Skip to main content
. 2019 Feb 28;13:135. doi: 10.3389/fnins.2019.00135

Table 4.

Research overview: Prognosis with ML models (1/2).

Key Dataset(s) origin Dataset(s) type Dataset(s) length Scope Biomarker(s) type Pre-processing (if any) Validation (if any) Model(s) tested Performance Framework
Gomeni and Fava, 2013 PRO-ACT Clinical trial 338 Progression Clinical FS HOV non-linear Weibull AUC:0.96 Classification
Hothorn and Jung, 2014 PRO-ACT Clinical trial 1822 Progression Clinical, biological MVI, VIA HOV RF RMSE:0.52 (ALSFRS rate), PC:40% Regression
Ko et al., 2014 PRO-ACT Clinical trial 1822 Progression Clinical, biological FS HOV RF Spec:66%, Sens:65%, Acc:66% Classification
Beaulieu-Jones and Greene, 2016 PRO-ACT Clinical trial 3398 Outcome Clinical, biological MVI CV NN, RF,
SVM, k-NN, raji DT,
NN with RF raji(best)
AUC:0.692 Classification
Taylor A. A. et al., 2016 PRO-ACT, Emery ALS Clinic Clinical trial, real-life 4372 Progression Clinical FS, MVR,
VIA
HOV GLM,
RF (best)
R2:58.2%, MC:0.942, ME:-0.627 (ALSFRS score) Regression
van der Burgh et al., 2017 University Medical Center Utrecht Real-life 135 Outcome Clinical, imaging SP HOV NN Acc:84.4% Classification
Huang et al., 2017 PRO-ACT Clinical trial 6565 Outcome Clinical, biological FS, MVR, raji VIA CV GP, Lasso,
RF (best)
C-ind:0.717 Regression
Jahandideh et al., 2017 PRO-ACT, NEALS Clinical trial,
population
4406 Progression Clinical, biological FS, MVI,
VIA
CV RF, XGBoost, GBM (best) RMSE:0.635 (FVC), R2:66.9% Regression
Ong et al., 2017 PRO-ACT Clinical trial 1568-6355 Progression,
outcome
Clinical, biological MVR, VIA CV Boosting For P:
AUC:0.82, rajiAcc:56.5%, rajiSpec:74%, rajiSens:39%, rajiFor O:
AUC:0.83, rajiAcc:76.7%, rajiSpec:76.1%, rajiSens:77.3%
Classification

CV, Cross Validation; HOV, Hold Out Validation; AUC, Area under the ROC Curve; Acc, Accuracy; Sens, Sensitivity; Spec, Specificity; MC, Model Calibration; ME, Mean Error; PC, Pearson's Correlation; DT, Decision Tree; GLM, Generalized Linear Model; k-NN, k-Nearest Neighbors; FS, Feature Selection; MVI, Missing Value Imputation; VIA, Variable Importance Analysis; MVR, Missing Value Removal; P, Progression; O, Outcome; C-ind, Concordance; GP, Gaussian Process; GBM, Gradient Boosting Model; SP, Signal Processing; FVC, Forced Vital Capacity.