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Abstract

Purpose of review: The most effective strategies for treating the patient with acute respiratory 

distress syndrome (ARDS) center on minimizing ventilation-induced lung injury (VILI). Yet, 

current standard-of-care does little to modify mechanical ventilation to patient-specific risk. This 

review focuses on evaluation of bedside respiratory mechanics, which when interpreted in patient-

specific context, affords opportunity to individualize lung-protective ventilation in patients with 

ARDS.

Recent findings: Four biophysical mechanisms of VILI are widely accepted: volutrauma, 

barotrauma, atelectrauma, and stress concentration. Resulting biotrauma, i.e. local and systemic 

inflammation and endothelial activation, may be thought of as the final common pathway that 

propagates VILI-mediated multiorgan failure. Conventional, widely utilized techniques to assess 

VILI risk rely on airway pressure, flow, and volume changes, and remain essential tools for 

determining overdistension of aerated lung regions, particularly when interpreted cognizant of 

their limitations. Emerging bedside tools identify regional differences in mechanics, but further 

study is required to identify how they might best be incorporated into clinical practice.

Summary: Quantifying patient-specific risk of VILI requires understanding each patient’s 

pulmonary mechanics in context of biological predisposition. Tailoring support at bedside 

according to these factors affords the greatest opportunity to date for mitigating VILI and 

alleviating associated morbidity.
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Introduction

Injurious forces during mechanical ventilation represent a key modifiable factor influencing 

the clinical course of patients with acute respiratory distress syndrome (ARDS) [1,2]. 

Clinical management of ARDS therefore must prioritize optimizing ventilatory support to 
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minimize injury precipitated by mechanical ventilation. Quantifying the patient-specific risk 

of ventilation-induced lung injury (VILI) requires understanding patient-specific biological 

predisposition and pulmonary mechanics [3*,4]. Implications of molecular subphenotypes of 

ARDS are discussed elsewhere in this Issue. This article explores practical strategies for 

personalizing ventilatory support. Bedside tools to help discern injurious mechanical 

ventilation are reviewed, including their interpretation, assumptions, strengths, and 

limitations (Table 1).

Why bedside physiology matters

Clinically overt barotrauma has been recognized as a potential complication of positive 

pressure ventilation for over half a century [5]. While gross barotrauma of course is an 

example of VILI, it is not synonymous with VILI. Innumerable experiments have proven 

mechanical ventilation also can have less overt deleterious effects [6,7]. Endothelial barrier 

disruption, pulmonary edema formation, and cellular and tissue injury historically were 

thought due to ARDS per se, but over the last few decades all have been shown to be 

manifestations of VILI as well [2].

Whether these occult signs of VILI translate affect patient-centered outcomes also has been 

settled. Three landmark clinical trials together offer definitive proof in humans that 

mechanical ventilation strategy contributes to morbidity and mortality in patients with 

ARDS [1,8,9]. They collectively demonstrated that ventilation with lower-than-conventional 

tidal volumes attenuate lung injury, extrapulmonary organ injury, and systemic 

inflammation, and improve survival in ARDS. In the largest and most widely cited of these 

trials, the NHLBI ARDS Network trial observed improved morbidity and mortality with 

lower tidal volumes despite no difference in gross barotrauma [1]. Otherwise stated, 

clinically relevant VILI can be pernicious.

Due to lack of well-validated, clinically available, real-time biomarkers of VILI, bedside 

respiratory physiology represents the primary tool for adapting mechanical ventilation to 

patient-specific risk. Several groups are pursuing lung-specific molecular markers of injury 

that can be detected in the blood [10-14], although a well-performing marker specific to lung 

injury has proven elusive so far. Even if/when a “troponin-equivalent for the lung” is 

established for clinical use, bedside physiology will be crucial for identifying the patient-

specific mechanisms of VILI and guiding appropriate interventions.

VILI mechanisms intended for measurement

Familiarity with VILI mechanisms is important for evaluating the role for various bedside 

physiologic tools aimed at quantifying lung injury risk. Five classic mechanisms of VILI are 

widely recognized: volutrauma, barotrauma, atelectrauma, stress concentration, and 

biotrauma [15].

Volutrauma

High tidal volumes cause inflammatory pulmonary edema and histologic evidence of VILI 

[1,8,16,17] termed volutrauma. The volume of aerated lung is substantially less in ARDS, 
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relative to healthy lung size, due to alveolar edema and atelectasis [18]. This “baby lung,” 

i.e. the smaller aerated lung volume available for tidal ventilation, requires smaller tidal 

volumes than tolerated in healthy lungs to prevent overdistension [19]. Targeting 6 mL/kg 

predicted body weight scales tidal volume to healthy lung size, while an ideal strategy might 

scale tidal volume to baby lung size [20**-23]. Measuring baby lung volume directly, or 

developing surrogate bedside measures, enables tailoring ventilatory support to risk of 

overdistension. Still, differences in regional mechanics within the aerated baby lung can 

occur, predisposing some lung units to overdistension injury even if global lung volumes 

appear reasonable [24].

Barotrauma

Pressure-mediated lung injury, including both gross barotrauma and deleterious microscopic 

lung injury [7,25] is termed barotrauma. Transpulmonary pressure is the pertinent distending 

pressure of the lung, and defined as the difference in pressure inside versus outside the lung, 

i.e. airway pressure minus pleural pressure (Figure 1) [26]. High airway and transpulmonary 

pressures encountered in ARDS may reflect overdistension of the smaller aerated baby lung 

volume [27]. Aerated lung volume and transpulmonary pressure correlate well in both 

imaging and pulmonary function studies [20**,23,27]. Like the limitations with volume-

based measures, regional differences in mechanics may risk lung injury even if global 

pressure-based measures appear reasonable [28].

Atelectrauma

Cyclic collapse and re-expansion of atelectatic but recruitable lung units causes injurious 

high shear forces, a phenomenon termed atelectrauma [29,30]. The predilection for 

atelectrauma in the ARDS lung is at least partially explained by surfactant dysfunction with 

lung inflammation [29,31]. As an air bolus propagates along a collapsed lung unit, the re-

expanding airway takes a “zipper-like” conformational shape that produces tremendously 

high shear forces, contributing to epithelial injury [32]. Higher PEEP often is used to 

minimize atelectrauma but may increase risk of overdistension [33].

Stress concentration

Lung injury also can be induced by shear forces from regional differences in lung 

mechanics. Adjacent alveoli share an interalveolar septum and are mechanically 

interdependent [34]. When one alveolus is collapsed or fluid-filled and an adjacent alveolus 

is aerated, their shared interalveolar septum stretches to shift toward the non-aerated 

alveolus, introducing shear force that may cause injury [35]. The atypical conformation the 

aerated alveolus now takes affects other nearby alveoli because of their mechanical 

interdependence, with shear forces greatest closest to the collapsed or fluid-filled alveolus, 

i.e. stress concentration (Figure 2). Greater mechanical heterogeneity and thereby more 

stress concentration corelates with biomarkers of VILI and increased mortality [36,37**], 

supporting clinical relevance.
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Biotrauma

Biotrauma might be thought of as the final common pathway of VILI. Extensive mechanical 

injury, via the above biophysical mechanisms, precipitates inflammation in the lung that 

further exacerbates injury [9,38]. What’s more, this biological response in the lungs can 

trigger a systemic inflammatory response that mediates multiorgan failure [39,40]. Thus, 

“lung-protective ventilation” is a misnomer. In fact, preventing VILI facilitates more rapid 

recovery of both the lungs and extrapulmonary organs [1,39].

Tools Available at the Bedside Anywhere

Targets for bedside measurement include quantifying pressures, volumes, and shapes (shear 

forces), on regional and global scales. Available measures can be categorized further as 

static, a cross-sectional snapshot at the beginning or end of a respiratory maneuver often 

used to identify peak exposure; or dynamic, quantifying change during a respiratory 

maneuver. Both static and dynamic measures are likely to be of value: higher peak stress 

correlates with worse lung injury [20**,41], and yet for the same peak stress, greater cyclic 

stress portends worse lung injury [42-44]. Thus, static and dynamic measures should be 

evaluated together.

To be sure, there is no holy grail technique for guiding mechanical ventilation in ARDS. 

Newer methods offer intriguing possibilities for filling gaps in VILI detection. However, 

nothing on the horizon seems can replace the value of the astute clinician carefully 

interpreting multiple physiologic data points together in patient-specific context. That 

context necessarily includes (1) measures of gas exchange impairment (PaO2:FiO2 or 

SpO2:FiO2, dead-space fraction or ventilatory ratio [45]), (2) estimation of the chest wall 

contribution to gas exchange and respiratory system mechanics, (3) assessment of the 

patient’s current overall acuity of illness including extrapulmonary organ injury, and (4) 

assessment of the patient’s clinical trajectory.

Physical exam

Bedside examination affords several opportunities to collect evidence for ascertaining VILI 

risk. Visual inspection of the patient’s body habitus, fat distribution, and abdominal 

protuberance, along with palpation for abdominal compliance, color assessment of chest 

wall mechanics and the extent to which pleural pressure may contribute to observed airway 

pressures. Visual inspection of the patient’s chest and abdomen paired with listening to the 

ventilator rhythm can help identify patient-ventilator dyssynchronies [46,47]. Forceful 

exhalation, which may predispose to atelectrauma, can be appreciated by visualizing 

“rounding up of the abdomen” or gentle palpation of the abdominal muscles in late 

expiration [48]. Assessment of airway pressures, inspired and expired tidal volumes, and 

ventilator waveforms—all detailed below—should be viewed as routine components of the 

focused physical exam for the ARDS patient.

Airway plateau pressure

Plateau airway pressure, measured absent patient effort during an end-inspiratory breath 

hold, is among the most widely used markers of VILI risk. Higher plateau pressure may 
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suggest overdistension of aerated baby lung volume. The ARDS Network protocol adopted a 

maximum permissible plateau pressure of 30 cmH2O [1]. However, patients with lower 

plateau pressure fared better in that trial [49], tidal hyperinflation can occur even when this 

plateau pressure threshold is not exceeded [24], and reducing tidal volume to achieve lower 

plateau pressure in severe ARDS attenuates lung inflammation [41]. Plateau airway pressure 

cannot be used alone to make inference about baby lung distension for two key reasons. 

First, plateau pressure measures the contribution of both lung and chest wall recoil [26,50]. 

Thus, in a patient with morbid obesity or tense abdomen, for example, plateau pressure may 

be high in part (or entirely) owing to chest wall mechanics and high pleural pressure, with 

little transmural stress to the lung and low risk of lung injury. Second, plateau pressure 

values are only meaningful if measured while the patient is passive; inspiratory or expiratory 

muscle effort will yield misleadingly high or low values, respectively. Still, when measured 

correctly and interpreted in context with limitations in mind, plateau pressure is a reasonable 

and readily accessible marker of VILI risk.

Airway driving pressure

Driving pressure, the difference between airway plateau pressure and PEEP [8], may be 

useful to identify tidal overdistension, particularly when framed as a means for scaling tidal 

volume to respiratory system compliance (dP = VT/CRS) [51]. Prospective clinical trials 

scaling tidal volume in this manner are warranted, although the upper limit of “safe” driving 

pressure remains uncertain and likely varies by biology [3]. In pressure-targeted ventilator 

modes, preset driving pressure provides false assurance for VILI protection if the patient is 

making active inspiratory effort, because transpulmonary pressure—the physiologically 

pertinent distending pressure—and tidal volume are unregulated [52]. Driving pressure also 

has been used to titrate PEEP [53-55], though its value for such is questionable. A recent 

trial compared PEEP titrated to minimize driving pressure versus an empiric low-PEEP 

strategy and demonstrated increased mortality in the driving pressure-guided PEEP arm, 

although the aggressive recruitment maneuver in this arm also likely contributed to these 

findings [55].

Exhaled tidal volume

In any assist-control mode (including volume assist-control), the true tidal volume delivered 

may be higher than intended with breath stacking dyssynchrony, a patient-ventilator 

interaction in which consecutive machine inspiratory cycles occur with incomplete 

exhalation between them [56*,57]. On most ventilators, the inspiratory tidal volume reported 

includes only the volume change during a single machine inspiratory cycle, misrepresenting 

the true volume change during breath stacking. By contrast, monitoring exhaled tidal volume 

affords a simple means of detecting occult high volumes from breath stacking, which can be 

detected by observing high-than-expected exhaled tidal volume immediately after the 

stacked breath pair. Similarly, in “dual” modes such as volume-targeted pressure-control, 

tidal volume may fluctuate considerably breath-to-breath with variable patient effort and can 

be detected with exhaled tidal volume.
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Ventilator waveform inspection

Airway pressure and flow waveforms contain a wealth of data that may facilitate insights 

into respiratory physiology. With respect to VILI risk, inspecting ventilator waveforms may 

help identify and differentiate mechanisms underlying potentially injurious dyssynchronies, 

such as double- or reverse-triggering breath stacking with resultant high tidal volumes [56*,

58]. Yet, impromptu visual inspection alone is inadequate since dyssynchrony waxes/wanes 

sufficiently with patient effort over time to escape infrequent inspection [59*], and some 

dyssynchronies are missed on visual inspection even when present [60].

Emerging Tools

The above conventional metrics fall short at capturing exposure to potentially injurious 

ventilation in a few key areas. Airway pressure-based measurements do not account for the 

contribution of pleural pressure to lung stress. Volume-based measurements do not account 

for the functional baby lung size. Cyclic atelectasis and regional mechanics are not well 

addressed. Supplementary techniques are emerging in the literature to help close these gaps.

Esophageal manometry

Esophageal pressure-guided ventilation overcomes a key limitation of airway plateau 

pressure, driving pressure, and PEEP by distinguishing chest wall from lung mechanics to 

calculate transpulmonary pressure. The chest wall and abdomen contribute unpredictably to 

pleural pressure [26,50]. Placing the balloon in the retrocardiac mid-thoracic esophagus 

approximates the center of the chest cavity and affords a reasonable surrogate of average 

pleural pressure in the chest [50,61-63], although spatial pleural pressure gradients exist 

[64,65]. Potential uses include to guide PEEP (via end-expiratory transpulmonary pressure) 

and tidal volume (via transpulmonary driving pressure and transpulmonary plateau pressure) 

[66]. An ideal PEEP would achieve transpulmonary pressure near zero, sufficiently high to 

maintain open recruitable airways while low enough to minimize overdistension. A pilot 

randomized trial found that such esophageal pressure-guided PEEP improved adjusted 

survival compared to the ARDS Network PEEP-FiO2 strategy, although unadjusted 

mortality did not achieve statistical significance [67]. Higher transpulmonary plateau 

pressure is associated with increased mortality in observational studies [20**], but how to 

use these data to guide clinical management remains uncertain. Esophageal manometry also 

may be helpful for identifying patient-ventilator dyssynchronies [66], although clinical 

importance of dyssynchrony remains unclear.

Measures of ‘baby lung’ volume

Quantifying ARDS aerated baby lung volume could be useful for scaling tidal volume. 

Computed tomography (CT) is used extensively in the literature to measure functional 

residual capacity [27,68-70]. CT has been invaluable for advancing understanding of 

regional mechanics in ARDS, but safety concerns about transporting high-acuity ARDS 

patients to the CT scanner and inability to trend over time without repeated CTs have 

precluded adoption clinically. Nitrogen wash-out/wash-in and helium dilution have been 

used to quantify end-expiratory lung volumes at bedside [22,23,71], and appear to correlate 

well with CT-derived measures [71]. The nitrogen wash-out/wash-in technique is available 
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on some new commercially available ventilators. Alternatively, a readily available approach 

described recently is to measure the baby lung inspiratory capacity by measuring the volume 

change during a 30-second, high-pressure breath hold at 40 cmH2O [20**]. Regardless of 

technique for quantifying aerated baby lung volumes, studies are needed to determine how 

best to use these measures to guide management.

Ventilator waveform computational analysis

Automated analysis of airway pressure and flow waveforms has focused largely on detecting 

patient-ventilatory dyssynchrony but also could help identify tidal recruitment and 

hyperinflation. Dyssynchrony detection algorithms are being developed that could easily be 

incorporated into ventilators via software upgrade [56*,72]. Due to its unintended high tidal 

volumes [56*,57], breath stacking dyssynchrony in particular seems likely to be injurious if 

frequent. Whether particular dyssynchronies contribute to injury or are simply 

epiphenomena remains to be established, and the dose-response between dyssynchrony and 

injury is unknown. Beyond dyssynchrony, stress index evaluates for tidal recruitment or 

hyperinflation by calculating the slope of the pressure-time waveform during inspiration. 

Stress index has performed well in both experimental models and human studies [33,73,74]; 

however, it requires specialized software at this time and is only validated in ventilator 

modes with constant inspiratory flow pattern.

Electrical impedance tomography

Lung electrical impedance tomography (EIT) is a fairly new bedside technique that 

facilitates evaluation of regional lung distension in a single transverse plane. Owing to its 

novelty for identifying regional differences in mechanics during respirations real-time at 

bedside, EIT has garnered excitement for use in identifying alveolar collapse, cyclic 

atelectasis, tidal hyperinflation, and stress concentration [28,75-77]. Major limitations of 

EIT include its evaluation only of a single cross-sectional plane (which may not accurately 

reflect activity in other lung regions), nonuniform imaging algorithms or indices, and limited 

availability [78]. The role for EIT-guided ventilation is being explored [79], but this 

promising technique likely will be relegated to research applications until wide agreement 

on relevant indices and their interpretation is established and linked more definitively to lung 

injury in large human studies.

Lung & diaphragm ultrasound

Lung ultrasound can be useful to aid in diagnosing ARDS [80-82]. Its role for guiding 

subsequent management to prevent VILI is questionable. Because it can readily detect 

atelectasis, lung ultrasound may be useful for identifying recruitment real-time in response 

to changing PEEP [83]. However, inability to detect overdistension or visualize the lung 

much beyond subpleural zones markedly limit utility for guiding ventilator settings. 

Mechanical ventilation-associated diaphragm injury can be assessed with ultrasound as well 

[84,85**], but again the extent to which this information can help guide management that 

would alter outcome is unproven.
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Conclusions

The most effective strategies for managing ARDS center on attenuating biophysical lung 

injury: low tidal volumes, prone positioning, and arguably neuromuscular blockade 

[1,8,9,39,86-89]. Even with low tidal volume ventilation targeting 6 mL/kg predicted body 

weight, the preponderance of evidence indicates some patients still experience VILI [41,90]. 

Identification of such occult VILI is an essential albeit elusive aspect of managing the 

ARDS patient. Several widely available metrics are available to evaluate VILI risk and seem 

particularly useful for determining risk of barotrauma and volutrauma. Emerging tools offer 

promise for overcoming limitations of conventional metrics and detecting regional 

mechanics relevant to atelectrauma and stress concentration. Ultimately, strategies will need 

to be developed that incorporate both bedside mechanics and biological priming for lung 

injury to tailor mechanical ventilation to patient-specific VILI risk.
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Key Points

• Tailoring mechanical ventilation to patient-specific risk of ventilation-induced 

lung injury (VILI) requires assessing both pulmonary mechanics and 

biological predisposition to lung injury.

• Conventional VILI metrics using airway pressure, flow, and volume changes 

remain essential bedside tools for assessing lung overdistension when 

interpreted cognizant of their limitations.

• Emerging tools including esophageal manometry, electrical impedance 

tomography, and ventilator waveform computational analysis overcome key 

limitations of existing VILI metrics and ultimately may facilitate development 

of novel personalized ventilation strategies.
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Figure 1. Transpulmonary pressure.
Transpulmonary pressure (Pairway – Ppleural) is the pertinent distending pressure of the 

lung. At zero flow, airway and alveolar pressure are equal; for example, during an end-

inspiratory plateau pres- sure maneuver. (A) Nonintubated patient, normal spontaneous 

breathing at end inspiration. (B) Intubated patient without respiratory disease, passive on 

mechanical ventilator at end inspiration. (C) Intubated patient, chest wall stiffness results in 

lower transpulmonary pressure and lower lung volume at end inspiration despite higher 

airway pressure. (D) Intubated patient, forceful inspiratory muscle effort, such as from 

heightened respiratory drive, produces high transpulmonary pressure and lung volume at end 

inspiration even though airway pressure is reasonably low. Paw, airway pressure; Ppl, pleural 

pressure; Ptp, transpulmonary pressure. (Reprinted from Beitler JR, Malhotra A, Thompson 

BT. Ventilator-induced lung injury. 2016;37:633-646.)
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Figure 2. Mechanical alveolar interdependence and shear strain.
Mechanical alveolar interdependence and shear strain. (A–C) Classic model of alveolar 

interdependence; each hexagon represents an alveolus in cross section. (A) Homogeneous 

alveolar inflation minimizes strain. (B) Atel- ectasis of center alveolus induces shear strain 

of neighboring alveoli. (C) Asymmetric inflation of center alveolus in- duces shear strain of 

neighboring alveoli. (D) CT chest with overlying map of CT-derived regional stress 

concentration caused by parenchymal heterogeneity in a representative patient with ARDS 

(light blue indicates low stress; orange indicates moderate stress; red indicates high stress). 

(Reprinted from [A–C] Mead J, Takishima T, Leith D. Stress distribution in lungs: a model 

of pulmonary elasticity. J Appl Physiol 1970;28(5):607; and [D] Cressoni M, Cadringher P, 

Chiurazzi C, et al. Lung inhomogeneity in patients with acute respiratory distress syndrome. 

Am J Respir Crit Care Med 2014;189(2):151.)
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Table 1.

Summary of Bedside Techniques

Bedside Tool Mechanism(s) of Ventilation-Induced 
Injury to be Measured

Advantages Limitations

Tools Widely Available at 
Bedside Now

Physical exam • Barotrauma (estimate chest 
wall mechanics)

• Atelectrauma (forceful 
expiration)

• Universally 
available

• No resource 
cost

• Difficult to 
quantify

• Limited data

• Inter-rater 
reproducibility

• Risk of 
delayed 
detection

Airway plateau pressure • Barotrauma • Easily measured

• Extensive data 
supporting some 
value

• Does not 
consider chest 
wall 
contribution

• Mis-
measurement 
during active 
patient effort

Airway driving pressure • Barotrauma • Easily measured

• Some data 
supporting value

• Potential to 
scale tidal 
volume

• Mis-
interpretation 
of preset value 
(pressure-
targeted 
modes) during 
active patient 
effort

Exhaled tidal volume • Volutrauma • Easily measured

• Real-time 
breath-to-breath 
detection

• Minimal data 
on precision

Ventilator waveform inspection • Volutrauma (breath stacking) • Widely available • Limited to 
time clinician 
is at bedside

• Inter-rater 
reproducibility

Emerging Tools

Esophageal manometry • Barotrauma (end-inspiratory 
PL)

• Atelectrauma (end-
expiratory PL)

• Overcomes 
limitations of 
measures 
relying on 
airway pressure 
alone

• Limited data 
on clinically 
important 
metrics & 
thresholds

Measures of ‘baby lung’ volume • Volutrauma • Future potential 
for scaling tidal 
volume

• Limited 
availability of 
most 
techniques

• Widely 
available 
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Bedside Tool Mechanism(s) of Ventilation-Induced 
Injury to be Measured

Advantages Limitations

technique not 
well validated

Ventilator waveform 
computational analysis

• Volutrauma (breath stacking)

• Barotrauma & atelectrauma 
(stress index)

• Real-time 
breath-to-breath 
detection

• Potential to be 
incorporated in 
ventilator 
software

• Clinically 
important 
metrics not 
well defined

Electrical impedance tomography • Volutrauma

• Atelectrauma

• Stress concentration

• Real-time 
breath-to-breath 
detection

• Assess regional 
differences in 
distension

• Evaluates 
single cross-
sectional 
plane

• Nonuniform 
imaging 
algorithms 
and indices

• Clinically 
important 
metrics not 
well defined

Lung & diaphragm ultrasound • Barotrauma (pneumothorax)

• Atelectrauma

• Diaphragm injury

• Evaluate for alternative 
diagnoses (cardiac and 
pleural ultrasound)

• Widely available • Inter-rater 
reproducibility

• Cannot detect 
overdistension

• Limited to 
subpleural 
zones

Abbreviations: PL: transpulmonary pressure, defined as airway minus pleural pressure.
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