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Involvement of TRPM2 and TRPM8 
in temperature-dependent masking 
behavior
Wataru Ota   1,2, Yusuke Nakane1,2, Makiko Kashio4, Yoshiro Suzuki   5,6,  
Kazuhiro Nakamura   7, Yasuo Mori8, Makoto Tominaga5,6 & Takashi Yoshimura   1,2,3,9

Masking is a direct behavioral response to environmental changes and plays an important role in the 
temporal distribution of activity. However, the mechanisms responsible for masking remain unclear. 
Here we identify thermosensors and a possible neural circuit regulating temperature-dependent 
masking behavior in mice. Analysis of mice lacking thermosensitive transient receptor potential (TRP) 
channels (Trpv1/3/4 and Trpm2/8) reveals that temperature-dependent masking is impaired in Trpm2- 
and Trpm8-null mice. Several brain regions are activated during temperature-dependent masking, 
including the preoptic area (POA), known as the thermoregulatory center, the suprachiasmatic nucleus 
(SCN), which is the primary circadian pacemaker, the paraventricular nucleus of the thalamus (PVT), 
and the nucleus accumbens (NAc). The POA, SCN, PVT are interconnected, and the PVT sends dense 
projections to the NAc, a key brain region involved in wheel-running activity. Partial chemical lesion 
of the PVT attenuates masking, suggesting the involvement of the PVT in temperature-dependent 
masking behavior.

The circadian clock, a 24-hour endogenous biological timer, is highly conserved in virtually all living organisms. 
This clock regulates various physiological and behavioral processes, such as sleep–wake cycles and metabolism. 
Entrainment and masking are two independent processes that determine whether animals exhibit diurnal or noc-
turnal behavior1,2. Entrainment refers to synchronization of the circadian clock to environmental cycles, whereas 
masking is a direct response to environmental signals with a change in activity. Interplay between entrainment 
and masking results in the distribution of locomotor activity to a specific time of day, known as the temporal 
niche. Entrainment of circadian rhythms is mediated by light information received by rods, cones, and melanop-
sin (OPN4)-expressing retinal ganglion cells. This information is then conveyed to the suprachiasmatic nucleus 
(SCN), the central circadian pacemaker located in the hypothalamus, directly via the retinohypothalamic tract 
(RHT) and indirectly from the intergeniculate leaflet (IGL) via the geniculo-hypothalamic tract (GHT)3–6. Thus, 
the photoreceptors and neural circuits involved in photoentrainment are well established. In marked contrast, the 
mechanism(s) responsible for masking behavior remain unclear.

Non-mammalian vertebrates perceive light information directly within the brain via deep brain photore-
ceptors7. In previous studies, we found that OPN5-positive cerebrospinal fluid (CSF)-contacting neurons within 
the hypothalamus are among the deep brain photoreceptors that regulate seasonal reproduction in birds8,9. 
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Interestingly, light also penetrates the brain of some mammalian species10, and OPN5 is expressed in the mouse 
and human brain11,12. However, the physiological function of OPN5 within the mammalian brain is unknown.

In an effort to understand the physiological function of OPN5 in the mouse brain and test for the possi-
ble existence of extra-ocular photoreception in mice, we serendipitously observed suppression of locomotor 
activity in blinded mice. Further experiments demonstrated that the phenomenon we observed was, in fact, 
temperature-dependent masking behavior. We went on to identify two thermosensors (TRPM2 and TRPM8), 
which regulate this adaptive behavior by analyzing all available transient receptor potential (TRP) channel–
null mice (Trpv1/3/4 and Trpm2/8). Moreover, we propose a possible neural circuit that mediates this behav-
ior based on expression analysis of the neuronal activation marker Fos and chemical lesions in the brain. In 
particular, the paraventricular nucleus of the thalamus (PVT) may be an important interface that regulates 
temperature-dependent masking behavior.

Results
Blinded mice exhibit masking behavior during UVA light exposure.  Since mouse and human OPN5 
exhibit absorption maxima in the ultraviolet A (UVA) range (360–380 nm)12,13, we first examined the effect of 
UVA light on wheel-running activity of blinded C57BL/6 J mice to investigate whether mice have the capacity 
for extra-ocular photoreception. As expected, intact mice entrained to LD cycles of both white light and UVA 
light (Fig. 1a), whereas blinding caused free-running rhythms under both of these lighting conditions (Fig. 1b) 
(n = 5). These results are consistent with previous reports showing that eyes are the only photoreceptive organ in 
mammals14,15. Surprisingly, however, we observed decreased locomotor activity, an example of negative masking 
behavior1,2, in blinded mice during exposure to UVA light (Fig. 1b). Although negative masking was observed 
in all blinded mice tested, the free-running period and extent of masking varied among individuals. Therefore, 
to further characterize this variability, we analyzed wheel-running activity in additional blinded mice (n = 23). 
Although the typical free-running period of C57BL/6 J mice is a bit shorter than 24 hours, blinded mice exhibited 
a broader range and decreased stability in free-running period (Fig. 1c–e). These variations are likely due to the 
absence of retinal circadian oscillators, which are normally coupled to and interact continuously with the circa-
dian pacemaker in the SCN16. About 70% of blinded mice exhibited masking behaviors immediately after transfer 
to a UVA-LD cycle (Fig. 1f), whereas the rest of the animals developed masking behaviors gradually. When we 
examined the onset of masking, we noticed that blinded mice exhibited masking behavior when the onset of UVA 
light coincided with the middle of the subjective day (i.e., circadian time ~6; circadian time 12 is defined as the 
time of activity onset in nocturnal animals under constant conditions) (Fig. 1g). Phase-specific negative mask-
ing effects in mice have also been reported by Hoffmann17. Thus, the variation in the onset of masking behavior 
appears to depend on the large variation in free-running period caused by blinding. In any event, all animals 
exhibited masking behavior by 70 days after transfer to a UVA-LD cycle (Fig. 1f).

Temperature stimulus causes negative masking behavior in blinded mice.  Due to the 
phase-dependency of the onset of masking (Fig. 1g), we next exposed mice to an ultradian 7-hour (3.5/3.5-h) 
UVA-LD cycle6,18 (Supplementary Fig. S1a). Because mice cannot entrain their circadian rhythms to this 7-hour 
periodicity, the light and dark portions of the cycle move across the circadian cycle in this ultradian regime; thus, 
the pattern of activity under this regime represents masking effects rather than activity controlled by the circadian 
oscillator. Under this ultradian UVA-LD cycle, blinded mice confined their activity mostly to the dark phase but 
were active randomly under a white-LD cycle (Fig. 2a–c), consistent with the results shown in Fig. 1. Next, we 
tested whether this negative masking behavior was light-dependent by injecting India ink under the scalp19. This 
treatment reduced the intensity of light that penetrated the skull to approximately 1/200 of that in intact mice. 
However, India ink injection did not affect masking behavior (Fig. 2d–f), suggesting that mice were not using 
information from UVA light. When we examined more carefully the activity rhythms in Fig. 2g, we noticed a 
time lag between UVA light onset and activity offset. Based on this observation, we speculated that an ambient 
temperature (Ta) rise induced by UVA light might be causing the masking behavior. Indeed, when we measured 
temporal changes in Ta inside the light-tight box, we observed a significant increase in Ta following UVA light 
exposure (Fig. 2g). No such temperature rise was observed under white-LD cycles (Fig. 2h). The concurrence 
between high Ta (>30 °C) and masking behavior suggested that the Ta change caused by the UVA light apparatus 
was triggering negative masking.

Ta cycles induce negative masking behaviors in mice.  To confirm that Ta cycles were indeed causing 
the masking behavior, we next examined the effect of various Ta cycles in intact C57BL/6 J mice under constant 
darkness (DD). In mice, the thermoneutral zone ranges from 26 °C to 34 °C20,21. When mice were exposed to 
3.5/3.5-hour cycles of various temperature differences (24/24 °C, 24/26 °C, 24/28 °C, 24/30 °C, 24/32 °C, 24/34 °C; 
Supplementary Fig. S1b), negative masking was observed during exposure to the higher temperature, and the 
increase in the masking ratio was directly proportional to the increase in the temperature difference (Fig. 3a,b). 
We also analyzed wheel-running activity rhythms under various Ta cycles in which the difference between max-
imum and minimum temperature was held constant at 10 °C. Masking behavior was clearer in cycles at higher 
temperatures (Fig. 3c,d).

Impaired negative masking behavior in Trpm2 KO and Trpm8 KO mice.  To date, 10 TRP chan-
nels have been identified as thermosensors in mammals22,23 (Supplementary Fig. S2). TRPA1 and TRPM8 are 
cold-activated channels, whereas TRPV1, TRPV2, and TRPM3 are heat-activated. On the other hand, TRPV3, 
TRPV4, TRPM2, TRPM4, and TRPM5 are activated by warm temperatures22,23. The thermosensor(s) that medi-
ate temperature-dependent masking behaviors are unknown. To identify these thermosensor(s), we examined 
masking in all available TRP channel–null mice (Trpv1/3/4 and Trpm2/8) in our laboratory. Because the genetic 
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background of these knockout mice was C57BL/6N, we used C57BL/6N mice as control animals. Trpv1-, Trpv3-, 
and Trpv4-null mice showed no differences in behavior compared to wild-type mice. However, Trpm2- and 
Trpm8-null mice exhibited impaired masking behaviors in response to Ta cycles (Fig. 4a,c). Furthermore, we 
bred Trpm2- and Trpm8-null mice to generate double-KO (DKO) mice. Although the observed masking ratio in 
DKO mice was not significantly different compared to single-KO mice, DKO mice tended to exhibit more severe 
phenotypes at higher-temperature cycles (e.g., 24/30 °C, 24/32 °C, and 24/34 °C) (Fig. 4b,d). When we compared 
the total activity of KO mice used in this study, statistically significant differences were only detected in Trpv4-null 
mice at 24/24 °C and 24/26 °C cycles (Supplementary Fig. S3). The low activity observed in Trpv4-null mice is 
likely due to muscular atrophy concomitant with hereditary neuropathies in this mutant24. Since we evaluate 
masking by calculating the activity ratio between different temperatures, the motor dysfunction observed in 
Trpv4-null mice does not affect our results.

Figure 1.  Blinded C57BL/6 J mice exhibit masking behaviors during UVA light exposure. (a,b) Representative 
actograms of intact mice (a) and enucleated (Ex) blinded mice. (b) The 12-h light periods are shown as colored 
background (yellow: white light, purple: UVA light [λp = 365 nm]). Ex group mice were bilaterally enucleated 
on day 14 (Red arrows). (c–e) Representative actograms of blinded mice in the validation experiment. (f) 
Percentage of animals exhibiting the negative masking behavior in UVA light phase. (g) Rayleigh plot of the 
phases for the beginning of negative masking behavior. Individual data are plotted on the circle (n = 23). The 
direction of the arrow indicates the mean phase vector, and the length represents the strength of the phase 
clustering (r value). The p value is based on the Rayleigh test.
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Possible neural circuit underlying negative masking behavior.  To identify the neural circuit that 
regulates temperature-dependent masking behavior, we first examined the expression of a histochemical marker 
of neuronal activation, Fos, during temperature-dependent masking behavior by in situ hybridization. Thirty 
minutes of masking-inducing warm temperature stimulus (34 °C) increased Fos expression in several nuclei, 
including the nucleus accumbens (NAc), preoptic area (POA) of the hypothalamus (mainly the median preoptic 
nucleus [MnPO]), anterior paraventricular nucleus of the thalamus (aPVT), SCN, posterior PVT (pPVT), and 
dorsomedial nucleus of the hypothalamus (DMH) (Fig. 5a–c). The neural connections among these nuclei are 
well characterized, and the PVT appears to be an important interface for the regulation of temperature-dependent 
negative masking behavior (see Discussion). To confirm this hypothesis, we performed chemical lesioning of the 
aPVT by injecting ibotenate (Fig. 5d–g, Supplementary Figs S4 and S5). Lesion of the entire aPVT was technically 
impossible due to the high mortality rate caused by repeated injections. However, partial lesions of the aPVT 
were possible and led to a small (approximately 7%), but significant decrease in temperature-dependent negative 
masking behavior compared to saline-injected control mice (Fig. 5d–f). Note that total activity did not differ 
between these two groups (Fig. 5g) and that lesions outside the aPVT had no effect on negative masking behav-
ior (Supplementary Fig. S6). These results suggest that the aPVT is involved in regulation of negative masking 
behavior.

Figure 2.  Temperature stimulus generated by UVA light causes negative masking behaviors in blinded mice. 
(a,b,d,e) Representative actograms under 3.5/3.5-h LD cycle (a White light, b UVA light, d UVA light + Saline 
injection under the scalp, e UVA light + India ink injection under the scalp). (c) Masking ratio under white or 
UVA light. Mean ± SEM (n = 6; *p < 0.05, Student’s t-test). (f) Masking ratio under white or UVA light, with 
saline or India ink injection. Mean ± SEM (n = 5–7). (g,h) Temperature changes and representative actograms 
under UVA (g) or white (h) light–dark conditions.
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Figure 3.  Ta cycles induce negative masking behaviors in mice. (a) Representative actograms of C57BL/6J mice. 
Locomotor activities were recorded for 1 week in DD under various 3.5/3.5-h Ta cycles. Temperature cycle 
patterns are illustrated at the top. (b) Masking ratio under each Ta cycle. Mean ± SEM (n = 4; p < 0.01, ANOVA, 
F5, 23 = 38.94; p < 0.01, Scheffé’s post hoc test). (c) Representative actograms of C57BL/6 J mice in DD under 
various 3.5/3.5-h Ta cycles in which the temperature difference was held constant at 10 °C. LT: low temperature; 
HT: high temperature. (d) Masking ratio under each 10 °C temperature difference cycle. Mean ± SEM (n = 8; 
p < 0.01, ANOVA, F5, 47 = 26.45; p < 0.01, Scheffé’s post hoc test). Different letters in (b,d) indicate significant 
differences between different groups.
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Discussion
In previous studies, we found that UVA-sensitive OPN5-positive cerebrospinal fluid-contacting neurons within 
the hypothalamus are deep brain photoreceptors that regulate seasonal reproduction in birds8,9. Since light pen-
etrates into the brain of small mammals10 and OPN5 is reportedly expressed in the mammalian brain11,12, we 

Figure 4.  Impaired negative masking behaviors in Trpm2 KO and Trpm8 KO mice. (a) Representative actograms 
of C57BL/6 N (B6N), Trpv1 KO, Trpv3 KO, Trpv4 KO, Trpm2 KO, and Trpm8 KO mice. (b) Representative 
actograms of Trpm2 KO, Trpm8 KO, and Trpm2/8 DKO mice. (c) Masking ratio of each TRP KO mouse shown 
in (a). Mean ± SEM (n = 8–10 [B6N], 7–10 [V1], 6–8 [V3], 3–6 [V4], 5–8 [M2], 5–7 [M8]; ††p < 0.01, a priori 
Dunnett’s test [B6N vs. Trpm2 KO]; **p < 0.01, *p < 0.05, a priori Dunnett’s test [B6N vs. Trpm8 KO]). (d) 
Masking ratio of Trpm2/8 DKO mice shown in (b). Mean ± SEM (n = 3–8 [M2], 3–7 [M8], 4–7 [DKO]).
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first examined whether mice have the capacity for extra-ocular photoreception using blinded mice. Although 
we observed clear suppression of locomotor activity by UVA light exposure (350–400 nm), this behavior was 
induced by the temperature rise caused by the UVA light source, rather than by UVA light itself (Figs 1 and 2). We 
therefore conclude that mice do not have the capacity for extra-ocular photoreception as previously suggested14,15.

Our knowledge of the regulatory mechanisms responsible for masking behavior is significantly less than our 
understanding of circadian photoentrainment, despite the fact that both phenomena are important for deter-
mining the temporal distribution of locomotor activity (i.e., temporal niche). In this study, we observed negative 
masking-like behavior (i.e., acute suppression of locomotor activity) in mice at higher temperatures, consistent 
with a previous report25 (Figs 1–3). When activity was plotted on a 24-h time scale (Supplementary Figs S7 and 
S8), suppression of locomotor activity was only observed when mice were exposed to the higher temperatures. 
Importantly, these double-plotted actograms showed that mice were free-running during 3.5/3.5-h Ta cycles 
(Supplementary Fig. S7) and continued to free-run after transfer from Ta cycles to constant conditions (con-
stant 24 °C with DD) (Supplementary Fig. S8). Thus, the observed suppression of locomotor activity at higher 
temperatures is clearly negative masking behavior rather than entrainment. In the present study, we evaluated 
masking behavior by measuring wheel-running activity. One could speculate that animals might reduce their 
wheel-running activity to prevent hyperthermia at high ambient temperatures and that negative masking behav-
ior depends on the intensity of physical activity. We therefore analyzed total activity during masking behavior 
(Supplementary Fig. S9). Total activity under 24/34 °C tended to be lower than that of 24/24 °C cycles, but there 

Figure 5.  Possible involvement of the aPVT in negative masking behavior. (a) Schematic drawings of 
coronal mouse brain. Black dashed lines indicate the nuclei described in this study. Drawings in (a,e) were 
modified from the mouse brain atlas published by Allen Institute for Brain Science (©2004 Allen Institute 
for Brain Science. Allen Mouse Brain Atlas. Available from: http://mouse.brain-map.org). (b) Representative 
autoradiograms of Fos expression with/without temperature stimulus. Red dashed lines correspond to the black 
dashed lines in (a). (c) Densitometric quantifications of each nucleus. Mean ± SEM (n = 4; **p < 0.01, Student’s 
t-test). (d) NeuN immunohistochemistry in the aPVT of saline-injected control (left) and ibotenate-injected 
aPVT-lesioned (right) mice. Lesioned area is delineated by arrowheads. Scale bar: 200 µm. (e) Schematic 
drawings of aPVT areas lesioned by ibotenate injection (Bregma −0.28 to −0.66 mm). Orange areas indicate 
the aPVT. Lesioned areas are delineated and translucently filled in red. All lesioned areas and individual data 
are shown in Supplementary Figs S4 and S5, respectively. (f,g) Masking ratio (f) and total activity (g) of saline-
injected control (left) and ibotenate-injected aPVT-lesioned (right) mice. Locomotor activity was recorded 
for 1 week in DD under a 3.5/3.5-h Ta cycle (24/30 °C). Mean ± SEM (n = 9 [saline], 18 [ibotenate]; *p < 0.05, 
Student’s t-test).
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was no significant difference (Supplementary Fig. S9a). By contrast, total activity under 24/34 °C was higher than 
that at 5/15 °C (Supplementary Fig. S9b). Therefore, we believe that temperature-dependent masking behavior 
does not necessarily depend on the intensity of the physical activity.

Although several TRPA channels (e.g., dTRPA1 and Pyrexia) are involved in the regulation of activity lev-
els during the afternoon, rhythmicity of temperature preference, and temperature synchronization of the 
circadian clock in Drosophila26,27, the thermosensors regulating behavioral rhythms in vertebrates remain 
unknown. Multiple TRP channels covering a wide range of temperatures have been identified in mammals22,23 
(Supplementary Fig. S2). By analyzing all the available TRP channel–knockout mice, we discovered impaired 
negative masking behaviors in Trpm2- and Trpm8-null mice (Fig. 4). TRPM2 is a warm-sensitive thermosensor 
that is activated within the physiological range of body temperature and is involved in the sensation of environ-
mental warmth28, reduction of fever size by detecting hyperthermic temperature in the POA29, fever-associated 
enhancement of macrophage phagocytosis30, and body temperature–evoked insulin secretion31. On the other 
hand, TRPM8 is a cold-sensitive thermosensor that also acts as a menthol receptor32,33. TRPM8 deficiency leads 
to impairment in sensing unpleasant cold stimuli, including cold-inducing icilin application and acetone cool-
ing34–36. Importantly, these two TRP channels are intimately involved in thermoregulation29,37–39. Our results 
demonstrate that warm-sensitive TRPM2 and cold-sensitive TRPM8 also act as thermosensors for the regulation 
of temperature-dependent negative masking behavior. This seems plausible because to sense absolute temperature 
value, at least two thermosensors that span different temperature ranges (e.g., cold-sensitive and warm-sensitive 
channels) are required40. However, we do not fully comprehend why both Trpm2- and Trpm8-null mice showed 
the same masking behavior within the exact same temperature range. Although Trpm2/Trpm8 DKO mice tend to 
be more severely impaired than the single-KO mice (Fig. 4b,d), temperature-dependent masking behavior is not 
abolished. These results are consistent with the fact that individual TRP channel knockout models, and even DKO 
mice, often do not display strong temperature phenotypes41. This is because many TRP channels detect overlap-
ping temperatures, and extensive compensation occurs among redundant temperature detectors. In any case, 
our data suggests the involvement of additional thermosensor(s) in negative masking behavior. Clearly, further 
investigation is required to identify these remaining thermosensor(s). Since knockout mice for warm sensitive 
TRPM4 and TRPM5 were unavailable, they are obvious potential candidates.

Some photoreceptors (i.e., melanopsin [Opn4]-expressing retinal ganglion cells, rods and cones)6,42–44 and 
several brain regions (i.e., IGL and olivary pretectal nucleus [OPN])45,46 are thought to mediate light-dependent 
masking behavior; however, the brain regions and neural circuits that mediate temperature-dependent masking 
behavior remain completely unknown. Expression analysis of the neuronal activation marker, Fos, reveals that 
several brain regions (NAc, POA, aPVT, SCN, pPVT, DMH) are activated by an acute increase in Ta that induces 
negative masking behavior (Fig. 5a–c). The neural connections between these nuclei are well characterized. 
Environmental temperature detected by thermosensors located in the skin and the brain is transmitted to the 
POA, the mammalian thermoregulatory center47. The POA, PVT, DMH, and SCN are mutually connected5,48–55. 
Direct49–52 and indirect projections through the DMH48–52 or the SCN5,49–55 connect the POA to the PVT. The PVT 
is reciprocally connected with the SCN; aPVT neurons send projections to the SCN, and SCN neurons project to 
the aPVT and pPVT5,49–55. The aPVT and pPVT send dense projections to the NAc50–53,56, an area of the striatum 
that acts as a limbic–motor interface to mediate a variety of behaviors, including motivation, locomotion, reward, 
and wheel-running activity57–59. Notably, in this regard, wheel-running is considered a reward to rodents60. Thus, 
the PVT appeared to be an important interface for the regulation of temperature-dependent negative masking 
behavior. Interestingly, we observed a slight decrease in masking behavior by partial lesion of the aPVT, suggest-
ing the possible involvement of this nucleus in the regulation of negative masking behavior (Fig. 5d–f). Based on 
these findings, we propose a neural circuit responsible for regulating temperature-dependent negative masking 
behavior in mice (Fig. 6).

Recent studies have shown that the behavior of animals differs markedly between laboratory conditions 
(rectangular light/dark cycles and constant warm temperature) and natural conditions (gradually changing 
light intensity and temperature)61–66. Entrainment and masking are two independent processes that determine 
the timing of activity (temporal niche). Although a great deal of effort has been devoted to understanding the 
mechanisms underlying photoentrainment, the mechanisms responsible for masking behavior have remained 
unknown. We report here that two thermosensors, TRPM2 and TRPM8, are involved in the regulation of 
temperature-dependent negative masking behavior. Moreover, the PVT is likely to be an important interface 
for this adaptive behavior. We believe that our findings will contribute to a greater understanding of masking 

Figure 6.  Possible neural circuit regulating temperature-dependent negative masking behavior in mice. 
Temperature information detected by thermosensors (e.g., TRPM2 and TRPM8) is sent to the thermoregulatory 
center, the POA, which sends direct and indirect (via DMH and/or SCN) projections to the aPVT/pPVT. The 
aPVT/pPVT and SCN are reciprocally connected. The aPVT/pPVT sends projections to the NAc, which is 
involved in the regulation of wheel-running behaviors. Arrows between nuclei indicate direct connections5,48–56. 
Note that TRPM2 is also expressed in the POA29.
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behavior, and eventually, to the regulatory mechanisms involved in temporal niche switching (e.g., diurnality and 
nocturnality).

Methods
Animals.  C57BL/6J and C57BL/6N mice were purchased from a local dealer (Japan SLC, Inc.). TRP channel 
KO mice (Trpv167, Trpv368, Trpv469, Trpm270, Trpm835) backcrossed more than 5 times with C57BL/6N mice were 
used in this study. Trpm2/Trpm8 DKO mice (F2 progeny) generated by intercrosses between Trpm2 KO mice and 
Trpm8 KO mice were also used in this study. We used male mice whenever possible. If sufficient numbers of males 
were not available, we used female mice: Trpv1 KO (4 females out of 10) and Trpm8 KO (3 females out of 7) mice 
in Fig. 4c; Trpm2 KO (5 females out of 8), Trpm8 KO (5 females out of 7) and Trpm2/Trpm8 DKO (5 females out 
of 7) mice in Fig. 4d. The total number of male and female mice was too small for a proper statistical comparison, 
and further detailed analyses are required to confirm any sex differences. However, of the mice used in this study, 
no clear differences were observed between the sexes. All animals were housed in a controlled environment 
(white-LD cycle [12/12-h]; room temperature 22–24 °C) prior to experiments. Food and water were provided 
ad libitum. All animal procedures in this study were approved by the Animal Experiment Committee of Nagoya 
University, and all experiments were performed in accordance with the relevant guidelines and regulations.

Effect of UVA light exposure on wheel-running activity of blinded mice.  Eight-week-old male 
C57BL/6J mice were kept in individual cages (14.8 × 25.0 × 14.8 cm) equipped with running wheels (10.0 cm 
diameter), and the cages were placed together in a light-tight box (136.7 × 42.5 × 42.5 cm). Light in the box was 
provided by fluorescent lamps (white light: FHF32EX-N-H, Panasonic, 4,150 lux at the top of the cage; UVA 
light: TL-D 36 W/08 low-pressure mercury vapor fluorescent lamp, Philips, peak wavelength 365 nm with 
half-bandwidth 13.9 nm). Both eyes were surgically removed (enucleated) under isoflurane anesthesia (Ex 
group). Two weeks after the surgery, the light source was changed to UVA light (light intensity ~15.3 log photons 
cm−2 s−1, less than the intensity under direct sunlight in Nagoya, Japan). Wheel-running activities were contin-
uously recorded using the Chronobiology Kit (Stanford Software Systems). Ta in the light-tight box was meas-
ured using temperature data loggers (Thermochron type-G, KN Laboratories), and data were retrieved using the 
ThermoManager software (KN Laboratories).

Evaluation of masking behavior.  A 3.5/3.5-h LD cycle and a Ta cycle were used to quantitatively eval-
uate masking behavior (Supplementary Fig. S1). The number of wheel revolutions in the dark- or lower 
temperature-phase compared to the total number of revolutions was defined as the masking ratio. When the 
animal’s activity is unaffected by environmental stimuli, the masking ratio is close to 50%. A Biomulti incubator 
(LP-30CCFL-8CTAR, Nippon Medical & Chemical Instruments) was used for temperature control. Using this 
equipment, we could control the Ta and light conditions independently. Ta cycles were examined in the following 
order: 24/28 °C, 24/30 °C, 24/32 °C, 24/34 °C, 24/24 °C, 24/26 °C.

India ink injection under the scalp.  India ink (Tenboku, Kuretake) was autoclaved the day before injec-
tion. Autoclaved India ink (300 µl) was injected between the scalp and the skull of mice using a 1-ml syringe and 
26 G needle under isoflurane anesthesia. The same amount of saline was injected into the control group.

In situ hybridization of Fos mRNA.  Eight-week-old male C57BL/6N mice were placed in individual cages 
equipped with running wheels and were entrained to a white-LD cycle (12/12-h) for 2 weeks. During this time, 
the Ta was maintained at 24 °C. Subsequently, a 30-min warm-temperature stimulus (34 °C) was given 4-hour 
after the light offset (Zeitgeber time [ZT] 16) in the temperature stimulus group (Fig. 5b-right). In the control 
group, Ta was held constant at 24 °C (Fig. 5b-left). Because Fos mRNA expression peaks 30 minutes after stim-
ulation71, brains were collected using a pair of night-vision goggles (Ninox, Armasight) and rapidly frozen in 
dry ice at ZT16.5. Non-perfused frozen sections (20-µm thickness) were prepared using a cryostat (CM3050 S, 
Leica Microsystems) and examined with 33P-labeled oligonucleotide probes. Four 45-mer oligonucleotide probes 
were designed against the mouse Fos gene (GenBank: NM_010234) and used as a mixture to increase the sen-
sitivity. Hybridization was carried out overnight at 42 °C. Two high-stringency post-hybridization washes were 
performed at 55 °C. Sections were air-dried and exposed to BioMax MR Film (Eastman Kodak) for 4 weeks with 
14C-Standard slide (American Radiolabeled Chemicals). Densitometric quantification of hybridization signals 
was performed using the Multi Gauge software (Fujifilm). The probe sequences were as follows:

5′-tcactgctcgttcgcggaaccgccggctctatccagtcttctcag-3′
5′-tccagggaggccacagacatctcctctgggaagccaaggtcatcg-3′
5′-atctggcacagagcgggaggtctctgagccactgggcctagatga-3′
5′-ctggaggccagatgtggatgcttgcaagtccttgaggcccacagc-3′

Ibotenate injection into the aPVT.  Ibotenate injection was performed in accordance with the ear-
lier study72. Mice were deeply anesthetized with chloral hydrate (280 mg kg−1, i.p. injection with 7% solution). 
Subsequently, 5 mM ibotenate or saline (20–50 nl) was injected to the aPVT (coordinates: 0.2 mm caudal to 
bregma, 0.0 mm lateral to the midline, and 3.6 mm ventral to the skull surface). Due to the high mortality rate, 
each mouse received only one injection. Lesioned areas were evaluated by NeuN immunohistochemistry imme-
diately after evaluation of masking behavior, and are depicted in Fig. 5e, Supplementary Figs S4 and S5. All behav-
ioral analyses of ibotenate- or saline-injected mice were performed after >1 week of recovery.
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Immunohistochemistry.  Immunohistochemistry was performed using rabbit monoclonal anti-NeuN 
antibody (ab177487, Abcam) (dilution 1:500) and N-Histofine Simple Stain Mouse MAX PO (R) (Nichirei 
Biosciences) with a standard protocol73.

Statistical analysis.  All data are shown as the mean ± SEM. Statistical analyses were performed using the 
Rayleigh test, Student’s t-test, or one-way ANOVA, followed by Scheffé’s post hoc test or a priori Dunnett’s test.

Data Availability
Any related data and/or information of this study are available from the corresponding author upon request.
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