector construction and particle production: To test whether transcription 

factors (TFs) improve late-stage reprogramming efficiency, we generated lentiviral 

constructs for the top candidates Zfp42, and Obox6. cDNAs for these factors were ordered 
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from Origene (Zfp42-MG203929, and Obox6-MR215428) and cloned into the FUW Tet-On 

vector (Addgene, Plasmid #20323) using the Gibson Assembly (NEB, E2611S). Briefly, the 

cDNA for each TF was amplified and cloned into the backbone generated by removing Oct4 
from the FUW-Teto-Oct4 vector. All vectors were verified by Sanger sequencing analysis. 

For lentivirus production, HEK293T cells were plated at a density of 2.6×106 cells/well in a 

10cm dish. The cells were transfected with the lentiviral packaging vector and a TF-

expressing vector at 70-80% growth confluency using the Fugene HD reagent (Promega 

E2311), according to the manufacturer’s protocols. At 48 hours after transfection, the viral 

supernatant was collected, filtered and stored at −80°C for future use.

Determination of paracrine effects of GDF9 on reprogramming: To determine the effect 

of GDF9 on reprogramming, we plated secondary MEFs at a concentration of 5,000 cells 

per well of a 24-well plate and added either recombinant mouse GDF9 (R&D Systems, 739-

G9-010, lot SOZ0516121) daily from day 8 onward, or control (0.1% Bovine Serum 

Albumin in 4 mM HCl, R&D Systems, RB04). We initially tested different doses (0, 0.1 

μg/ml, 0.5 μg/ml, and 1 μg/ml) and then confirmed results seen at the highest dose in 

multiple independent experiments. We used three distinct approaches to determine the 

proportion of pluripotent cell at day 15: (i) counting the number of Oct4-EGFP+ colonies 

using a fluorescence microscope, (ii) bulk RNAseq (Quantseq, Lexogen) and (iii) scRNAseq 

(as above). For each assay, experiments were performed in biological triplicates (each assay 

using separate replicates).

Bulk RNAseq data were analyzed as follows: reads (83 bp) were aligned to the UCSC mm10 

transcriptome, and a matrix of read counts was obtained using the QuantSeq processing 

pipeline with the reference genome sequence and gene annotations (GTF file) from the 

Cellranger 10× Genomics pipeline (v2.0.0). Bulk RNAseq data were used to compute the 

ratio of iPSC signature scores to the sum of signature scores of other major cell types (iPSC, 

trophoblast, neural, epithelial and stromal) in each sample (Figure 7E).

Single-cell RNAseq data were analyzed as follows: reads were aligned and processed as 

described in “Preparation of expression matrices” and cells in which fewer than 1,000 genes 

were detected were filtered out, yielding 47,540 cells for further analysis. We assigned cells 

to the major cell sets (iPSC, trophoblast, neural, epithelial and stromal) by clustering and 

annotation with gene signature scores. (To remove batch effects, we used tools in Seurat 

(Butler et al., 2018).) Cell-type proportions are shown in Figure 7F, S6H,I.

Reprogramming efficiency of secondary MEFs together with individual TFs: We sought 

to determine the ability of the candidate TFs to augment reprogramming efficiency in 

secondary MEFs; the use of secondary MEFs for reprogramming overcomes limitations 

associated with random lentiviral integration events at variable genomic locations. Briefly, 

secondary MEFs were plated at a concentration of 20,000 cells per well of a 6-well plate. 

Cells were infected with virus containing ZFP42, OBOX6, or an empty vector and 

maintained in reprogramming medium as described above. At day 8 after induction, cells 

were switched to either Phase-2(2i) or Phase-2(serum). On day 16, reprogramming 

efficiency was quantified by measuring the levels of the EGFP reporter driven by the 

endogenous Oct4 promoter. FACS analyses was performed using the Beckman Coulter 
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CytoFLEX S, and the percentage of Oct4-EGFP+ cells was determined. Triplicates were 

used to determine average and standard deviation.

Reprogramming efficiency of primary MEFs with individual TFs and OKSM: We also 

independently tested the performance of TFs in primary MEFs. To this end, lentiviral 

particles were generated from four distinct FUW-Teto vectors, containing OCT4, SOX2, 

KLF4, and MYC, previously developed in the Jaenisch lab. MEFs from the background 

strain B6.Cg-Gt(ROSA)26Sortm1(rtTA*M2)Jae/J × B6;129S4-Pou5f1tm2Jae/J were infected 

with these lentiviral particles, together with a lentivirus expressing tetracycline-inducible 

ZFP42, OBOX6 or no insert. Infected cells were then induced with 2 μg/mL doxycycline in 

ESC reprogramming medium (day 0). At day 8 after induction, cells were switched to either 

Phase-2(2i) or Phase-2(serum). On day 16, the number of Oct4-EGFP+ colonies were 

counted using a fluorescence microscope. Triplicates for each condition used to determine 

average values and standard deviation.

Preparation of expression matrices—To compute an expression matrix from scRNA-

seq data, we aligned sequenced reads to obtain a matrix U of UMI counts, with a row for 

each gene and a column for each cell. To reduce variation due to fluctuations in the total 

number of transcripts per cell, we divide the UMI vector for each cell by the total number of 

transcripts in that cell. Thus, we define the expression matrix E in terms of the UMI matrix 

U via:

E =
Ui j

∑ i = 1
G Ui j

× 104 .

In our subsequent analysis, we make use of two variance-stabilizing transforms of the 

expression matrix E. In particular, we define

1. E to be the log-normalized expression matrix. The entries of E are obtained via

E = log(Ei j + 1)

2. E‒ to be the truncated expression matrix. The entries of E‒ are obtained by capping 

the entries of E‒ at the 99.5% quantile.

When we refer to an expression profile, by default we refer to a column of E unless 

otherwise specified.

Read alignment: The 98 bp reads were aligned to the UCSC mm10 transcriptome, and a 

matrix of UMI counts was obtained using Cellranger from the 10× Genomics pipeline 

(v2.0.0) with default parameters. Quality control metrics about barcoding and sequencing 

such as the estimated number of cells per collection and the median number of genes 

detected across cells are summarized in Table S1. To estimate expression of exogenous 

OKSM factors from OKSM cassette, we extracted RBGpA sequence (839 bp) from the 

OKSM cassette FASTA file, and generated a reference using the mkref function from the 

Cellranger pipeline.
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Downsampling and filtering expression matrix: The expression matrix was downsampled 

to 15,000 UMIs per cell. Cells with less than 2000 UMIs per cell in total and all genes that 

were expressed in less than 50 cells were discarded, leaving 251,203 cells and G= 19,089 

genes for further analysis. The elements of expression matrix were normalized by dividing 

UMI count by the total UMI counts per cell and multiplied by 10,000 i.e. expression level is 

reported as transcripts per 10,000 counts.

Selecting variable genes: We used the function MeanVarPlot from the Seurat package 

(v2.1.0) (Satija et al., 2015) to select 1,479 variable genes. First, we divided genes into 20 

bins based on their average expression levels across all cells. Second, we compute Fano 

factor of gene expression in each bin and then z-scored. The Fano factor, defined as the 

variance divided by the mean, is a measure of dispersion. Finally, by thresholding the z-

scored dispersion at 1.0, we obtained a set of 1479 variable genes. After selecting variable 

genes, we created a variable gene expression matrix by renormalizing as described above.

Visualization: force-directed layout embedding—In this section we introduce our 

two dimensional visualization technique based on force-directed layout embedding (FLE) 

(Jacomy et al., 2014). FLE is large-scale graph visualization tool which simulates the 

evolution of a physical system in which connected nodes experience attractive forces, but 

unconnected nodes experience repulsive forces. It better captures global structures than 

tSNE. Initial FLE algorithms used simple electrostatic and spring forces, but modern FLE 

algorithms allow for more elaborate interactions that can depend on the degree of nodes or 

include gravity terms that attract all nodes to the center (this is especially important for 

disconnected graphs, which would otherwise fly apart). Starting from a random initial 

position of vertices, the network of nodes evolves in such a manner that at any iteration a 

new position of vertices is computed from the net forces acting on them.

We apply FLE to visualize the nearest neighbor graph generated from our data.

Implementation:  Our visualization takes as input the expression matrix of highly-variable 

genes, selected as described in Preparation of expression matrices. First, we reduce to 100 

dimensions by computing a 100 dimensional diffusion component embedding of the dataset 

using SCANPY (v0.2.8) with default parameters. Second, for each cell we compute its 20 

nearest neighbors in 100-dimensional diffusion component space to produce a nearest 

neighbor graph. For this step, we used the approximate k-NN algorithm Annoy from the R 

package RCPPANNOY (v0.0.10). Finally, we compute the force-directed layout on the k-

NN graph using the ForceAtlas2 algorithm (Jacomy et al., 2014) from the Gephi Toolkit 

(v0.9.2).

Creating gene signatures and cell sets

Gene signatures: We then constructed curated gene signatures from various databases of 

gene signatures. Given a set of genes, we score cells based on their gene expression. In 

particular, for a given cell we compute the z-score for each gene in the set. We then truncate 

these z-scores at 5 or −5, and define the signature of the cell to be the mean z-score over all 

genes in the gene set.
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The table below summarizes the sources from which we obtained signatures. In two cases 

(neural identity and epithelial identity) we constructed signatures manually using marker 

genes. A pluripotency gene signature was determined in this work using the pilot dataset. 

We performed differential gene expression analysis between two groups of cells: mature 

iPSCs and cells along the time course D0 to D16 and took the top 100 genes with increased 

expression in mature iPSCs. A proliferation gene signature was obtained by combining 

genes expressed at G1/S and G2/M phases.

In several places, we also compute gene signatures based on co-expression with a given gene 

of interest. For instance, in the stromal region we noticed several genes (Cxcl12, Ifitm1, and 

Matn4) with expression patterns that were distinct from a signature of long-term cultured 

MEFs (Figure S2B). For each gene, we computed a co-expression signature by finding the 

set of genes with expression levels in stromal cells that were >15% correlated with the gene 

of interest. We found that these gene signatures were significantly overlapping (p-value < 

0.01, hypergeometric test) with signatures of stromal cells in neonatal muscle and neonatal 

skin in the Mouse Cell Atlas. Similarly, in the neural region we derived signatures of genes 

co-expressed with Gad1 and with Slc17a6 (Figure S4D). These signatures significantly 

overlapped signatures of inhibitory and excitatory neurons, respectively, derived from the 

Allen Brain Atlas.

Cell sets: Using the gene signatures described above, we created coarse cell sets defining the 

broad regions of the landscape (iPSC, Trophoblast, Neural, Stromal, Epithelial, and MET), 

and cell subtype sets defining different cell types within a region (stromal, trophoblast, and 

neural subtypes, along with 2-cell stage).

To define the coarse cell sets, we first computed a rough partitioning of the landscape by 

clustering cells using the Louvain method of spectral clustering to obtain 65 cell clusters 

using k=5 nearest neighbors (Figure S5B). By examining signature score activity levels over 

clusters, we grouped several clusters to form cell sets for the iPSC, Stromal and Neuronal 

regions. Because our densely sampled data does not always segregate into distinct clusters, 

we defined some additional coarse cell sets by signature scores. We define the trophoblast 

cell set to include all cells with Trophoblast signature greater than 0.7. We defined the 

epithelial cell set to include all cells with epithelial identity signature greater than 0.8, minus 

all cells included in other cell sets (mostly removing the trophoblasts with epithelial 

signature). Finally, we defined the MET Region as the ancestors of iPS, Trophoblast, Neural 

and Epithelial cells. In particular, we computed the top ancestors of each major cell set, then 

merged these cell sets and removed the cells in each major cell set.

Within the Stromal, Trophoblast, Neural and iPSC cell sets, we then conducted more 

sensitive statistical tests for cell subtype signatures. We did this by calculating empirical p-

values for the subtype signature score for each (region-specific) subtype in each cell. In each 

of 100,000 permutation trials, we randomly and independently shuffled the expression levels 

of each gene across the cells within a region. In each cell, we then computed signature 

scores in the permuted data, and generated p-values by determining the frequency at which 

the permuted score was greater than the original score. While the results shown in figures 

and discussed in the main text are based on shuffling genes across cells, we similarly 
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permuted the expression levels within each cell, and found consistent results. Finally, we 

controlled for multiple hypothesis testing by calculating FDR q-values, and used a threshold 

FDR of 10% to define cell subtype sets.

Estimating growth and death rates and computing transport maps

Initial estimate of growth rates: We form an initial estimate of the relative growth rate as 

the expectation of a birth-death process on gene expression space with birth-rate β(x) and 

death rate δ(x) defined in terms of expression levels of genes involved in cell proliferation 

and apoptosis. Multi-state birth-death processes have been used before to model growth, 

death, and transitions in iPS reprogramming (Liu et al., 2016). A birth-death process is a 

classical model for how the number of individuals in a population can vary over time. The 

model is specified in terms of a birth rate β and death rate δ: During a time interval Δt, the 

probability of a birth is βΔt and the probability of a death is δΔt.

The doubling time for a birth death process is defined as follows. Starting with N(0) = n, the 

time τ it would take to get to an expected population size of 𝔼N t = 2n is

τ = ln 2
β − δ

The half-life can be computed in a similar way. We apply a sigmoid function to transform 

the proliferation score into a birth rate. The sigmoid function smoothly interpolates between 

maximal and minimal birth rates. We specify the maximal birth rate to be βMAX = 1.7. 

Therefore the fastest cell doubling time is

ln 2
1.7 ≈ 0.41 days ≈ 9.6 hours,

by the doubling time equation above. We define the minimal birth rate as βMIN = 0.3. 

Therefore the slowest cell doubling time is

ln 2
0.3 = 2.3 days = 55 hours .

Similarly, we transform the apoptosis signature into an estimate of cellular death rates by 

applying a sigmoid function to smoothly interpolate between minimal and maximal allowed 

death rates. We define the minimal death rate parameter to be δMIN = 0.3, and the maximal 

death rate parameter as δMAX = 1.7. By the calculations above, these correspond to half-

lives of 55 and 9.6 hours respectively.

Learning growth rates and computing transport maps: Using the growth rates defined in 

the previous section as an initial estimate, we compute transport maps and automatically 

improve these growth rates using the Waddington-OT software package (Methods S1). For 

the cost function, we use squared Euclidean distance in 30 dimensional local PCA space 

computed on the variable gene data from the relevant pair of time points. We use the 

following parameter settings:
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ϵ = 0.05, λ1 = 1, λ2 = 50, growth_iters = 3.

The parameters λ1 and λ2 control the degree to which the row-sums and column-sums are 

unbalanced. A larger value of λ1 induces a greater correlation between the input and output 

growth rates. The Waddington-OT package iterates the procedure of computing transport 

maps based on input growth rates, and then using the output growth rates as new input 

growth rates to recompute transport maps. We ran this for growth_iters = 3 total iterations.

This gives us a set of transport maps between each pair of time points, which can be used to 

estimate the temporal coupling. From this estimate of the temporal coupling, we compute 

ancestor and descendant distributions to each of the major cell sets defined in the previous 

section.

Regulatory analysis—We performed regulatory analysis to identify modules of 

transcription factors regulating modules of genes with our global regulatory model from the 

Waddington-OT software package (Methods S1). The optimization begins by specifying the 

number of gene modules, and establishing an initial estimate for each. We used spectral 

clustering to initialize the modules: genes were clustered into 50 sets, with one module 

corresponding to each set, and weights set to 0 for genes outside the set, and 1 for genes 

within the set.

We then specify a time lag between TF and gene module expression. In order to test for 

potential regulatory interactions on different time scales, we computed global regulatory 

models with three time lags: 6hrs, 48hrs, and 96hrs. This allowed us to identify factors that 

are predictive several days in advance -- for instance, Nanog is a very early predictor of 

pluripotency and was found to be associated with a pluripotency associated gene expression 

module in the 96 hour model -- as well as those predictive on shorter time scales -- for 

instance, we TFs that are predictive of neural-associated expression modules in the 6 and 48 

hour models, but do not find such predictive TFs in the 96 hour model.

Finally, we set regularization and stochastic block size parameters. Default values available 

in the code online were used in this study. Briefly, regularization parameters were tuned on 

small training datasets to enforce sparsity (ℓ1 penalties) and reduce model complexity (ℓ2 

penalty) while still achieving a good fit (>60% correlation between predicted and observed 

expression) in training data. These parameters may have to be specifically tuned in new 

datasets. The stochastic block size and number of epochs were set according to available 

hardware resources.

Validation by geodesic interpolation—We validate Waddington-OT by demonstrating 

that we can accurately interpolate the distribution of cells at held out time points. We applied 

geodesic interpolation (Methods S1) to our reprogramming data to predict the distribution of 

cells at each time point, using only the data from the previous and next time points. In other 

words, we sought to predict the distribution ℙt2 at time t2 from the distributions at 

neighboring time points: ℙt1 and ℙt3 (Figure 2J, S1D-F). To determine a baseline for 

performance, we examined the distance between the two different batches of the held-out 

distribution.
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To compute the optimal transport coupling from ℙt1 to ℙt3, we used the Waddington-OT 

package with default parameters. For the cost function we compute 30 dimensional local 

PCA coordinates using only the points from time t1 and t3. We then embedded the data from 

time t2 into the 30 dimensional local PCA space which was computed using only the data 

from time t1 and t3. Finally, we use Wasserstein-2 distance to compute distance between 

point clouds.

We compare the performance of OT to four null models:

• Null 1 and Null 2: a point cloud is constructed by interpolating with the 

independent coupling. Null 1 uses growth in the interpolation. Null 2 does not 

use growth.

• Null 3 and Null 4: the observed distributions from earlier (Null 3) or later (Null 

4) time points are used as the interpolating point cloud.

To estimate the standard deviation of the quality of interpolation, we interpolate using 

different batches of ℙt1 and ℙt3.

We investigated the time-scale over which optimal transport accurately recovers temporal 

couplings by interpolating over longer intervals. With 2-day intervals (Figure S1D) we see 

some performance degradation compared to 1-day intervals (Figure 2J).

Paracrine signaling analysis

Predicting ligand-receptor interaction pairs: To characterize potential cell-cell 

interactions between contemporaneous cells during reprogramming, we first collected a list 

of ligands and receptors found in the GO database. The set of ligands (415 genes) is a union 

of three gene sets from the following GO terms:

1) cytokine activity (GO:0005125),

2) growth factor activity (GO:0008083), and

3) hormone activity (GO:0005179).

The set of receptors (2335 genes) is defined by the GO term receptor activity (GO:0004872). 

Next, we used a curated database of mouse protein-protein interactions (Mertins et al., 2017) 

and identified 580 potential ligand-receptor pairs.

First, we defined an interaction score IA;B;X;Y;t as the product of (1) the fraction of cells 

(FA;X;t) in cell-set A expressing ligand X at time t and (2) the fraction of cells (FB;Y;t) in 

cell-set B expressing the cognate receptor Y at time t. We define the aggregate interaction 

score IA;B;t as a sum of the individual interaction scores across all pairs:

IA; B; t = ∑
All X − Y pairs

IA; B; X; Y; t = ∑
All X − Y pairs

FA; X; t FB; Y; t

We depicted the aggregate interaction scores for all combinations of cell clusters in Figure 

6B, S5A.
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Second, we sought to explore individual ligand-receptor pairs at a given day and condition 

between cell ancestors of interest. For this purpose we define the interaction score IA;B;X;Y;t 

as the product of (1) the average expression of the ligand X in ancestors at time t of a cell set 

A and (2) the average expression of the cognate receptor Y in ancestors at time t of a cell set 

B. Values of the interaction scores IA;B;X;Y;t are high for ubiquitously expressed ligands and 

receptors at a given day and may be nonspecific to a pair of cell ancestors of interest. Thus, 

we used permutations to generate an empirical null distribution of interaction scores. In each 

of the 10,000 permutations, we randomly shuffled the labels of cells and calculated the 

interaction score Is
A;B;X;Y;t. We then standardized each ligand-receptor interaction score by 

taking the distance between the interaction score IA;B;X;Y;t and the mean interaction score in 

units of standard deviations from the permuted data

((IA; B; X; Y; t − mean(Is
A; B; X; Y; t))/sd(Is

A; B; X; Y; t)) .

We depicted examples of standardized interaction scores ranked by their values in Figure 

6C-E and S5C-E. Replacement of the average expression of the ligand with the total 

expression of the ligand in the calculation of the standardized interaction score does not 

affect the results.

Classification of differential genes along the trajectory to iPSCs—To identify 

differential genes along the successful trajectory to iPSCs we computed the average 

expression (TPM) of all 19,089 genes in ancestors of iPSCs. The average expression values 

were log2 transformed and we filtered out genes for which the difference between maximal 

and minimal expression value between day 0 and day 18 is less than 1, leaving 2311 genes 

for further analysis. The genes were classified into 15 groups by k-means clustering as 

implemented in the R package stats. To identify the number of clusters we applied a gap 

statistic using the function clusGap from R package cluster v2.0.6.

We performed functional enrichment analysis on the identified gene clusters using the 

findGO.pl program from the HOMER suite (Hypergeometric Optimization of Motif 

Enrichment, v4.9.1) (Heinz et al., 2010) with Benjamini and Hochberg FDR correction for 

multiple hypothesis testing (retaining terms at FDR < 0.05). All genes that passed quality-

control filters were used as a background set.

Identifying large chromosomal aberrations—We have previously developed methods 

to identify copy number variations (CNVs) in scRNA- seq data from tumor samples (Tirosh 

et al., 2016). That analysis differed from our current study in two key aspects: (1) the data 

were based on full length scRNA-seq (SMART-Seq2), and sequenced to greater depth in 

each cell, and (2) there we could rely on the clonal expansion of CNVs to make it easier to 

identify recurring chromosomal aberrations.

We performed three types of analysis to detect aberrant expression in large chromosomal 

regions. First, we searched for cells with significant up- or down-regulation at the level of 

entire chromosomes. Second, we ran a coarse analysis to identify cells with significant net 

aberrant expression across windows spanning 25 broadly-expressed genes. Focusing on 
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regions that were enriched for cells with significant aberrations found by this coarse filter, 

we then performed a more sensitive test to compute the significance of aberrations in each 

window in each cell.

Empirical p-values and false discovery rates (FDRs) were computed by randomly permuting 

the arrangement of genes in the genome, as described below. In each of 100,000 

permutations we randomly shuffle the labels of genes in the entire dataset, while preserving 

the genomic coordinates of genes (with each position having a new label each time) and the 

expression levels in each cell (so that each cell has the same expression values, but with new 

labels). We then compute either whole chromosome or subchromosomal aberration scores 

for each cell.

To identify whole-chromosome aberrations scores in each cell, we begin by calculating the 

sum of expression levels in 25Mbp sliding windows along each chromosome, with each 

window sliding 1Mbp so that it overlaps the previous window by 24Mbp. For each window 

in each cell, we then calculate the Z-score of the net expression, relative to the same window 

in all other cells. We then count the fraction of windows on each chromosome with an 

absolute value Z-score > 2.

This fraction serves as the whole-chromosome aberration score for each chromosome in 

each cell. To assign a p-value to the whole-chromosome score for cell(i) chromosome(j), we 

calculate the empirical probability that the score for cell(i) chromosome(j) in the randomly 

permuted data was at least as large as the score in the original data.

Subchromosomal aberration scores were computed as follows. We begin by identifying the 

20% of genes with the most uniform expression across the entire dataset. This is done by 

calculating the Shannon Diversity e−ΣgEgcln Egc for each gene g (where Egc is the expression 

matrix as defined above in Preparation of expression matrices), and taking the 20% of 

genes with the largest values. Using these genes, we subset the expression matrix and 

renormalize by TPM, and then compute in each cell the sum of expression in sliding 

windows of 25 consecutive genes, with each window sliding by one gene and overlapping 

the previous window (on the same chromosome) by 24 genes. In each window, we calculate 

the Z-score relative to all cells at day 0. The net (coarse filter) subchromosomal aberration 

score for a cell is calculated as the l2-norm of the Z-scores across all windows. To assign a 

p-value to the subchromosomal aberration score for cell(i), we calculate the empirical 

probability that the score for cell(i) in the randomly permuted data was at least as large as 

the score in the original data.

Finally, to identify the specific region(s) of genomic aberrations in each cell, we conduct a 

more sensitive test using just the cells in the stromal and trophoblast regions. Again using 25 

housekeeping gene windows, we compute the average z-score of gene expression for genes 

in each window in each cell. We then compare the scores in all windows in all cells to 

similar scores computed for each cell in 100,000 random permutation trials, and then assign 

p-values based on the frequency of extremely high (gain) or low (loss) expression values.
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For each of the aberration scores and associated p-values described above, we controlled for 

mulstiple hypothesis testing by calculating FDR q-values, using a false discovery threshold 

of 10%.

We tested the sensitivity and specificity of our method using labeled data from Tirosh et al 

2016 (Figure S4C).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analyzing the stability of optimal transport—To test the stability of our optimal 

transport analysis to perturbations of the data and parameter settings, we downsampled the 

number of cells at each time point, downsampled the number of reads in each cell, perturbed 

our initial estimates for cellular growth and death rates, and perturbed the parameters for 

entropic regularization and unbalanced transport. We found that our geodesic interpolation 

results are stable to a wide range of perturbations, summarized in the following table:

Number of 
cells per 
batch

Number of 
UMIs Per cell Max Growth βMAX Min Growth βMIN Max Death δMAX Min Death δMIN Entropy regularization ϵ Unbalanced transport λ

Down to: 200 Down to: 1000 33 hrs to 5.5 hrs None to 9.5 hrs 33 hrs to 5.5 hrs None to 9.5hrs 5 × 10−5 to 0.5 0.1 to 32

To generate this table, we ran geodesic interpolation with all but one of these settings fixed 

to default values. The default parameter values that we used are:

ϵ = 0.05, λ1 = 1, λ2 = 50, βMAX = 1.7, δMAX = 1.7, βMIN = 0.3, δMIN = 0.3.

Moreover, by default we use all reads per cell and all cells per batch.

Benchmarking: comparing to other trajectory inference methods—We compared 

Waddington-OT to other trajectory inference methods. While many algorithms have been 

proposed to recover trajectories from single cell RNA-seq data, Waddington-OT is unique in 

its ability to model cellular growth, death and development over time. The benchmarking 

results below demonstrate that these features are crucial for accurate analysis: the other 

approaches considered fail in key respects because they do not leverage measured 

information about time, or because they do not model cellular growth and death rates.

Categorizing single cell trajectory inference methods: We comprehensively reviewed 62 

methods — consisting of 59 methods noted in the recent review by Saelens et al 2018, plus 

three more recent methods: FateID (Herman et al., 2018), STITCH (Wagner et al., 2018), 

and URD (Farrell et al., 2018).

The methods fall into four categories:

(1) methods that are not applicable to developmental time courses with scRNA seq

—because they do not handle branching trajectories or apply only to systems at 

equilibrium;

(2) methods that do not use information about the time of collection;
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(3) methods that use information about time of collection, but do not model cell 

growth rates over time;

From each category, we selected several of the best (most widely used) methods and applied 

them to our data.

Category Defining feature Number in category Methods tested

Category 1 Not applicable to developmental time 
courses

33 None (because not applicable)

Category 2 Does not use information about time of 
sampling

25 FateID, URD, Approximate Graph 
Abstraction, Monocle2

Category 3 Uses information about sampling time, 
but does not model growth

4 STITCH, GPfates, scDiff

We describe the performance:

Category 1. (33 methods). These methods cannot be used to analyze developmental time 

courses.

Category 2. (25 methods). All the tested methods in category 2 produce trajectories that are 

inconsistent with the time course, make huge leaps across time points and in some cases go 

backward in time in the sense that late time point cells are inferred to be at early time point.

For example, Monocle2 produces trajectories with highly inconsistent temporal ordering — 

with Day 0 cells giving rise to Day 18 cells, which then give rise to Day 8 cells.

Category 3. (4 methods). All of the tested methods in category 3 are thrown off by the much 

higher growth rate of certain cell types (e.g., iPSCs) than others (e.g., apoptotic stromal 

cells). In order to account for the increase in iPSCs, the methods infer that a large fraction of 

apoptotic stromal cells must transition to iPSCs.

In addition, two of the methods (GPfates, scDiff) produced trajectories to incoherent final 

destinations (that is, sets composed of mixtures of radically different cell types).

Category 2 results

Monocle2.: This program (Qiu et al., 2017) computes a graph embedding of scRNA-seq 

data. Applied to our data, Monocle2 produces a graph consisting of 5 segments (Figure 

S7A). The trajectories are problematic in several respects. First, the trajectories disagree 

with known information about time. For example, they put day 18 Stromal cells together 

with Day 0 MEFs at the root of the tree (Branch 1). This gives rise to a branch (Branch 3) 

consisting of a group of cells spanning days 1.5 to 8 that give rise to a subsequent branch 

(Branch 4) consisting of a group of cells from day 4 – 9. So, the progression is out of order 

(with day 18 cells giving rise to day 8 cells which then give rise to day 4 cells). Second, 

Monocle2 fails to distinguish iPS, Neuronal, and Trophoblast fates as distinct destinations: 

these populations are all assigned to a common branch (Branch 5). These problems appear to 
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be due to the fact that the method does not leverage known information about time, and 

because its fully unsupervised approach does not identify meaningful cell sets in the data.

URD.: This program (Farrell et al., 2018) computes a tree connecting a set of root cells to a 

set of terminal destinations by performing a large number of random walks. Applied to our 

data (40,000 serum cells, 1,000 per timepoint) with Day 18 iPSCs, Stromal, Neural, and 

Trophoblasts as terminal destinations, URD inferred a tree consisting of 7 segments (Figure 

S7B). The trajectories are problematic in several respects. First, fates are determined 

unreasonably early: the trophoblast lineage is specified by day 0.5 and all branches are 

specified by day 2. Second, URD predicts that the Neural and iPS lineages arise from 

Stromal cell set, which is unlikely because the Stromal population expresses signatures of 

senescence and apoptosis. Third, URD fails to assign over half of all cells to any trajectory. 

Over 85% of cells from days 4 through 8 are not assigned to any trajectory (96% of cells 

from day 6 and 94% from day 7). These problems appear to arise due to the failure to 

incorporate temporal information and to model rates of cellular growth and death. (It might 

be possible to modify the random walks of URD to account for this).

FateID.: This program (Herman et al., 2018) takes as input a set of terminal destinations and 

computes a “fate-bias probability” for each cell by iteratively classifying cells with a 

random- forest classifier. When we applied it to our data (2i conditions), FateID showed 

serious problems with the trajectories (Figure S7C). First, the fates of iPSCs, Trophoblast, 

and Stromal remain divergent through the beginning of the time-course (cells do not seem to 

share a common ancestor at day 0). Second, the trajectories are inconsistent with the 

temporal information in the sense that trajectories essentially skip over time points. For 

example, the Stromal trajectory effectively leaps over days 3 through 5, and the iPSC and 

Stromal trajectories do not contain any cells on day 0. These behaviors are likely due to the 

fact that FateID does not leverage time- course information in its present formulation. (It 

might be possible to modify FateID to connect individual pairs of time-points, as in our 

optimal transport approach).

Approximate graph abstraction.: This program (Wolf et al., 2017) connects clusters to 

identify a graphical representation of trajectories. We ran the method to connect 65 clusters 

in our data (2i conditions). The clusters are visualized in the left pane of Figure S7D and the 

connections inferred by AGA are in the right pane below. The program yielded trajectories 

that are clearly inconsistent with the temporal information – for example, with cells of day 0 

(cluster 1) going directly to late-stage Stromal cells at days 14 through 18 (clusters 63 and 

58). In addition, AGA infers extensive transitions from the Stromal region to the iPSC 

region; this is not biologically plausible because the Stromal cells express strong senesce 

programs. These problems appear to arise due to the failure to incorporate temporal 

information and to model rates of cellular growth and death.

Category 3 results

STITCH.: This method was developed by (Wagner et al., 2018), in an application to 

zebrafish embryonic development. The method constructs a k-NN graph within the cells at 

each time point and then stitches these together by connecting various cells from adjacent 
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time points. Figure S7E shows the resulting graph when applied to our reprogramming data 

(2i conditions). The STITCH graph shows iPSCs are largely arising from the Stromal region 

(that is, the majority of edges connecting to the iPSC region come from the Stromal region). 

This inference is biologically implausible, as the Stromal cells express strong signatures of 

senescence and apoptosis. This method appears to fails on our data because it does not 

model the rapid proliferation of iPSCs — and thus concludes that iPSCs at later time points 

must come from other sources. (It might be possible to modify STITCH to incorporate cell 

growth by connecting each cell to a different number of neighbors, based on an estimate of 

growth).

scDiff.: This method (Rashid et al., 2017) produces a tree of clusters by clustering cells at 

each time point, moving cells between time points to account for asynchronicity, and 

assigning to each cluster a single parent cluster. Applied to our data (serum conditions), the 

method fails to identify iPS, Neural, Trophoblast and Stromal as coherent categories. It 

produces a tree with 54 leaves, only 4 of which consist of day 18 cells. Some of the leaves 

consist of day 2 cells. The method appears to fail on our data because its fully unsupervised 

approach fails to identify meaningful cell sets.

GPfates.: This method (Lönnberg et al., 2017) identifies trajectories by fitting a mixture of 

Gaussian processes to model a set of branching trajectories over time. Applied to our data 

(2i conditions), GPfates identifies trajectories to incoherent locations (Figure S7F). Multiple 

trajectories lead to cells sets containing both iPS and Stromal cells. This implies that iPSCs 

have significant ancestry in the Stromal region, where apoptotic and senescent programs are 

highly expressed. The method appears to fail on our data because its fully unsupervised 

approach does not identify meaningful cell sets and it does not model cell growth.

Sampling bias—In principle, sampling bias could be introduced in sample preparation (in 

which trypsinized cells are filtered to remove clumps prior to encapsulating the single cell 

suspension) or in single cell library preparation. To determine whether the proportion of cell 

types observed in our single-cell data accurately reflected the proportion of cell types in the 

biological sample, we performed two experiments.

First, we examined the effect of the filtering process by comparing bulk RNA-seq profiles of 

material collected before and after filtering. Samples were collected in triplicate at days 4, 8, 

12, 14, and 16 in serum and 2i conditions. To test the effect of filtering, we compared the 

correlations between groups (prefiltered and post-filtered) to the variation within each group. 

We observed that the pre- and post-filtered samples were indistinguishable at all time-points, 

with the exception of day 16 in serum conditions (for which the pre- vs. post- correlation is 

lower than the pre- vs. pre- correlation and the post- vs. post- correlation.

Second, we examined the effect of the overall process, including both sample and library 

preparation. We collected bulk RNA-seq profiles directly from cells in the plate on days 12 

and 16 in both 2i and serum (4 profiles). We compared these profiles to additional scRNA-

seq data collected in singlicate at these days and conditions, as well as to the scRNA-seq 

data collected in duplicate in our main experiment (12 profiles, of which one was discarded 

as discordant with all of the time points in our main experiment). We examined whether the 
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cell type proportions in the single-cell data were consistent with the bulk RNA-seq profile, 

based on gene signatures of each cell type. The results were consistent at all time-points, 

with the exception of day 16 in serum conditions (at which trophoblasts appear to be 

underrepresented by ~3-fold in the single-cell data).

To test whether such an underrepresentation of trophoblasts at day 16 in serum conditions 

would have an effect on our inferred trajectories, we reweighted the empirical distributions 

in our optimal transport framework and repeated our analyses. Because the reprogramming 

process was essentially complete by day 16, the reweighting had no impact on any of our 

biological conclusions (and had no significant on the optimal transport results apart from 

slightly increasing transitions to stromal cells from day 16 to day 18).

Pilot study—In our pilot study, we collected 65,000 expression profiles over 16 days at 10 

distinct time points (and 9 in serum). We compare results from the larger study to the pilot 

study in Figure S1B,C, where we show trends in expression along trajectories to each major 

cell set: iPSCs, Neural-like, Trophoblast-like (placenta-like in pilot), and Stromal. We find 

that the expression trends are reasonably similar. Moreover, by comparing the ancestor 

divergence plots for the two studies, we find that in both studies the stromal population 

gradually diverges early in the time course and there is a sharp divergence of iPSC from 

Neural and Trophoblast just after removal of Dox at day 8.

DATA AND SOFTWARE AVAILABILITY

We have uploaded our data to NCBI Gene Expression Omnibus. The identification number 

is:

Single cell RNA-seq raw data GSE122662

Our data is also available on the Broad Single Cell Portal:

https://portals.broadinstitute.org/single_cell/study/optimal-transport-analysis-of-ipsc-

reprogramming

Our software package is available on GitHub:

https://github.com/broadinstitute/wot

ADDITIONAL RESOURCES

We have developed an interactive software package complete with simulated examples and 

tutorials:

https://broadinstitute.github.io/wot/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Optimal transport analysis recovers trajectories from 315,000 scRNA-seq profiles

Induced pluripotent stem cell reprogramming produces diverse developmental 

programs

Regulatory analysis identifies a series of TFs predictive of specific cell fates

Transcription factor Obox6 and cytokine GDF9 increase reprogramming 

efficiency
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Figure 1. Modeling developmental processes with optimal transport.
(A) A temporal progression of a time-varying distribution ℙt (left) can be sampled to obtain 

finite empirical distributions of cells ℙti
. at various time points t1, t2, t3 (right). Over short 

time scales, the unknown true coupling, γt1,t2, is assumed to be close to the optimal 

transport coupling, πt1,t2, which can be approximated by πt1, t2
 computed from the empirical 

distributions ℙt1
 and ℙt2

. (B) Single-cell profiles (individual dots) are colored by the time of 
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collection. (C) Descendants of a cell set (black) at later times. (D) Ancestors at earlier times. 

(E) Shared ancestry of two cell sets (black). Ancestors of each population shown in red and 

blue, shared ancestors in purple. (F) Expression of gene signatures (left; green, high 

expression; grey, low expression) can be predicted from earlier expression of transcription 

factors (middle; black, high expression; grey, low expression) in a gene regulatory model by 

analyzing trends along ancestor trajectories (right).
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Figure 2. A single cell RNA-Seq time course of iPSC reprogramming.
(A) Reprogramming of secondary (2°) MEFs from E13.5 embryos. Each dot represents a 

collection time-point. (B-F) FLE visualization of scRNA-seq profiles (individual dots). (B) 

Intensity indicates density of cells in the 2D FLE. (C) Cells colored by condition, with 

Phase-1 (dox) in black and Phase 2 in blue (serum) and red (2i). (D) Cells colored by time 

point, with Phase-2 points from only either 2i condition (left) or serum condition (right). 

Grey points represent Phase-2 cells from the other condition. (E) Patterns of gene signature 

scores on the FLE. (F) Cell set membership. (G) Relative abundance (y-axis) of each cell set 
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(colored lines) plotted over time in 2i (top) and serum (bottom). (H) Schematic 

representation of trajectories. (I) Ancestor divergence for pairs of trajectories. Divergence 

(y-axis) is quantified as 0.5 times the total variation distance between ancestor distributions. 

(J) Quality of interpolation in serum for OT (red), null models with growth (blue) and 

without growth (teal). Shaded regions indicate 1 standard deviation. Note that OT is almost 

as accurate as the batch-to-batch baseline (green). See also Figure S1, S7, Table S1, S2, S6 

and Movie S1.
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Figure 3. In initial stages of reprogramming, cells progress toward stromal or MET fates
(A) The log-likelihood of obtaining stromal vs. MET fate shows a gradual emergence of 

fates from day 0 through 8. (B) Ancestors of day 18 stromal cells in serum. Color shows day, 

intensity shows probability. (C) Ancestors of day 8 MET cells have a distinct trajectory. (D) 

Activity of gene signatures and individual gene expression (log(TPM+1)) that are associated 

with stromal activity and senescence. (E) and (F) Gene signature trends along indicated 

trajectories. (G) TF expression trends along stromal and MET trajectories. See also Figure 

S2 and Table S2, S3.
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Figure 4. iPSCs emerge from cells in the MET Region
(A) Ancestor trajectory of day 18 iPSCs in 2i (left) and serum (right) (color shows day, 

intensity shows probability). (B) Expression (log(TPM+1)) of pluripotency marker genes. 

(C) Expression trends along ancestor trajectory in serum for gene signatures (top) and TFs 

(bottom). (D) X-reactivation signature (mean z-score) and Xist expression (log(TPM + 1)) 

on the FLE. (E) Trends in X-inactivation, X-reactivation and pluripotency (Table S4) along 

the iPSC trajectory in 2i. Each curve has a different y-axis, indicated by color. See also 

Figure S3 and Table S2, S4.
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Figure 5. Extra-embryonic and neural-like cells emerge during reprogramming
(A) Ancestor trajectory of day 18 trophoblasts in 2i (left) and serum (right) (color shows 

day, intensity shows probability). (B) Expression trends along trophoblast trajectory in 

serum for gene signatures (left) and individual TFs (right). (C) An embedding of 

trophoblasts, colored by signature scores (−log10( FDR q-value)) of TPs, SpA-TGCs, and 

SpTBs, or by expression of LaTB marker gene Gcm1 (log(TPM + 1)). (D) Average 

expression of housekeeping genes on chromosomes in single cells (dots) with evidence of 

genomic amplification (left) or loss (right), relative to all cells without evidence of 
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aberrations (y-axis). (E) Cells are colored by statistical significance (−log10(q-value)) of 

sub-chromosomal aberrations. (F) Average expression of genes on chromosome 15 in 

trophoblast-like cells with evidence of a recurrent sub-chromosomal amplification (y-axis, 

fold change (FC) in expression relative to other cells). (G) Ancestors of day 18 cells in the 

neural region. (H) Expression trends along the neural trajectory for gene signatures (left) and 

individual TFs (right). (I) Abundance of neural subtypes. (J) A Neural FLE colored by 

significance of signature scores (−log10(FDR q-value)) and expression of markers (log(TPM 

+ 1)). See also Figure S4 and Table S2.
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Figure 6. Paracrine signaling
(A) High paracrine signaling interactions occur between groups of cells with high expression 

of ligand in one group and cognate receptor in the other group. (B) Net paracrine signaling 

interaction scores in serum. Each dot shows the net score for a pair of cell clusters (Figure 

S5A). (C-E) Potential ligand-receptor pairs between ancestors of stromal cells and iPSCs 

(C), neural-like cells (D), and trophoblasts (E). (F-H) Expression level (log(TPM+1)) of 

ligands (above) and receptors (below) for top interacting pairs between stromal cells and 

iPSCs (F), neural-like cells (G), and trophoblasts (H). See also Figure S5 and Table S5.
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Figure 7. Obox6 and GDF9 enhance reprogramming
(A) Log-likelihood ratio of obtaining iPSC vs non-iPSC fate on each day (x-axis) in 2i. 

Obox6+ cells in red. (B) Bright field and fluorescence images of iPSC colonies generated in 

2i by overexpression of OKSM with either Zfp42 or Obox6 (or negative control). (C) 
Percentage of Oct4-EGFP+ colonies in 2i on day 16, for one of five experiments (Figure 

S6D). Error bars show standard deviation of three biological replicates. (D-F) Effect of 

varying concentration of GDF9 (red) vs control (grey) on (D) Oct4-EGFP+ colonies (error 

bars show standard deviation); (E) the strength of iPSC signature score in bulk RNA-Seq; 

and (F) cellular composition assayed by scRNA-seq. (G) Schematic of the reprogramming 

landscape in serum. Color indicates cell-set membership. Color of TFs indicates which cell 

set they regulate. Color of cytokine indicates the cell class to which they signal. See also 

Figure S6.
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