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In this issue ofMolecular Therapy, Das et al.1

harness surface-receptor targeting nanopar-
ticle delivery to combat pancreatic ductal
adenocarcinoma with bifunctional short
interfering RNA (siRNA), which activates
the innate immune receptor retinoic acid-
inducible gene I (RIG-I) and silences the
anti-apoptotic protein Bcl-2. Nucleic acid re-
ceptor agonists are gaining importance in
cancer therapy2 as combination therapies
employing checkpoint inhibitors open up
new opportunities in immunotherapy and
add momentum to the field. A key challenge
for nucleic acid therapeutics, however, is
delivery, as they cannot freely traverse cell
membranes and need to be formulated in
ways that enable them to reach intracellular
compartments. Das et al.1 add a further layer
to this approach and use surface-modified
nanoparticles to deliver RIG-I agonists to
specific cancer cells in vivo.

RIG-I detects 50-tri- or diphosphorylated
double-stranded RNA, which is generated
in the cytosol during viral infection,3–5 and
signals via the adaptor protein MAVS (mito-
chondrial antiviral-signaling protein), lead-
ing to the production of type I interferon
and pro-inflammatory cytokines.6 Stimu-
lating this response with agonistic RNAs
can be exploited to direct the adaptive
immune system against cancer cells and
generate an immunogenic tumor microenvi-
ronment.7 In addition, RIG-I activation can
induce expression of the pro-apoptotic
Bcl-2 family members Puma (p53 upregu-
lated modulator of apoptosis) and Noxa,
which leads to efficient induction of
apoptosis in many tumors, but not in pri-
mary cells.8 Antagonizing anti-apoptotic
Bcl-2 can further enhance tumor cell-specific
apoptosis. As the minimal required ligand
size for RIG-I is very similar to that of
siRNA, these two functions can be readily
combined in the same molecule, termed
bifunctional siRNA. This approach has
been previously used to effectively treat
mouse models of cancer types that are largely
resistant to conventional chemotherapy,
such as melanoma9 and pancreatic cancer.10

So far, most preclinical in vivo applications
have been conducted using conventional
intravenous or intraperitoneal delivery with
transfection reagents such as in vivo-JetPEI,
and, even though many preclinical studies
have shown this non-specific approach to
be effective,11 more specific delivery methods
are desirable to improve treatment and
reduce side effects. When administered
intravenously, the majority of particles end
up in the liver, spleen, and lung. However,
both RIG-I-induced apoptosis and siRNA-
mediated targeting ideally require efficient
delivery to tumor tissue. In solid, topically
accessible tumors, this can be achieved by in-
tratumoral injection, as is currently pursued
in a clinical trial using the RIG-I activating
lead-compound RGT100 by MSD/RIGontec
(ClinicalTrials.gov: NCT0306502).

There is, however, a lack of methods to spe-
cifically deliver RIG-I agonists to surgically
inaccessible or widely distributed tumors
and metastases. Developing innovative solu-
tions for tumor cell-specific delivery, there-
fore, holds great promise to improve clinical
applicability of nucleic acid therapeutics in
cancer therapy.

Here, the authors tackle this issue by exploit-
ing sigma-receptor expression on pancreatic
ductal adenocarcinoma (PDAC) and mela-
noma for uptake of anisamide-conju-
gated nanoparticles containing bifunctional
siRNA. Sigma receptors are highly expressed
on many tumors12 and, although their natu-
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ral ligands and function are incompletely
understood, the Sigma1-receptor ligand ani-
samide is frequently used as a nanoparticle
surface modification to enable tumor target-
ing in vivo.13 In an orthotopic allograft
mouse model of PDAC, Das et al.1 show
that two low doses (5 mg per mouse and in-
jection) of nanoparticles encapsulating a
RIG-I-activating Bcl-2 siRNA are sufficient
to induce tumor regression. They demon-
strate a reduction of immunosuppressive
M2 macrophages in tumor tissue as well as
cytotoxic CD8 T cell infiltration and a pro-
inflammatory tumor microenvironment,
characterized by a reduction of interleukin
10 (IL-10)-expressing cells and increased
numbers of interferon-g positive cells. Ani-
samide-conjugated nanoparticles enhanced
delivery to tumor tissue approximately
3-fold when compared to non-nonjugated
particles and exhibited no long-lasting sys-
temic effects. Nevertheless, despite strongly
delayed tumor growth, the treatment was
not sufficient to cure animals or prolong
their lives. It will be interesting to see how
anisamide nanoparticle delivery performs
in more drastic treatment regimens, e.g.,
repeated high-dose injections of 50 mg/
mouse as used previously with non-targeted
JetPEI delivery in similar models.10

The results of Das et al.1 represent an impor-
tant step in the development of targeted im-
munotherapies, which will hopefully spark
further development in the field. So far, the
majority of particles still end up in the liver
and lung while, even with anisamide target-
ing, only about 2% reach their destination
in the tumor. Here, future improvements
are mandatory to enable clinical application
of targeted nanoparticle delivery. On the
other hand, it is not entirely clear how large
the individual contributions are of RIG-I
activation inside tumor cells versus the local
induction of tissue and peripheral immune
cells to ultimate therapeutic success. In
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addition to genetic experiments with RIG-I-
deficient cell lines and animals, selective tar-
geting with nanoparticles might shed light
on this topic.

If cell-specific targeting is consistently devel-
oped and more specific ligands are identified
in the future, it might soon be possible
to simultaneously deliver different siRNAs
and innate receptor agonists within the
same injection volume for a truly patient-
tailored immune response.
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