Skip to main content
. 2019 Feb 28;13:135. doi: 10.3389/fnins.2019.00135

Table 5.

Research overview: Prognosis with ML models (2/2).

Key Dataset(s) origin Dataset(s) type Dataset(s) length Scope Biomarker(s) type Pre-processing (if any) Validation (if any) Model(s) tested Performance Framework
Schuster et al., 2017 Trinity
College
Dublin
Real-life 69 Outcome Clinical, imaging SP, FS CV Logistic regression Spec:83.34%, Sens:75%, Acc:79.19% Classification
Seibold et al., 2017 PRO-ACT Clinical trial 2534-3306 Progression, outcome Clinical, biological MVR, VIA None RF Treatment
effect on rajioutcome and
progression
Regression
Bandini et al., 2018 - Clinical trial 64 Progression Clinical SP, FS CV k-NN, SVM (best) Spec:86.1%, Sens:88.8%, Acc:87% Classification
Pfohl et al., 2018 Emery ALS Clinic Real-life 801 Outcome Clinical MVI, FS,
VIA
CV GLM, raji RF (best) RMSE:547 raji+/-46 days, rajiR2:52%, rajiAUC:0.85 Regression, Classification
Westeneng et al., 2018 14 European ALS centers Real-life 11475 Outcome Clinical FS, MVI CV MRP Acc:78%, MC:1.01, AUC:0.86 Classification

CV, Cross Validation; AUC, Area under the ROC Curve; Acc, Accuracy; Sens, Sensitivity; Spec, Specificity; MC, Model Calibration; GLM, Generalized Linear Model; k-NN, k-Nearest Neighbors; MRP, Multivariate Royston-Parmar; FS, Feature Selection; MVI, Missing Value Imputation; VIA, Variable Importance Analysis; MVR, Missing Value Removal;SP, Signal Processing.