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ABSTRACT Invasive species could benefit from being introduced to locations with
more favorable species interactions, including the loss of enemies, the gain of mutu-
alists, or the simplification of complex interaction networks. Microbiomes are an im-
portant source of species interactions with strong fitness effects on multicellular or-
ganisms, and these interactions are known to vary across regions. The highly
invasive plant yellow starthistle (Centaurea solstitialis) has been shown to experience
more favorable microbial interactions in its invasions of the Americas, but the micro-
biome that must contribute to this variation in interactions is unknown. We se-
quenced amplicons of 16S rRNA genes to characterize bacterial community composi-
tions in the phyllosphere, ectorhizosphere, and endorhizosphere of yellow starthistle
plants from seven invading populations in California, USA, and eight native popula-
tions in Europe. We tested for the differentiation of microbiomes by geography,
plant compartment, and plant genotype. Bacterial communities differed significantly
between native and invading plants within plant compartments, with consistently
lower diversity in the microbiome of invading plants. The diversity of bacteria in
roots was positively correlated with plant genotype diversity within both ranges, but
this relationship did not explain microbiome differences between ranges. Our results
reveal that these invading plants are experiencing either a simplified microbial envi-
ronment or simplified microbial interactions as a result of the dominance of a few
taxa within their microbiome. Our findings highlight several alternative hypotheses
for the sources of variation that we observe in invader microbiomes and the poten-
tial for altered bacterial interactions to facilitate invasion success.

IMPORTANCE Previous studies have found that introduced plants commonly experi-
ence more favorable microbial interactions in their non-native range, suggesting
that changes to the microbiome could be an important contributor to invasion suc-
cess. Little is known about microbiome variation across native and invading popula-
tions, however, and the potential sources of more favorable interactions are unde-
scribed. Here, we report one of the first microbiome comparisons of plants from
multiple native and invading populations, in the noxious weed yellow starthistle. We
identify clear differences in composition and diversity of microbiome bacteria. Our
findings raise new questions about the sources of these differences, and we outline
the next generation of research that will be required to connect microbiome varia-
tion to its potential role in plant invasions.
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Humans continue to transport plant species around the globe, and increasing
numbers of these translocations result in the invasive expansion of non-native

species into recipient communities (1–4). While there are undoubtedly many reasons
that species introductions lead to invasions, there is growing evidence that novel
species interactions may facilitate the invasive spread of populations (5, 6). Initially,
hypotheses about the contribution of species interactions to invasions focused on the
potential for non-native species to escape from aboveground herbivores, which are
easily observed (7), though it is not clear that herbivore escape is a frequent mechanism
of invasion (8–11). More recently, there has been increasing recognition that microbial
taxa above- and belowground can have large effects on plant fitness, both positive and
negative, and could thus determine whether invasive plants benefit from novel species
interactions (5, 10, 12–17). Plant-associated microbial communities have been histori-
cally difficult to observe, however, and studies that leverage newly available tools to
identify differences in these interactions across native and invading populations are
needed to evaluate alternative hypotheses for invasion success (18).

Microbial communities have emerged as particularly likely candidates for facilitating
invasions. Although many interactions between plants and microbes can be beneficial,
soil microbial communities often appear to have negative net effects on plant fitness
which may become more negative over time, e.g., via plant-soil feedbacks (15, 19–21).
These interactions between plants and their microbiomes can vary over space and
environment (22–25), creating opportunities for introduced plants to escape negative
interactions that might characterize their native ranges. Moreover, reductions in mi-
crobial diversity can occur in response to environmental change and human distur-
bances, and lowered microbial diversity could reduce the resistance of ecosystems to
invasion (16, 18, 26, 27).

Invasive plant species have provided some of the best evidence to date that
microbial interactions can be locally evolved and can vary considerably over geo-
graphic regions (28). Introduced plants have been shown to vary in their response to
soil communities from their native and invaded ranges, and there are now many
examples of more favorable interactions between plants and soil from their invaded
range, consistent with escape from enemies or a gain of mutualists during invasion (5,
12, 15, 16, 29–31). Plant-microbe interactions which provide relative benefits to invasive
species can be explained by reduced negative effects of key microbial pathogens,
increased direct beneficial effects of mutualistic taxa, or increased indirect benefits from
taxa that affect competitors more negatively than the invader (18). It is also possible
that invaders could benefit from a reduced diversity of enemy interactions, as a result
of an associated reduction in ecological costs that derive from simultaneously deploy-
ing different defense responses against many different enemies (32–34). These hypoth-
eses all require that there are differences in the microbial communities associated with
invading versus native plants; however, the composition of microbial communities
associated with different populations of invasive plants remains largely unknown (18).

Here, we conducted one of the first comparisons of plant microbiomes between
invading populations and populations in the native source region. We surveyed plant-
associated microbial communities in the highly invasive forb yellow starthistle (Cen-
taurea solstitialis). Yellow starthistle is native to a wide region of Eurasia and was
introduced from Western Europe to South America in the 1600s and North America in
the 1800s as a contaminant of alfalfa seed (35, 36). This herbaceous annual is a colonizer
of grassland ecosystems and is often cited as one of the “10 worst weeds of the West”
in North America (37). Its extensive invasion of California in the USA (�14 million acres
[38]) is particularly well studied, and invading genotypes in this region have evolved to
grow larger and produce more flowers than plants in the native range, suggesting a
shift in resource allocation that has favored invasiveness (39–41). Previous research has
demonstrated that yellow starthistle throughout all of its native and invaded ranges
experiences net fitness reductions when grown with its local soil microbial communi-
ties (42–44). These studies have also indicated that this negative interaction is weaker

Lu-Irving et al.

March/April 2019 Volume 4 Issue 2 e00088-19 msphere.asm.org 2

https://msphere.asm.org


(more favorable) in California, raising the possibility that changes in the microbial
community have promoted an aggressive invasion.

We sampled microbial communities associated with leaves (phyllosphere and en-
dosphere) and roots (ectorhizosphere and endorhizosphere) of yellow starthistle plants
in both the California invasion and native regions in Europe. Previous experiments with
fungicide treatments have shown that plant-soil interactions between yellow starthistle
and fungi in California are more negative (less favorable) than those in the native range,
inconsistent with a role for fungi in beneficial species interactions in this invasion (45).
Here, we focus on documenting the variation in bacterial communities, using high-
throughput sequencing of ribosomal 16S amplicon sequences to quantify taxonomic
composition and diversity of bacteria in yellow starthistle microbiomes. Microbial
communities are known to differ among plant compartments (46) and to be influenced
by individual plant genotypes (47–49), and so we explicitly tested for differences in the
microbiomes of native and invaded range plants relative to the influence of both plant
compartment and plant genotype. Our results reveal clear differences in the micro-
biomes of native and invading plants, including a lower diversity of bacteria associating
with the leaves and roots of invaders. We identified several alternative hypotheses for
these differences, and we outlined new research directions required to test for their
effects on invader success.

RESULTS
Sampling and microbiome sequencing. We sampled fifteen populations of yellow

starthistle for their microbiomes: seven sampling sites across the invasion of California,
six sites in Western Europe (native source region), and two in Eastern Europe (Fig. 1; see
also Table S1 in the supplemental material). Tissue was collected from 25 plants per site
at 1-m intervals along linear transects. DNA was extracted from surface and endophyte
fractions of leaves and roots each pooled by sampling site (15 total populations) and
as individual plant samples from 8 plants from each of 10 populations (80 total plants).

To survey bacterial communities, we amplified the V4 region of the 16S rRNA locus.
Library preparation utilized peptide nucleic acid clamps (PNAs) to block amplification of
plant chloroplast and mitochondrial 16S (50), including a custom chloroplast PNA that
we developed to account for sequence divergence in Asteraceae (51). Library prepa-
ration followed a dual-index approach (52), and samples were sequenced using
2 � 300-bp paired-end reads on an Illumina MiSeq.

Sequencing yielded 9,672,898 read pairs, of which 6,217,852 remained after merging
and quality control; these were 253 bp in length after removing adapter and primer
sequences. The numbers of raw read counts per sample ranged from 16 to 306,200 with
a median of 21,964. Analysis of the merged and processed reads resulted in 4,014
operational taxonomic units (OTUs), of which 60 were identified as plastid or mito-
chondrial and 428 were unidentifiable (11%). Of the remaining 3,526, 206 were iden-
tified to species (6%), 1,084 to genus (27%), and 2,229 to family (56%) levels. A total of
103 OTUs (3%) were identified as members of the 49 genera with known plant
pathogens in the FAPROTAX v.1.1 database (53).

Sequence reads representing yellow starthistle chloroplast and mitochondrial 16S
accounted for 40% and 1% of all reads, respectively. Amplification of host chloroplast
in samples using the Asteraceae-specific plastid PNA was reduced by up to 51%
compared with the Lundberg et al. (50) PNA (see Table S2). Despite PNA blocking
activity, 83% of the total reads from leaf endosphere samples were yellow starthistle
chloroplast sequences. After the removal of chloroplast and mitochondrial reads, the
remaining read counts for most leaf endosphere samples were low relative to the
controls (see Fig. S1), and so no further analysis of leaf endosphere bacterial commu-
nities was performed.

Rarefaction levels (chosen to reflect the minimum number of reads per sample by
compartment, not including outliers) were 18,000 reads per sample for phyllosphere,
17,000 for ectorhizosphere, and 5,000 for endorhizosphere samples (Fig. S1). These
levels were also higher than nearly all control samples. Rarefaction cutoffs resulted in
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the exclusion of five non-control samples which were outliers for low read count: one
phyllosphere (code DIA), one ectorhizosphere (code SAZ), and three individual endorhi-
zosphere samples (two from SAZ, one from SIE). A nonmetric multidimensional scaling
(NMDS) ordination of all unrarefied samples showed that the controls clustered to-
gether and were clearly differentiated from all samples in all plant compartments other
than the leaf endosphere (see Fig. S2).

Microbiome analyses. Results from NMDS ordination indicated that bacterial com-
munities differed overall among the phyllosphere, ectorhizosphere, and endorhizos-
phere compartments (stress, 0.14; P � 0.001) (Fig. 2a). Within compartments, NMDS
further revealed significant differences between native and invaded range endorhizo-
sphere samples (stress, 0.16; P � 0.001) (Fig. 2b) and ectorhizosphere samples
(P � 0.001). Native and invaded range phyllosphere samples differed with marginal
significance (P � 0.05). Clustering analyses within the phyllosphere and ectorhizos-
phere compartments consistently grouped invaded range samples together, as well as
samples from the source region in Western Europe (see Fig. S3). Native range samples
from Eastern Europe (HU01 and HU29) clustered together in these compartments but
were variable in their relationship to the other regions. Endorhizosphere samples
pooled by location showed less consistent clustering by range.

FIG 1 The distribution (gray) of yellow starthistle and sampling sites (circles) for this study. Maps detail the native range in Eurasia (a)
and the invasion of western North America (b). Previous work has indicated that Western Europe is the source for the severe invasion in
CA, USA (both in dark shading; Barker et al. [36]). Sampling included seven locations in California (b, filled circles), six locations in Western
Europe, and an additional two locations in Eastern Europe (a, open circles).
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The dominant phyla among all bacterial communities in both ranges were Proteo-
bacteria, Actinobacteria, Bacteroidetes, and Firmicutes (Fig. 3). Principal-component anal-
yses suggested that the strongest contributions to variation in bacterial community
composition among populations (within compartments) were made by shifts in the
representation of Bacillus (Firmicutes), Chryseobacterium (Bacteroidetes), and the Proteo-
bacteria taxa Erwinia, Pseudomonas, and Xanthomonadaceae (see Table S3 and Fig. S4).
All of these taxa other than Chryseobacterium include known plant pathogens in the
FAPROTAX v.1.1 database (53).

In general, bacterial OTUs showed a pattern of lower median richness (R), evenness
(J), and diversity (eH=) for plants from invaded range sites in all compartments, with the
exception of richness in the phyllosphere (Fig. 4 and 5). Within the phyllosphere,
invaders were not significantly different in richness (�1

2 � 1.67, P � 0.20) but were
significantly lower in evenness (�1

2 � 8.07, P � 0.005) and were marginally lower in Hill
diversity (�1

2 � 3.75, P � 0.05) than native range plants. Similarly, the ectorhizosphere of
invaders was not significantly different in richness (�1

2 � 0.69, P � 0.41) but was signif-
icantly lower in both evenness (�1

2 � 5.0, P � 0.03) and diversity (�1
2 � 6.21, P � 0.01). In

contrast, endorhizosphere samples pooled by site did not differ significantly in even-
ness (�1

2 � 2.26, P � 0.13) but were marginally significantly lower in richness (�1
2 � 3.43,

P � 0.06) and diversity (�1
2 � 3.01, P � 0.08). Nested analysis of variance (ANOVA) of

individual endorhizosphere samples indicated strongly significant reductions in rich-
ness, evenness, and diversity in invading plants (fixed effect of region, all P � 0.001)
(Fig. 5). For individual endorhizosphere samples, populations did not differ significantly
in any metrics within native/invaded regions, with the exception of significantly higher
evenness in plants at site SIE relative to site TRI in the invaded range.

(a) (b)

FIG 2 NMDS plots of bacterial OTU composition in phyllosphere (green), ectorhizosphere (light blue),
and endorhizosphere (dark blue) samples from native (open symbols) and invaded (closed symbols)
ranges. Plotted are pooled samples for each sampling location, showing overall separation by range
within compartment (stress, 0.14) (a), and individual plant endorhizosphere samples within native and
invading populations (stress, 0.16) (b). Ellipses indicate 95% confidence intervals for samples grouped by
range (native range, dashed lines; invaded range, solid lines).

Native
Invaded

Phyllo-
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Native
Invaded

Ecto-
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Chloroflexi
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Other
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FIG 3 Relative abundances of (proportions of reads mapping to) phyla in yellow starthistle phyllosphere,
ectorhizosphere, and endorhizosphere samples from native and invaded ranges.
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To explore the potential for these patterns to capture plant-pathogen interaction in
particular, we filtered the rarefied data sets for genera containing known plant patho-
gens in the FAPROTAX database, which resulted in 49 phyllosphere OTUs, 69 ectorhi-
zosphere OTUs, and 88 endorhizosphere OTUs. While pathogen-containing genera are
likely to include both pathogenic and nonpathogenic strains (54), we expected that our
pathogen-containing OTU data set would be enriched for potential plant pathogens,
relative to the full data set. Pseudomonas and Erwinia were among the most common
pathogen-containing genera encountered in each plant compartment in both ranges.
The phyllosphere also included a high frequency of Janthinobacterium, with a relative
increase in Serratia in the invaded range. In the ectorhizosphere, Serratia was common
in both ranges, but invading plants showed a large relative decline in Erwinia and
increase in Pseudomonas. In the endorhizosphere, invading plants harbored less Pseu-
domonas and more Bacillus and Streptomyces than native plants (see Fig. S5). The
diversity of these OTUs showed similar trends to the total diversity, with lower median
values in invaded range root compartments. No differences between regions were
statistically significant for the phyllosphere (�1

2 � 0.60, P � 0.44) or ectorhizosphere
(�1

2 � 0.49, P � 0.48). For the endorhizosphere samples pooled by site, significantly
lower diversity was indicated in the invaded range (�1

2 � 4.34, P � 0.04). For individual
endorhizosphere samples, nested ANOVA also indicated significantly lower diversity in
the invaded range (P � 0.0001), and no significant differences among populations
within regions.

20
0

40
0

60
0

80
0

Phyllosphere

R
ic

hn
es

s 
(R

)

Ectorhizosphere Endorhizosphere
0.

2
0.

4
0.

6
0.

8

Ev
en

ne
ss

 (J
)

20
0

D
iv

er
si

ty
 (E

   
)

Native Invaded

12

Po
te

nt
ia

l P
at

ho
ge

n 
D

iv
er

si
ty

 (E
   

)

Native Invaded Native Invaded

H
’

H
’

20
1

2
5

50
2

4
6

8
10

0
0

(a)

(b)

(c)

(d)

FIG 4 Distributions of OTU richness (a), evenness (b), and diversity (eH=) (c and d) among samples (pooled
plants) from each location in the native and invaded ranges for phyllosphere, ectorhizosphere, and
endorhizosphere compartments. Panels a to c show values for all OTUs and panel d shows values based on
OTUs from known pathogen-containing genera.
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Finally, we examined the influence of plant genotype on microbial composition. Our
geographic regions correspond to genetically differentiated subpopulations, and
within these regions, our study sites are also known to vary in plant genetic diversity
(36). Using estimates of the average proportion of pairwise nucleotide differences
between alleles (�) for plants at each site from (36), we predicted microbial diversity
estimates (eH=) for each plant compartment using linear models with fixed effects of
plant genetic diversity, region (native versus invaded), and the interaction between
these two effects. The model was significant for endorhizosphere samples pooled by
site [F(2,12) � 5.89; P � 0.02; radj

2 � 0.41) (Fig. 6), with significant main effects of both
plant genetic diversity (P � 0.03) and region (native versus invaded, P � 0.006). The
interaction between these two effects was not significant (P � 0.71) and was removed
from the final model. This same pattern was marginally significant when using only
OTUs from pathogen-containing genera in the endorhizosphere samples (effect of
plant genetic diversity, P � 0.08). Similar linear models did not identify significant
effects of plant genetic diversity when predicting the median diversity of individual
plant endorhizosphere samples (P � 0.74) or diversity in the phyllosphere (P � 0.35).
There was a marginally significant positive effect of plant genetic diversity on diversity
in the ectorhizosphere (P � 0.08) in addition to the effect of region (P � 0.002).
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FIG 5 Distributions of endorhizosphere OTU richness (a), evenness (b), and diversity (eH=) (c and d) among
individual plants at each location in the native and invaded ranges. Panels a to c show values for all OTUs and panel
d shows values based on OTUs from known pathogen-containing genera.
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DISCUSSION

Introduced plants will encounter a variety of novel species interactions as they
establish across biogeographic regions. For many plants, severe invasions are associ-
ated with more favorable interactions with soil microbial communities (18, 44). We
found that bacterial microbiomes of invading yellow starthistle were unique in com-
position and lower in diversity relative to the bacterial microbiomes of plants from the
native range, differences that persisted within plant compartments and across variation
in plant genetic diversity.

As observed in other species, bacterial communities differed most among plant
compartments (46, 55). The numbers and diversity of taxa within each compartment
were similar in magnitude to those reported in other studies of prokaryotic 16S
sequences, e.g., from Agavaceae (56), Brassicaceae (57), Cactaceae (58), and other
Asteraceae (59). The dominant phyla were Proteobacteria, Actinobacteria, Bacteroidetes,
and Firmicutes, which are also characteristic of plant-associated bacterial communities
surveyed to date (46). The exception was the leaf endosphere, where a paucity of
sequences relative to controls suggests that persistent chloroplast contamination
obscured low frequency endophytes, despite our development of an Asteraceae-
specific PNA (51). A targeted survey is needed to better characterize this compartment
(e.g., quantitative PCR [60]).

Notably, diversity was approximately twice as high in the endorhizosphere as in the
ectorhizosphere. Current reviews have concluded that root endosphere communities
are typically less diverse than those in the ectorhizosphere (46, 55). Our root collections
were washed but not surface sterilized and may represent some of the rhizoplane/
rhizosphere in addition to the endosphere, elevating our estimates of diversity. It is also
possible that yellow starthistle deviates from initially reported patterns, which have also
been challenged by other recent studies (58, 59).

Within compartments, the community composition was consistently different be-
tween samples from native and invaded ranges and included shifts in taxa across all
major groups. Our native range samples represented a larger geographic area and
spanned distinct genetic subpopulations of yellow starthistle, but native range sites
clustered together in overall community composition and there was little evidence of
individual site differences within ranges. Between ranges, the diversity of OTUs was
lower in the invaded range, a pattern that was dominated by lower evenness of OTUs
in both the phyllosphere and ectorhizosphere and by lower richness of OTUs in the
endorhizosphere. Thus, invading plants were more strongly dominated by a few taxa at

FIG 6 Bacterial diversity (eH=) in endorhizosphere samples pooled by sampling location, as a function of
the genetic diversity among plants at the same sites (calculated as the average proportion of pairwise
nucleotide differences between alleles [�] at variable positions in the genome; from Barker et al. [36]).
Lines show significant positive relationships (linear model, P � 0.02) between microbial and plant
diversity at sampling locations in both the native range (open symbols, dashed line) and the invaded
range (closed symbols, solid line).
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high relative abundance on root and leaf surfaces and harbored fewer bacterial taxa in
their root endophytic communities.

We observed a significant positive association between root microbial diversity and
genotypic diversity among plants at the population scale. This association was stron-
gest in the endorhizosphere, the only endophytic compartment in our analysis, con-
sistent with plant genotype having the largest influence on microbial taxa colonizing
within the plant itself (49, 61, 62). Within-species plant genotype effects have been
observed previously and may interact with the effect of environment to shape micro-
bial communities (24, 47). Interactions between plant and microbial diversity could be
particularly important for invasive species, where genetic bottlenecks during establish-
ment and range expansion can reduce genetic diversity among plants (63–65). Never-
theless, it appears that genotype effects are often minor relative to site effects (47–49,
66), and we found that genotypic effects were evident only within regions and did not
explain microbial diversity differences between regions.

We propose three potential explanations for the regional differences in microbiome
diversity that we have observed, which are not mutually exclusive. First, the regional
microbial environment might be less diverse in western North America in general, such
that plant microbiomes simply reflect the diversity present in their external environ-
ment. Second, yellow starthistle invasions might cause reductions in bacterial diversity
in the environment. Third, invading yellow starthistle might be experiencing an out-
break of microbial infection, resulting in high abundance of a few taxa and reduced
overall diversity in our samples. We discuss each of these hypotheses in turn below.

Microbial environments outside plants (e.g., in the soil and air) are known to vary at
continental scales (47, 57, 67). A variety of factors may explain this geographic variation,
particularly abiotic differences (22, 46, 55, 68). Soil type appears to have a particularly
strong influence on microbial communities (e.g., see references 49 and 61), and is
known to differ broadly across yellow starthistle’s range (45). In addition, populations
in California are at the warm and dry extreme of yellow starthistle’s climatic niche (41),
and our sampling was conducted at the end of a period of severe drought (69, 70),
which could have amplified any microbial differences related to climate (71). Interest-
ingly, a recent study of grassland plants found that microbial diversity increased under
drought, whereas we found reduced diversity in the drought-affected range (72). A
critical comparison of yellow starthistle’s external microbial environment in each range
should include broad spatial and temporal sampling of soil and atmospheric microbial
communities from which its microbiomes are assembling (73–75). A major challenge
will be disentangling any regional differences in such samples from the effects of yellow
starthistle itself, as we detail below.

Importantly, yellow starthistle’s invasion might also cause changes to its microbial
environment. Species invasions have been shown to alter microbial composition over
short timescales (76–78), though long-term effects are less clear (79, 80). Yellow
starthistle invasions are denser than populations in the native range by an order of
magnitude or more (42, 81) and include a lower diversity of plant species overall
(82–84). Low plant diversity can sometimes depress the diversity of microbes in the
environment and within plants (26, 56, 85). This means that invasions could be a cause
rather than a result of observed weaker plant-soil interactions for invasive species in
their introduced ranges (15, 18). Ideally, microbial communities would be compared
among regions using samples outside patches of invasive plants, in a suitable habitat
that has not yet been affected by an invasion, though identifying suitable but unin-
vaded habitat for these comparisons is not trivial. More practically, observing the
development of soil microbial communities during plant-soil feedback experiments
should be informative regarding the influence of invaders on microbial environments
(18).

Finally, our invading plant populations might be experiencing disease outbreaks,
resulting in a high abundance of a few strains and lower diversity of the microbiota as
a whole. We think this is less likely, however. Disease outbreaks in plants tend to be
local in scale, with microbial communities varying over the spatial scale of meters (86).
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Our invading populations are widely separated (e.g., they span �5° latitude), such that
broadly shared disease patterns would imply that outbreaks are more common in the
invading populations overall. Yet, it has been argued that invaders are successful
precisely because they experience lower levels of attack from pathogens and other
enemies (13, 15, 16), and yellow starthistle specifically has been shown to have more
favorable interactions with its invaded range soil community (44). Again, broad spatial
and temporal microbial sampling would be informative here for identifying outbreak
dynamics, and plant-microbe interaction experiments in culture or field plantings
would help to resolve the fitness effects of dominant strains.

To date, few studies have compared microbial community composition between the
native and introduced ranges of invasive plants. McGinn and colleagues (87) reported
no differences in the diversity of mutualistic fungal taxa associated with the roots of
multiple species of European Trifolium introduced to New Zealand, despite more
favorable soil interactions in the invasions (88; but see reference 89). Johansen and
colleagues (90) found increased diversity of fungal communities on the roots of
European Ammophila arenaria invading Australia and New Zealand, though there
appear to be no differences in interactions with soil microbial communities in its
invasions (in North America [91]). Gundale and colleagues explored the potential
contribution of fungal endophyte communities to more favorable (negative) soil inter-
actions observed in introduced plantations of lodgepole pine (Pinus contorta) from
North America (92, 93). For lodgepole pine, microbial communities differed among
several global regions examined, but there was no consistent pattern of loss of
potential fungal pathogens or gain of mutualists in the introductions, and it remains
unclear what part of the soil community is responsible for the observed differences in
interactions across ranges (92). Reinhart and colleagues (94) focused specifically on
Pythium fungal pathogens and quantified their virulence on North American Prunus
serotina introduced to Europe. They found that the most virulent strains occurred only
in the native range, consistent with benefits to invading plants escaping this specific
pathogenic group. In the only microbiome comparison that included bacterial taxa,
Finkel and colleagues (95, 96) explored the phyllosphere community of multiple species
of Tamarix in native and introduced parts of their ranges, finding that microbial
communities were in general most strongly structured by geographic region.

Our study is the first to find consistent differences in the microbiomes of native and
invading plants which coincide with documented fitness differences in plant interac-
tions with soil communities (44). Among the few invader microbiome studies to date,
ours is unusual in focusing on the bacterial community. Fungi have historically received
more attention for their fitness effects on plants, but bacteria can also play a critical role
both as pathogens and mutualists (55, 97, 98). For yellow starthistle, previous experi-
ments have demonstrated that fungal communities are not responsible for more
favorable conditions in the invaded range (45), and our findings indicate that bacterial
communities warrant further investigation as the potential source of these differences. The
fitness effects of our specific OTUs are unknown, however, and identifying the bacterial
OTUs that accumulate during interactions with plants would help to elucidate important
pathogenic or mutualistic taxa and allow field surveys to explicitly test hypotheses that
these strains are lost or gained in the invaded environment.

We have previously argued that yellow starthistle has benefitted from the historical
loss of plant competitors in California (41). Disturbance is critical for yellow starthistle
establishment, and functionally similar native species compete well against it in exper-
iments; however, key competitors have been lost from the ecosystem due to pertur-
bations prior to yellow starthistle invasion (45, 83, 99–101). Any benefits of altered
bacterial communities could be independent of competition with native plant species,
but these factors might also interact. Increased density due to a lack of competition
could have reduced plant-associated microbial diversity, as described above. Yellow
starthistle experiences negative plant-soil feedbacks across generations (42), however,
and the build-up of high plant densities is therefore unlikely to generate more favorable soil
interactions. Alternatively, the historical loss of native species diversity in California (84)
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could have resulted in the loss of associated microbial diversity (26, 56, 85), generating
particularly strong opportunities for invasion into a system with both reduced plant
competition and reduced pathogen diversity. Microbial surveys of remnant native com-
munities, as well as across densities of yellow starthistle, would facilitate tests of alternative
hypotheses for interacting effects of plant and microbial diversity, and it may be informative
to explore microbial communities preserved on native plant specimens predating the
extensive invasion of yellow starthistle in this region.

In conclusion, we found consistent differences between native and invading yellow
starthistle plants in their bacterial microbiomes. These differences were robust to
additional variation associated with plant compartment and the diversity of plant geno-
types. Invaded range microbiomes differed in composition across major taxonomic groups
and harbored a lower diversity of bacteria, including reduced evenness on the surfaces of
leaves and roots and reduced richness of root endophytes. We suggest that bacteria could
be the source of more favorable microbial interactions that have been previously observed
in this invasion. Our findings also raise questions about (i) whether lower bacterial diversity
is a feature of the invaded environment or whether it is caused by the invasion itself, and
(ii) how specific differences in the microbial community affect plant fitness. These questions
highlight the need for additional studies that compare microbial communities (including
bacteria) associated with native and invading populations, that couple microbial commu-
nity identification with plant-soil feedback and fitness experiments, and that examine the
interaction of environment, plant diversity, and plant density on microbial communities
and their fitness effects on plants.

MATERIALS AND METHODS
Study species. Yellow starthistle (Centaurea solstitialis L., Asteraceae) is an obligately outcrossing

annual plant, diploid throughout its range (102). Plants form a taproot and grow as a rosette through
mild winter and/or spring conditions, bolting and producing flowering heads (capitula) throughout the
summer. The species is native to Eurasia, where distinct genetic subpopulations have been identified in
Mediterranean Western Europe, central-eastern Europe, Asia (including the Middle East), and the
Balkan-Apennine peninsulas (36). The invasion in California, as well as invasions in South America,
appears to be derived almost entirely from Western European genotypes (Fig. 1) (36).

Sample collection. At each location in June-July 2015, plants were sampled every meter (or to the
nearest meter mark) along a 25-m transect, to yield microbial samples from 25 individual plants per
population. Individuals in rosette or early bolting stages were preferentially selected. In one population
(HU29), low plant density yielded 20 individuals along the 25-m transect. Using sterile technique, plants
were manually pulled and each individual sampled using modified versions of protocols by Lundberg et
al. (49) and Lebeis et al. (62) as described below. Plants were pressed and dried after sampling and
submitted to the University of Arizona Herbarium (ARIZ) (see Table S1 in the supplemental material).

(i) Phyllosphere and ectorhizosphere. One to three basal nonsenescent leaves were collected from
each plant, as well as the upper 2 to 5 cm of the taproot, together with accompanying lateral roots
(excess soil was brushed or shaken off). Leaf and root samples were placed in individual 50-ml tubes
containing 25 ml of sterile wash solution (45.9 mM NaH2PO4, 61.6 mM Na2HPO4, 0.1% Tween 20). Tubes
were shaken by hand for 1 min (timed). Leaf and root samples were then removed and stored on ice in
separate tubes (leaves in empty tubes, roots in tubes containing 10 ml of wash solution) until further
processing. Wash samples were stored on ice during transport and then refrigerated at 4°C. Phyllosphere
and ectorhizosphere washes were pooled across all (20 or 25) plants at a location and then centrifuged
at 2,200 � g at 4°C for 15 min. Supernatants were discarded, and pellets were air-dried and stored at
�20°C until DNA extraction.

(ii) Leaf endosphere. Leaves were surface sterilized by submerging in bleach solution (10%
commercial bleach, 0.1% Tween 20) for 2 min. Leaves were then rinsed in distilled water, patted dry using
a Kimwipe, and sealed in individual sterile surgical envelopes (Fisherbrand 01-812-50). Envelopes were
kept in silica gel desiccant until leaf tissue was completely dry and then stored at room temperature until
DNA extraction.

(iii) Endorhizosphere. Roots were further washed by shaking in 10 ml of wash solution until visible
residual soil was removed. Washed roots were stored and dried as described above for leaves.

(iv) Controls. At each collection site, a tube of sterile wash solution was left uncapped while
sampling plants. Disinfected tools were periodically agitated in the blank wash tube before sterilization
and use for the next sample collection. For each population, rinse water and wipes used to process tissue
samples were represented in controls by rinsing and wiping flame-sterilized forceps and then agitating
the forceps in the blank wash tube. Controls were stored and processed in the same manner as for
phyllosphere and ectorhizosphere samples.

DNA extraction. Extractions were carried out using sterile technique in a laminar flow hood. For
pooled tissue extractions, equal sections of leaf tissue (50 mm2) and root tissue (12.5 mm3 plus 10 mm
of lateral roots) were collected from each individual sample per location and pooled prior to extraction.
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Control (blank) samples were collected for each batch of extractions by swabbing tools and surfaces and
then extracting DNA from the swab head.

All DNA samples were extracted using the Mo Bio PowerSoil kit (Mo Bio Laboratories, Inc.). Phyllo-
sphere and ectorhizosphere DNA was extracted from up to 0.25 g of wash pellets according to the
standard kit protocol. Leaf and root tissues were ground to powder or sawdust consistency in liquid
nitrogen using sterile mortars and pestles. Leaf and root DNA was extracted from 20 mg (leaf) or 100 mg
(root) of ground tissue with the following modification to the standard protocol: tissue was incubated at
65°C for 10 min in extraction buffer and then vortexed for 1 min, followed by a second 10-min incubation
(as described under “alternative lysis methods” in the kit protocol). Control DNA was extracted by placing
whole swab heads directly into extraction tubes. Extracted DNA was eluted in PCR-grade water and
stored at �20°C pending library preparation.

Library preparation and sequencing. To remove secondary compounds inhibiting PCR, DNA ex-
tracted from root and leaf tissue (together with corresponding blanks) was purified using a ZR-96 genomic
DNA cleanup kit (Zymo Research). All DNA concentrations were quantified using a Qubit fluorometer
high-sensitivity assay for double-stranded DNA (Invitrogen) and standardized to equimolar amounts.

Library preparation followed a dual-index approach (52) using a two-step PCR protocol as follows. In
the first step (target-specific PCR), the V4 region of the 16S rRNA gene was amplified using target-specific
primers (515F and 806R; 103) appended with common sequence (CS) tags through a linker sequence
which varied from two to five nucleotides in length. Target-specific PCR was carried out using Phusion
Flash master mix (Thermo Scientific) in a 25-�l reaction mixture volume in a Mastercycler Pro thermo-
cycler (Eppendorf) under the following conditions: 25 cycles of 1 s at 98°C, 5 s at 78°C, 5 s at 57°C, and
15 s at 72°C. Products were visualized on an agarose gel and diluted up to 1:15 (depending on yield); 1 �l
of diluted product was then used as the template in the second step (barcode-adapter attachment PCR).
Using reagents and equipment as described above, barcoded primer pairs incorporating Illumina P5 and
P7 adapters were used to amplify products from target-specific PCR in 25-�l reaction mixture volumes
under the following conditions: 10 cycles of 1 s at 98°C, 5 s at 78°C, 5 s at 51°C, and 15 s at 72°C. Barcoded
amplicons were quantified by fluorometry, pooled in equimolar amounts, cleaned, and submitted to the
University of Idaho’s IBEST Genomic Resources Core for quality control (QC) and sequencing. Amplicons
were multiplexed to use half the capacity of one 2 � 300-bp run on an Illumina MiSeq platform.

Peptide nucleic acid clamps (PNAs) were included in both PCR steps of library preparation to block
amplification of plant chloroplast and mitochondrial 16S as recommended by Lundberg et al. (50). Clamp
sequences published by Lundberg et al. (50) were compared with chloroplast and mitochondrial 16S
sequences from yellow starthistle and three other species of Asteraceae with published organellar
genomes (Centaurea diffusa, Helianthus annuus, and Lactuca sativa). We found a single nucleotide
mismatch between the Asteraceae chloroplast 16S and the plastid PNA sequences, and designed an
alternative plastid PNA specific to the Asteraceae sequence (5=-GGCTCAACTCTGGACAG-3=) (51). All
samples for this study were amplified using the plastid PNA of our design, together with the mitochon-
drial PNA published by Lundberg et al. (50). To gauge the effectiveness of our alternative PNA, two
duplicate samples were processed using both PNAs published by Lundberg et al. (50).

Identification of operational taxa and potential plant pathogens. Demultiplexed paired reads
were merged and quality filtered using tools from the USEARCH package version 9.0.2132 (104). Merged
reads were truncated to uniform lengths, and primer sequences were removed using a combination of
the seqtk toolkit version 1.2 (https://github.com/lh3/seqtk) and a custom script. The UPARSE pipeline
(105) implemented in the USEARCH package was used for further data processing and analysis: unique
sequences were identified, and those represented only once or twice in the processed read set were
discarded as likely PCR or sequencing errors. Remaining sequences were clustered into operational
taxonomic units (OTUs) at a 97% threshold, chimeras were filtered out, and per-sample OTU read counts
were tabulated using the UPARSE-OTU algorithm. Assignment of OTUs to nearest taxonomic match in
the Greengenes database (106) was carried out using the UCLUST algorithm implemented in QIIME
version 1.9.1 (107, 108). Data were further processed using tools from the QIIME package: reads mapping
to chloroplast and mitochondrial OTUs were removed, and samples were rarefied by plant compartment.
Rarefaction levels were chosen to reflect the distribution of read counts per sample within plant
compartments, subsampling to the minimum number of reads necessary to include all samples except
those that were outliers for low read count.

Taxa known to contain plant pathogens were identified using the FAPROTAX database (version 1.1
(53). A list of all genera included under the “plant pathogen” functional category was used to filter our
OTU tables by taxonomic assignment.

Microbial community analyses. All statistical analyses were performed in R (109). We evaluated
differences in bacterial community composition between plant compartments and between native and
invaded ranges within plant compartments by performing nonmetric multidimensional scaling (NMDS)
using the R packages vegan (110) and MASS (111). Individual plant samples or samples pooled within
sampling site provided replicates in these comparisons. Ordinations were based on Bray-Curtis distances
and were performed using a two-dimensional configuration to minimize stress, using Wisconsin double-
standardized and square root-transformed data, with expanded weighted averages of species scores
added to the final NMDS solution. Significant differences among plant compartments and between
native and invaded samples were assessed using the envfit function in vegan. Ellipses were drawn on
NMDS plots using the vegan function ordiellipse, representing 95% confidence limits of the standard
error of the weighted average of scores.

We further explored the underlying correlates of bacterial community variation using principal-
component analysis (PCA; using R function prcomp) for samples from native and invaded ranges within
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each plant compartment. Prior to performing the PCA, we performed Hellinger’s transformation to
minimize the influence of OTUs with low counts or many zeros (112–114). We then identified the OTUs
with the highest loading on the dominant PC axis of variation by examining the matrix of variable
loadings produced by prcomp. The OTU composition of samples pooled by sampling site (phyllosphere,
ectorhizosphere, and endorhizosphere samples [“pooled samples”]) was visualized using a heatmap
generated in ggplot2 (115), and samples were hierarchically clustered by Bray-Curtis dissimilarity (hclust
function in R) using McQuitty’s method (116).

We compared the diversity of OTUs between the native and invaded range for each plant compart-
ment using richness (R), evenness (Pielou’s J [117]), and their combined effects via the Hill series
exponent eH= (118) of the Shannon diversity index (H= [119]). Again, individual plant samples or samples
pooled by sampling site provided replicates in these comparisons. Diversity values were calculated using
the packages vegan and iNEXT (120) and compared between native and invaded ranges using a
nonparametric Kruskal-Wallis rank sum test on rarefied read counts. For plant tissue samples that
included multiple individuals per site, we compared diversity between regions using a nested ANOVA
with fixed effects of region and population nested within region, and among sites using a post hoc
Kruskal-Wallis test within regions. We conducted these comparisons on a data set including all OTUs and
a reduced data set including only OTUs assigned to genera with known plant pathogens according to
the FAPROTAX database, as described above.

Accession numbers. Sequence data are available under NCBI SRA accession number PRJNA494717.
Sampling locations and herbarium accession numbers of plant specimens are given in Table S1.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/
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