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The rapid rise and now widespread distribution of handheld 
and wearable devices, such as smartphones, fitness trackers, 
or smartwatches, has opened a new universe of possibili-
ties for monitoring emotion and cognition in everyday-life 
context, and for applying experience- and context-specific 
interventions in psychosis. These devices are equipped with 
multiple sensors, recording channels, and app-based oppor-
tunities for assessment using experience sampling meth-
odology (ESM), which enables to collect vast amounts of 
temporally highly resolved and ecologically valid personal 
data from various domains in daily life. In psychosis, this 
allows to elucidate intermediate and clinical phenotypes, 
psychological processes and mechanisms, and their inter-
play with socioenvironmental factors, as well as to evalu-
ate the effects of treatments for psychosis on important 
clinical and social outcomes. Although these data offer 
immense opportunities, they also pose tremendous chal-
lenges for data analysis. These challenges include the sheer 
amount of time series data generated and the many differ-
ent data modalities and their specific properties and sam-
pling rates. After a brief review of studies and approaches 
to ESM and ecological momentary interventions in psycho-
sis, we will discuss recurrent neural networks (RNNs) as 
a powerful statistical machine learning approach for time 
series analysis and prediction in this context. RNNs can be 
trained on multiple data modalities simultaneously to learn 
a dynamical model that could be used to forecast individual 
trajectories and schedule online feedback and intervention 
accordingly. Future research using this approach is likely 
going to offer new avenues to further our understanding 
and treatments of psychosis.
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Introduction

In recent years, the use of behavioral, physiological, and 
other digital data collected in the  context of daily life 
using wearable technologies to improve understanding of 
various mental health outcomes has received increasing 
attention. Recent work applying machine learning meth-
ods to experience sampling methodology (ESM) data 
showed that patterns differentiating patients with psy-
chosis spectrum disorder from controls could be recog-
nized with up to 82% accuracy.1 This article explores the 
potential of (deep) recurrent neural networks (RNNs), 
a machine learning method, which has been successfully 
applied for many types of time series data with sequential 
structure, like language and text processing2 or motion 
data,3 for harnessing digital data from wearable devices 
to further our understanding and optimizing treatment 
of psychosis.

Understanding Psychosis in Context

Over the past decade, there has been a growing num-
ber of studies using ESM4 (or synonymously, ecological 
momentary assessment5–7) to investigate the phenomenol-
ogy, onset, course, and outcome of psychosis in daily life, 
outside the research laboratory. ESM is a structured diary 
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technique that allows us to assess variation in thoughts, 
feelings, and behaviors from one moment to the next 
using repeated, naturalistic sampling several times a day 
over a number of (often consecutive) days.4–7 Data col-
lected using the ESM are now often referred to as active 
or explicit data, more generally,8 and there is a long tra-
dition of collecting data other than self-report requir-
ing active participation of the participant in experience 
sampling research such as taking cortisol samples.9 ESM 
is more than just a data collection method. As pointed 
out in a recent review by Myin-Germeys et  al,7 ESM 
has its origins in ecological psychology and emerged 
from the idea that experience and behavior are situated 
in context and vary over time, and thus, should always 
be assessed and investigated in relation to this context, 
and in the moment.7 This is nowadays typically achieved 
through using mobile devices, primarily applications on 
smartphones, and, although a number of methodological 
challenges and ethical issues remain,7 over 2 decades of 
experience sampling research in psychosis10,11 make ESM 
the most widely used and methodologically grounded 
mobile Health (mHealth) assessment method in the field. 
The most promising use of ESM in psychosis research 
has been in identifying intermediate and clinical pheno-
types, investigating psychological processes and mecha-
nisms (including cognitive variables using experimental 
ESM tasks12), and studying the  interplay with socioen-
vironmental contexts in daily life, as well as evaluating 
treatment effects for psychosis on important clinical and 
social outcomes.

Further, although ESM has long entailed collecting 
data in the context of daily life requiring no active par-
ticipation of the participant (eg, data on time, allowing 
to examine timing and calculate time budgets), triangu-
lation with additional, so-called passive or implicit data 
has become more common. This includes the use of GPS 
tracking (as another proxy for context), accelerometers, 
physiological sensors, keyboard interaction (on mobile 
devices), and data from other smartphone applications 
(eg, social media) and wearable technologies. This offers 
an opportunity to elucidate more fully how experience 
and behavior of people with psychosis interact with 
socioenvironmental context, physiological parameters, 
and other proxies over time using data from various 
modalities. This may help to approximate even better 
ecological psychology’s central posit of experience and 
behavior being situated in context.

Delivering Treatments for Psychosis in Context

Another recent development has extended the principles 
of ESM to the delivery of treatments for psychosis using 
mobile devices as part of what is now commonly referred 
to as ecological momentary interventions (EMIs).5,13,14 
EMIs are mHealth interventions that extend beyond pre-
vious ESM research by assuming that, if  experience and 

behavior are situated in context and vary over time, they 
are best targeted and most amenable to change in a given 
moment and context.13 More generally speaking, EMIs 
therefore are consistent with, and broaden the scope of, 
community mental health service delivery models, as 
they aim to translate treatments for psychosis beyond 
clinical settings to patients’ daily life. Examples of EMIs 
for psychosis are FOCUS, an automated intervention to 
provide illness management support for psychosis;15,16 
Mobile Assessment and Treatment for Schizophrenia,  
a text-messaging approach to targeting maladaptive 
beliefs corresponding to outcomes of socialization, med-
ication adherence, and voices in people with psychosis;17 
and Acceptance and Commitment Therapy in Daily 
Life (ACT-DL), which complements ACT sessions with 
3 days of exercises in daily life using an ESM app.

Despite these promising developments, the challenge 
that remains at this point is to identify key parameters in 
ESM and other digital data that reflect (1) risk markers 
for individuals in a given moment and context, and (2) 
targets for interventions (that may or may not coincide 
with risk markers) that optimize timing and effect on out-
comes in the context of daily life.

Time Series Models and Mobile Data

Data from mobile and wearable devices all come as time 
series (or longitudinal data). Time series, ie, the consecu-
tive repeated sampling of data points in time, need special 
attention and treatment from a statistical and machine 
learning perspective as they are usually (highly) temporally 
dependent and violate the common statistical assumption 
of independent samples. Time series models often express 
temporal dependencies in the data by some time-recursive 
function of the general form x F x x ut t t t t= …− −θ ( , , )1 ∆  , ie, 
the current observation xt  is assumed to depend on the 
values x xt t− −…1 ∆  of preceding observations up to some 
time lag ∆ , as well as on current external inputs (regres-
sor variables) ut . θ  denotes parameters of the system (like 
regression weights), and t  is a noise term (ie, a random 
variable). To make this concrete, we can consider, eg, 
the process of sensitization. Here, repeated exposure to 
an environmental risk factor results in a progressive in-
crease of the stress response, such that individuals expe-
rience a strong stress response even to minor stressors 
in daily life. It has been hypothesized that this enhanced 
stress response may facilitate the transition to psychosis.18 
In this example, the xt  may constitute consecutive stress 
responses (frequently operationalized as stronger emo-
tional reactions assessed as negative affect ESM ratings), 
which are related to previous stress responses x xt t− −…1 ∆  
and to minor stressors ut  (eg, ratings of unpleasant and 
taxing events, activities, and social situations) by a set of 
regression weights inferred from the data. Once such a 
model has been trained on the data, it can be used to sta-
tistically test various assumptions about the influence of 
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external regressors ut  or the nature of the dependencies 
in time, and most importantly perhaps, to produce predic-
tions about future states by running it forward in time.

The most popular and commonly employed class of 
time series models is “auto-regressive  moving average 
(ARMA)” models, where Fθ  is assumed to be a linear 
function for simplicity, and temporal relationships are 
expressed directly between observations xt  (ie, in our ex-
ample the individual’s future stress response is directly 
predicted from previous stress responses and external 
stressors via the estimated regression weights).

More powerful and perhaps interesting are so-called 
latent variable (“generative” or “state space”) models, 
which assume that there is some underlying but itself  
unobserved process z F z ut t t t= ( )−θ 1, ,  that generates the 
observations xt  according to some probability distribu-
tion p x zt t|( ) .19 Time series are usually generated by some 
underlying dynamical system that evolves in time,20 and 
it is this underlying system that we are often ultimately 
interested in. Coming back to our example, we may not 
be so much interested in the subjective ESM ratings per 
se, but only because these hint to some underlying psy-
chological or biological dynamical process we would like 
to tap into. In this specific case, we would be interested in 
the underlying sensitization process (or even concomitant 
changes in the dopaminergic transmitter system posited to 
be involved in this process in the development of psycho-
sis18). Thus, zt  would model some not directly observed, 
underlying affective, cognitive, or neural process such as 
sensitization that gives rise to the changes in subjective 
stress reactivity ratings xt . Hence latent variable models 

enable us, to some degree, to reveal the true processes of 
interest from some “surface measurements” that are a 
reflection of this underlying process. Although we have 
outlined this for just a single observation modality (stress 
reactivity ratings), generative models, if  designed prop-
erly, can combine and integrate information from many 
diverse sources, such as different sensor readings on top 
of ESM ratings, or different classes of environmental 
factors.

RNNs may be seen or cast as such latent variable time 
series models where the transition function Fθ  is highly 
nonlinear,21,22 a decisive difference to the former more 
common statistical models.22,23 It is well known that 
purely linear systems like ARMA models can only cap-
ture or produce a very limited class of dynamical phe-
nomena,24 eg, may not be able to properly model the 
pattern of reoccurring episodes of psychotic symptoms 
with relatively sudden onsets and slower offsets. RNNs, 
on the other hand, which, in theory, can be used to ap-
proximate (almost) any other dynamical system,25,26 are 
very powerful devices for modeling and predicting even 
complex multivariate time series, as they arise from mo-
bile sampling (see figure 1 for details).

Opportunities and Challenges of RNNs for Digital 
Data in Psychosis Research

RNNs as latent variable models, when trained on a set 
of time series data, come to represent the underlying 
dynamical process. In this sense, they build a dynami-
cal systems model of the person that could be used for 
predicting the individual’s behavior and for suggesting 

Fig. 1.  (A) Schema of a state space model, unwrapped in time, where the latent process is represented by a recurrent neural network 
(RNN). The latent states zt represent the activations of “neural units” that are connected and interact through “synaptic” weights (con-
necting black lines). “Recurrent” means that both forward and backward connections among units are present, in contrast to the much 
more common pure feedforward networks. These recurrent connections are what make these models true time series or dynamical system 
models that express recursive relationships in time. In the graphical representation here, stimulus inputs ut (in this case minor stressors in 
daily life and ecological momentary interventions) exert their effects directly onto the latent states (the underlying dynamical model of a 
person). These in turn generate observations xt, in this case stress response ratings and psychotic experiences, as assessed through ESM and 
other sensors on mobile and wearable devices. (B) Particular RNN architectures, or particular forms of the nonlinearities Fθ , enable the 
network to detect, represent, and predict very long-term (“deep”) temporal dependencies. By simulating the RNN model forward in time, 
longer-term predictions on future observations can be produced, as for instance depicted here for the example of symptom severity as a 
function of fictive potential stressors and an EMI at future time points.
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suitable interventions ahead of time, to change that 
predicted behavioral course. For instance, the models 
could warn individuals about upcoming risks and signal 
critical periods for EMIs and other interventions. Vice 
versa, by incorporating those EMIs as model inputs, the 
same RNN could be leveraged for predicting treatment 
response, paving the way for context-dependent and cus-
tomized interventions. Ultimately, a feedback loop that 
optimizes ESMs and EMIs iteratively and subject-specif-
ically could be realized.

This generative aspect of RNNs also enables us to pre-
dict the influence of environmental factors by simulation. 
The model can “generate” new behavior when forwarded 
in time such that model inputs for instance could be emu-
lated to assess the effect of specific interventions and 
their (hypothetical) interaction with other variables and 
the dynamical process itself. RNNs may also give insights 
into aberrant mechanisms underlying psychosis or other 
conditions, and by integrating many different features 
and inputs, unravel new types of relations between envi-
ronmental factors and behavior that were previously 
not known or hypothesized to exist. As these relations 
may be rather complex and involve long-term temporal 
dependencies,21 hard to assess intuitively, merely raising 
awareness by feedback could already prove useful from a 
psychoeducative perspective.

Of course, although very powerful, such models also 
come with major challenges. These include the compu-
tational and data aspects of  model training, ethical and 
data safety issues,27 as well as the selection of  appropri-
ate model inputs and features (both of  which may be 
sampled at different frequencies and may follow differ-
ent distributions). For instance, efficient RNN models 
may often require large amounts of  data for deriving 
their many parameters. A  potential solution to this is 
“transfer learning”22,28 where one uses data obtained 
from a larger group of  individuals for model pretrain-
ing, and data from the single individual for fine-tuning 
the model.29 Especially in such ecological contexts where 
each individual shapes their very own and unique expe-
riences, integrating data across many subjects may be 
particularly beneficial, as it may enable to piece together 
separate bits of  the same puzzle. This would also give 
us more powerful ways to study rare events such as 
when several risk factors come together in a specific 
combination.

Conclusion

Recent years have seen rapid progress in the use of 
behavioral, physiological, and other mobile data col-
lected in context of daily life using wearable technologies 
to improve understanding of psychosis. We have argued 
here that RNNs, a powerful statistical machine learning 
approach for time series analysis and prediction, can be 
trained on multiple data modalities simultaneously to 

learn a dynamical model to forecast individual trajec-
tories, and schedule online feedback and intervention 
accordingly. Future research using this approach is likely 
going to offer new avenues to further our understanding 
of, and treatments for, psychosis.
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