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Abstract

Membrane transporters mediate one of the most fundamental processes in biology. They are the 

main gatekeepers controlling active traffic of materials in a highly selective and regulated manner 

between different cellular compartments demarcated by biological membranes. At the heart of the 

mechanism of membrane transporters lie protein conformational changes of diverse forms and 

magnitudes, which closely mediate critical aspects of the transport process, most importantly the 

coordinated motions of remotely located gating elements and their tight coupling to chemical 

processes such as binding, unbinding and translocation of transported substrate and co-transported 

ions, ATP binding and hydrolysis, and other molecular events fueling uphill transport of the cargo. 

An increasing number of functional studies have established the active participation of lipids and 

other components of biological membranes in the function of transporters and other membrane 

proteins, often acting as major signaling and regulating elements. Understanding the mechanistic 

details of these molecular processes require methods that offer high spatial and temporal 

resolutions. Computational modeling and simulations technologies empowered by advanced 

sampling and free energy calculations have reached a sufficiently mature state to become an 

indispensable component of mechanistic studies of membrane transporters in their natural 

environment of the membrane. In this article, we provide an overview of a number of major 

computational protocols and techniques commonly used in membrane transporter modeling and 

simulation studies. The article also includes practical hints on effective use of these methods, 

critical perspectives on their strengths and weak points, and examples of their successful 

applications to membrane transporters, selected from the research performed in our own 

laboratory.
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Nanoscale Effects Governing Membrane Transporter Function

Lipid bilayers are an impermeable barrier, actively compartmentalizing life into cells and 

organelles that are clearly distinct at the nanoscale (Schneider et al., 2010; Medalia, 2002). 

Membrane transporters are incredibly specific in their capacity as the conduit of molecular 

transit across the membrane, serving as the Maxwellian “demon” that selectively permits 

specific substrates to cross while barring the path for others (Thomson, 1874). Unlike 

Maxwell’s fictional demon, membrane transporters function by well established 

thermodynamic principles, exploiting cellular sources of chemical energy such as ATP or 

pre-established ion gradients to drive conformational or enzymatic changes that facilitate the 

movement of substrate. Transporter-driven processes are found throughout biology, and are 

used to drive not only exchange of nutrients, ions, and metabolites across the membrane, but 

also more complex processes such as ATP synthesis (Weber et al., 2003), cellular signaling 

(Blakely & Edwards, 2012), and the excretion of cellular toxins (DeGorter et al., 2012).

The structure of the membrane transport proteins themselves are as diverse as their function, 

with over 10000 different transporters classified into 49 superfamilies (Saier et al., 2014). 

Despite their large diversity in function, there are however also similar constraints that 

evolution has placed upon membrane transporters. Transport is an active process that 

requires chemical energy to be fueled, either a pre-existing electrochemical gradient as in 

passive carriers and secondary transporters, or ATP hydrolysis in primary transporters. Thus 

unregulated transport can effectively act like a short circuit in biology, insidiously draining 

the capacity for the cell to do work, ultimately leading to disease (Hediger et al., 2013) or 

death (Feng et al., 2015; Ajao et al., 2015) if not ameliorated. The centrality of transporters 

to biological function has made them an attractive topic of study to a broad field of 

researchers, including computational scientists using techniques detailed in this chapter after 

a brief overview of the fundamental question of membrane transporter function.

Alternating Access Mechanism in Membrane Transporters

Membrane transporters mediate the translocation of specific substrate from one side of the 

membrane to the other. Although seemingly straightforward, this task cannot be 

accomplished by simply creating an open pathway at the membrane to allow free passage of 

the substrate. Under physiological conditions, many membrane transporter substrates move 

against their concentration gradient across the membrane. Uncontrolled flow of the 

substance through a wide open pathway, therefore, would be detrimental and even deadly to 

the cell.

To fulfill this important requirement, virtually all membrane transporters utilize the 

“alternating access” mechanism (Jardetzky, 1966) to carry out their function. According to 

this mechanism, as the transport protein undergoes conformational changes to move the 

substrate from one side to the other, coordinated closing and opening motions of specific 

gating elements within the protein ensure that the bound substrate is only accessible from 

one side of the membrane at any given time (Fig. 1).

At least two major conformational states are visited by a membrane transporter during its 

functional cycle: the “inward-facing” (IF) and the “outward-facing” (OF) states. In a 
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microscopic view, however, a series of events including the coordinated substrate binding/

release, the engagement/discharge of the energy source, and the interconversion between 

these two major conformational states, need to take place in a particular order during each 

transport cycle. Key functional aspects, such as transport directionality, mechanism, and 

efficiency, rely on free energy landscapes controlling the interconversion of these states and 

how they are affected by chemical events within the protein.

The requirement for global conformational changes renders membrane transporter structures 

highly flexible and dynamic, and often difficult to capture experimentally. Nevertheless, 

detailed, atomistic descriptions of the structures and dynamics of these molecular machines 

are highly relevant, and pivotal to studies of the activities/pathologies of membrane 

transporters. Thus, simulating these movements with molecular dynamics and characterizing 

their thermodynamic properties using free energy calculations can be of great value to 

mechanistic studies of membrane transporters (J. Li et al., 2015).

Augmenting Mechanistic Studies of Membrane Transporters Using Simulation

In addition to traditional experimental approaches, simulation with classical molecular 

dynamics (MD) (Hug, 2013) is a compelling addition to the scientific arsenal, going beyond 

the resolution and interpretation limitations of conventional experiment to provide models of 

these systems at arbitrary resolution. Crucially, MD permits atomic events (such as a side 

chain rotation or the formation of a salt bridge) to be observed on a single molecule level, 

allowing the effect of specific mutations or binding events to be captured for biological 

assemblies (Perilla et al., 2015).

The resolution offered by MD is particularly important because transporters are inherently 

dynamic, which can cause difficulties for experimental observation. Substrate arrives on one 

side of the bilayer, finds a transporter, and follows it as the transporter undergoes a 

conformational change and unbinds on the other side of the bilayer. Thus, while static 

methods such as X-ray crystallography (Barends et al., 2014) or cryo-EM (R. Y.-R. Wang et 

al., 2015; Jackson et al., 2015) are indispensable to determining a 3D structure, they are 

missing some of the rich details that can only be obtained by exploiting the unparalleled 

simultaneous spatial and temporal resolution of MD simulation (Dror et al., 2012; E. H. Lee 

et al., 2009). Instead, ensemble spectroscopy techniques such as NMR (Oxenoid & Chou, 

2013; Murray et al., 2013) or EPR (McHaourab et al., 2011) as well as single molecule 

techniques such as FRET (Vitrac et al., 2015) have had the greatest success in probing 

transporter conformational change. However, due to resolution restrictions on these 

techniques, computational modeling and MD also have a role to play.

The relationship between simulation and experiment can best be thought of as a symbiotic 

one (Karplus & McCammon, 2002; Papaleo, 2015). Simulation is impossible without the 

high-resolution experimentally-derived structures. Likewise, experiment is driven forward 

by understanding of the interactions present in the system at the nanoscale. While later 

sections of the chapter will emphasize computational techniques used to probe a transporter 

system of interest, fruitful collaboration with experiment only improves the final scientific 

result.

Vermaas et al. Page 3

Methods Enzymol. Author manuscript; available in PMC 2019 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Modeling Membrane Transporters in their Native Environment

Having established the role of molecular simulation in investigating the mechanism of 

transporter function, actually carrying out the simulations involves a number of decisions 

that need to be made and procedures that need to be carried out prior to simulation. The aim 

of this section is to serve as a guide through the process of setting up membrane transporter 

simulations, complete with recommendations for state of the art tools and techniques that are 

expected in the larger field of biomolecular simulation, and a special emphasis on where 

membrane systems would differ from their soluble counterparts. The set of steps for 

complete system construction is expanded below, and are broadly applicable to any 

membrane-embedded protein.

1. Decide on a level of simulation detail.

2. Obtain a starting conformation for the membrane protein of interest.

a. Choose a 3D structure.

b. Fill in missing elements of the chosen structure.

c. Determine protonation and termination.

3. Assemble a complete simulation system.

a. Choose a membrane composition.

b. Build the membrane.

c. Embed the model structure into the generated membrane.

4. Equilibrate the system under appropriate simulation conditions.

Choosing a Level of Detail: Atomistic or coarse-grained?

The first decision prior to any simulation is to choose the level of detail for the simulation. 

Since classical MD simulations propagate Newton’s equations of motion forward in time for 

each particle by using an empirical force field (Karplus & McCammon, 2002; Hug, 2013), 

stable integration of the position demands that the timestep between force evaluations be 

approximately ten times shorter than the timescale of the fastest degree of freedom (Hess, 

2008). In the original formulation of biomolecular MD, each particle in the simulation 

system represents a specific atom, and the fastest degrees of freedom are the bond vibrations 

to hydrogen. The relevant vibrational modes are observed at ~ 3000 cm−1 in IR spectra (de 

Vries & Hobza, 2007), implying ~ 1014 vibrations of the bond per second, limiting 

unconstrained atomic MD timesteps to 1 fs. If the length of bonds to hydrogen atoms are 

fixed, the next fastest modes are heavy atom vibrations, which limit the timesteps to 2–2.5 fs 

each.

Many biological processes happen on the ns-ms timescale, so for atomic simulation, 

approximately 106 – 1012 timesteps need to be taken. At a reasonable simulation rate of ~ 10 

ms of wallclock time per simulation timestep, a rate dictated by current hardware 

communication performance, a μs of simulated time would take approximately 4 months for 

a fully unconstrained atomic system, and a ms would be unrealistic except on specialized 
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hardware (Shaw et al., 2014). To achieve longer to timescales economically, coarse grained 

alternatives to atomic simulation have been developed, which fundamentally depart from an 

atomic representation to make larger particles that represent multiple atoms (Marrink & 

Tieleman, 2013), multiple residues (Saunders & Voth, 2012, 2013), simply omit hydrogen 

(S. Lee et al., 2014), or a combination of these approaches (Han & Schulten, 2012). As a 

consequence of the increased particle mass, coarse grained particle vibration is retarded, 

allowing for substantially longer timesteps of 20–40 fs in these representations, lengthening 

the timescale accessible to the simulation.

Both atomic and coarse-grained representations are frequently used for production 

simulations, and have different strengths. Coarse grained simulations are frequently favored 

when the timescale required for the process is large and the interaction specificity is not 

central to the result, such as simulations of lipid membrane mixing (Ingólfsson et al., 2014) 

or sampling the organization of larger lipids around membrane supercomplexes (C.-K. Lee 

et al., 2015). Atomic scale simulations are indispensable if specific interactions are essential 

to the function, such as salt bridges breaking to precipitate a large conformational change in 

a transporter (Moradi et al., 2015) or a single hydrogen bond tuning the redox state of a 

protein cofactor (Vermaas, Taguchi, et al., 2015). Again emphasizing that both approaches 

are accepted practice, it should be noted that there is always a danger of oversimplifying the 

system and missing essential features in a coarse grained simulation. If more detailed 

interactions are required, reverse coarse graining approaches have been developed to convert 

simulation systems back to an atomic representation (Stansfeld & Sansom, 2011; Wassenaar 

et al., 2014). The examples in the sections to follow will all focus on atomic simulation.

Initial Structural Model Construction and Refinement

For any level of biomolecular simulation, a correct starting structure is essential to the 

validity of the results. Structural resources such as the protein databank (PDB) (H. M. 

Berman et al., 2000; H. Berman et al., 2003) provide vital starting points for a 3D structure. 

However choosing a single structure for the protein of interest can be quite difficult simply 

due to the number of options available. Generally speaking, there are no hard and fast rules 

about which structure is “best”, although low resolution structures are best avoided if at all 

possible. Additionally, the structure should make sense in terms of membrane topology. For 

some membrane transporters, crystal contacts between neighbors can cause significant 

artifacts, as discussed by Y.-J. Chen et al. (2007) and Wisedchaisri et al. (2014) when 

comparing their crystal structures against other structures. Once a starting point is obtained, 

there are a number of additional technical elements that should be checked prior to starting 

simulation, including the completeness of the structure and protonation.

PDB structures from crystallographic data are often missing pieces of the native protein, 

which were too floppy or dynamic to be well resolved in the crystal lattice. Many tools exist 

to fill in these gaps, and broadly speaking come in two different flavors, those that use 

population-based statistics to generate candidate models, and those that directly use 

additional experimental inputs to refine the structure. Given a protein structure with gaps, 

tools such as MODELLER (Webb & Sali, 2014), Rosetta (Das & Baker, 2008; Chaudhury et 

al., 2010), or particularly SuperLooper (Hildebrand et al., 2009), which has been optimized 
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for membrane protein loops, can fill in those gaps and complete the protein structure. This 

obviates the need to restrain the geometry of what would otherwise be loose ends, although 

they should be monitored during simulation. Additionally, PDB structures may contain cis-

peptide bonds or chirality errors (Schreiner et al., 2011; Touw et al., 2015; Croll, 2015), 

which can be detected using tools included in webservers such as MolProbity (V. B. Chen et 

al., 2010) or WHAT IF (Rodriguez et al., 1998), and corrected through model rebuilding 

and/or re-refinement of the crystal structure. These stereochemical errors, nevertheless, can 

be easier addressed during system construction using the Chirality/Cispeptide (Schreiner et 

al., 2011) plugins of VMD (Humphrey et al., 1996).

Refinement methods depend on experimental observables to apply additional constraints to 

the protein structure. CryoEM or X-ray derived electron densities can be used as a biasing 

potential for the protein structure using molecular dynamics flexible fitting (MDFF) 

(Trabuco et al., 2009; McGreevy et al., 2014), where the classical MD force field is 

supplemented by forces acting on the atoms to bring them to electron dense regions of 

space. EPR/DEER data can similarly be incorporated into simulation structures using 

restrained ensemble simulations applying a series of distance restraints (Islam et al., 2013). 

In principle, with the advent of complex collective variables available in easy to use 

packages (Fiorin et al., 2013; Tribello et al., 2014), NMR observables such as NOEs 

(nuclear Overhauser effect) and RDCs (residual dipolar couplings) can also be included in 

structure determination protocols (Fu et al., 2014; Camilloni & Vendruscolo, 2015).

Another often overlooked feature of the structure preparation process is the determination of 

the protonation states for each and every ionizable residue. Now the N- and C- termini tend 

to be fairly clear decisions, as they are nearly always protonated and deprotonated 

respectively according to their pKa and general environment. However if the protein is 

incomplete, such as if only one domain is being simulated, it may be appropriate to use a 

neutral terminating patch instead. For ionizable residues such as histidine or aspartate, their 

pKa can shift dramatically depending on their protein environment. If the ionization state is 

unknown, the pKa of each residue can be estimated using tools such as PROPKA 

(Søndergaard et al., 2011; Olsson et al., 2011), or H++ (Gordon et al., 2005), allowing the 

protonation state to be assigned. PROPKA is particularly suitable to this task, as when 

combined with the PDB2PQR originally designed for Poisson-Boltzmann electrostatics 

calculations (Dolinsky et al., 2007), it generates an output that assigns protonation locations, 

including the always ambiguous histidine, which has two neutral forms. Neither PROPKA 

or H++ takes into account which residues interact with the membrane, and instead assumes 

the proteins are soluble, so caution should be exercised with their output on the protein 

periphery and inspected carefully for transporter systems.

Membrane Composition and Construction Considerations

Prior to assembling a membrane-embedded transporter simulation system, it is important to 

consider what lipid composition is most appropriate for the transporter in question. Due to 

the desire to improve performance by limiting the size of the simulation, there may be fewer 

than 100 lipids per leaflet for modeled membranes surrounding transport proteins. As a 

result, single composition membranes form the zero-order approximation of a cell 
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membrane in vivo. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) lipids are 

commonly used because they represent the largest components of steady state mammalian 

and bacterial cell membranes respectively (van Meer et al., 2008; Dowhan, 1997).

A more complete approach, however, would be to include other membrane actors, such as 

sterols or signaling lipids that have been experimentally shown to influence transporter 

function (Hong & Amara, 2010; Hamilton et al., 2014). Sterols are generally abundant, and 

can be included in mixed systems without difficulty at their experimental concentration (E. 

Wu et al., 2014; Jo et al., 2009), keeping in mind that lipid mixing processes are slow, and 

require extensive simulation for full equilibration (Ingólfsson et al., 2014). Rare signaling 

lipids represent significantly below 1 percent of membrane phospholipid in vivo (van Meer 

et al., 2008), and should be strongly enriched in typical simulations so that the embedded 

protein may have a chance to interact with the lipid. This enrichment depends on the 

assumption that the transporters locally enhance the concentration of certain lipids from the 

heterogeneous lipid distribution in live cells, and is likely true for proteins with specific lipid 

binding sites.

The location of the transporter must also be considered; mitochondrion, for example, have 

high levels of cardiolipin, a bacterial lipid not found elsewhere in mammalian cells (Paradies 

et al., 2014). Similarly, yeast and bacterial cells have a membrane composition that can 

differ substantially from mammalian cells, and the membrane composition must be changed 

accordingly. Context in which the transporter operates should be taken into account as well. 

If, for example, a transporter functions on activated platelets or cells undergoing apoptosis, it 

is likely to interact more frequently with charged lipids flipped from the inner membrane 

(Fadok et al., 1992). This can be summarized into the following series of steps.

1. Review the available literature to determine if the transporter function is 

influenced by specific lipids. If a specific lipid plays a major role in the activity 

of the transporter, it may be advisable for a larger-than-physiological 

concentration of the moiety be included to ensure the critical interaction is 

sampled. Multiple initial membrane configurations should be generated, as the 

protein-lipid interactions will be biased towards the initial conformation.

2. Review the membrane context for implications as to the lipid environment 

surrounding the transporter, including the species from which the transporter was 

isolated, and the localization of the transporter within the cell. If a particular lipid 

has a significant presence, it may be advisable to include it to reproduce the 

conditions of the specific functional environment of interest.

3. Review experimental studies on the transporter to inform the design of the 

simulation. Since it is known that the choice of lipid changes the behavior of 

transporters in vitro, direct comparisons between simulation and experiment are 

best made at similar membrane compositions.

One final thing to consider is that once the lipid composition for the simulation has been 

determined, a lipid patch of appropriate size for the system must be generated. Many tools 

exist for this step, including both webservers and stand-alone programs (Wassenaar et al., 

2015; Bovigny et al., 2015; Jo et al., 2008). The CHARMM-GUI membrane builder is an 
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exemplary tool for this step, as it includes most physiological mammalian and bacterial 

phospholipids and sterols (E. Wu et al., 2014). CHARMM-GUI also permits the membrane 

geometry to be selected, and contains an interface to alternative membrane representations 

that accelerates lipid diffusion (Qi et al., 2015). This Highly Mobile Membrane Mimetic 

(HMMM) representation (Ohkubo et al., 2012) can be used to accelerate sampling of the 

lipid environment around proteins, capturing headgroup-specific interactions (Vermaas, 

Baylon, et al., 2015; Baylon et al., 2016).

Membrane-Embedded Transporter System Assembly

Aside from membrane considerations, the protein itself needs to be oriented and placed 

correctly relative to this membrane. Transporter proteins typically have a very distinct belt-

like region in contact with the membrane. This region may not be obvious merely through 

visual inspection alone. Commonly, a web server such as the PPM (Positioning of Proteins 

in Membrane) (M. A. Lomize et al., 2006; A. L. Lomize et al., 2006, 2007, 2011), is used to 

automatically identify the hydrophobic belt region of a transmembrane protein. This is done 

by minimizing the transfer energies of the membrane protein from water to an artificial lipid 

bilayer (A. L. Lomize et al., 2011). This is a crucial step because the function of the 

membrane protein is greatly affected by the lipid-protein interactions. Misplacement of the 

orientation of the protein and mismatch of the protein hydrophobic belt and membrane 

bilayer may lead to long equilibration requirements or misleading conclusions.

Following the orientation of the membrane protein, it must be inserted into the bilayer. For 

simple cylindrical transporters, the protein can simply be superimposed onto the membrane. 

Lipids that overlap with the protein can be programmatically removed via structure building 

tools such as VMD (Humphrey et al., 1996) or CHARMM (Brooks et al., 2009) (Fig. 2A). 

Usually this will leave large gaps at the interface between the protein and the lipids. This 

artifact can be equilibrated away, as the lipids will naturally pack against the transporter 

during simulation. With the new CHARMM36 lipid forcefield parameters (Klauda et al., 

2010) and constant pressure condition applied to the lateral (membrane plane) and 

perpendicular directions, the area per lipids will match the experimental values once 

equilibrated, i.e., ~ 70 Å2 lipid (Leftin et al., 2014). However this protocol may change the 

protein structure, which is frequently ameliorated by restraining the protein backbone via a 

harmonic potential to its initial position. The restrained equilibration relaxes the lipid tails 

prior to production simulation. This step should continue until the unit cell dimension of the 

membrane settle to near a fixed value, when the restraints can be released. Alternatively, a 

repulsive force centered around the protein and pointing outwards can be applied to the 

lipids to remove clashes (Shen et al., 1997; Tieleman & Berendsen, 1998; Faraldo-Gómez et 

al., 2002).

For non-cylindrical transporters, many other methods exist (Kandt et al., 2007; E. Wu et al., 

2014; Wolf et al., 2010; Javanainen, 2014; Stansfeld et al., 2015; Jefferys et al., 2015). In all 

these methods, the lipids that have severe overlaps with the membrane protein are removed 

first. They differ in the strategy for removing minor clashes and wrapping lipids around the 

protein. In method from Kandt et al. (2007), the X and Y coordinates of the pre-equilibrated 

membrane are first scaled up to remove clashes and then gradually scaled towards the target 

Vermaas et al. Page 8

Methods Enzymol. Author manuscript; available in PMC 2019 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lipid density to accommodate lipids around the membrane protein. In the method of Wolf et 

al. (2010), the X and Y coordinates (along the membrane plane) of the transporter protein 

are first scaled down and then scaled back to the original to allow the lipids to tightly fit to 

the hydrophobic belt of the transporter using molecular dynamics (Fig. 2B). In Javanainen’s 

method (Javanainen, 2014), the lateral pressure along the membrane plane is used to wrap 

the lipids around the restrained target membrane protein (Fig. 2D). In the MemProtMD 

method developed by Stansfeld et al. (2015), the key idea to change the representation of the 

target system to a coarse-grained version and take advantage of the fast dynamics in new 

resolution-reduced system to accelerate the the lipid diffusion process (Fig. 2E). This coarse-

grained system is subsequently converted back to the all-atom system with some 

equilibration. In the Alchembed method developed by Jefferys et al. (2015), interactions 

between the protein and the lipids are replaced by alchemical soft-core potentials with 

gradually increasing intensity to remove clashes between lipids and the protein including 

aromatic ring piercing (Fig. 2F). Last but not least, a module named the “Membrane 

Builder” from the web application CHARMM-GUI (Jo et al., 2007, 2008; E. Wu et al., 

2014) can also be used for preparing the membrane-protein system. The algorithm used by 

CHARMM-GUI “Membrane Builder" first determines the lipid head group position on the 

two membrane surfaces via a simulation with pseudo atoms that surround the embedded 

protein (Jo et al., 2007) (Fig. 2C). The pseudo atoms are then replaced by full lipids selected 

from a conformer library with 2000 distinct conformations taken from a MD trajectory, 

generating a membrane embedded membrane protein.

All the methods mentioned above have been demonstrated to be well suited for building 

simulation systems with membrane proteins embedded in pure or mixed biological 

membranes. However each of them have a different learning curve, and CHARMM-GUI 

stands out for its simple interface and rich customization features for different lipid types (E. 

Wu et al., 2014).

Simulation Condition Considerations

Membrane protein simulation conditions differ from their soluble counterparts in a number 

of aspects. The membrane is an anisotropic medium, with distinct stress moduli along the 

membrane normal and membrane parallel directions. Barostats in simulation should take this 

asymmetry into account. MD engines include an option for a barostat that can change the 

shape of the dimensions of the periodic cell independently between the membrane normal 

and membrane parallel axes, based on the seminal work of Martyna et al. (1994). The two 

membrane parallel axes should grow and shrink in a constant ratio with one another, lest the 

membrane deform anisotropically and allow the embedded protein to contact itself across 

the periodic boundary.

While the thermostat used for simulation of membrane transporters follows the same general 

advice as soluble proteins, using a Nose-Hoover (Evans & Holian, 1985) or Langevin 

thermostat (Brünger et al., 1984; J. C. Phillips et al., 2005), the target temperature of 

membrane protein systems needs to be carefully chosen. Membranes undergo phase 

transitions near physiological temperature, which have been hypothesized by Gray et al. 

(2015) to be a way by which the cell can reorganize its membranes in response to different 
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growth conditions. Thus unlike soluble proteins, which are frequently simulated near room 

temperature (300 K) to mimic experimental conditions, membrane protein simulations are 

typically a bit warmer (310 K) to stay above the liquid-gel transition temperature for the 

lipids being simulated and to mimic natural disordered lipids (Coppock & Kindt, 2010).

Membrane protein simulation conditions differ from solution simulations in one final 

respect: rather than only needing a forcefield to describe the interactions within the protein 

and between the protein and water, membrane protein simulations also require accurate 

parameters for protein-membrane interactions. Amber (Dickson et al., 2012), Gromos (Reif 

et al., 2013), OPLS (Siu et al., 2012) and CHARMM (Klauda et al., 2010) lipid force fields 

have all been validated for these mixed interactions at the atomic level, and all continue to be 

improved and updated as more experimental data becomes available. Currently, either the 

combination of the CHARMM36 lipid (Klauda et al., 2010) and protein (Best et al., 2012) 

force fields or the SLIPID (Jämbeck & Lyubartsev, 2013) and AMBER99SB-ILDN (Aliev et 

al., 2014) force fields would be recommended for new simulation having been consistently 

found to outperform their competitors in membrane properties (Paloncýová et al., 2014) and 

correctly capture membrane-protein interaction (Sun et al., 2015).

Modeling Substrate Binding and Unbinding Processes in Membrane 

Transporters

The activity of membrane transporters is tightly coupled to their substrates, and may 

additionally be modulated by other small molecules present in the system under study. 

While experimental quantities such as a dissociation constant (Kd) are often readily available 

for many compounds and transporter combinations, those are missing the details of the 

interaction, and thereby have difficulty making predictions on how the dynamics change 

once a substrate is bound. Since the binding fundamentally lowers the barrier to 

conformational transition, determining the interactions that take place and quantifying their 

effect through free energy calculation is a frequent addition to traditional equilibrium 

simulation of the unbound state. Furthermore, quantifying the energy change is frequently 

used to compare with experiment and connect back in silico observables with those 

determined in vitro, and is a crucial sanity check on the validity of the results. An additional 

complication to adding substrates or drugs to the system is that they may be missing 

parameters that describe their interaction with other elements of the system. Techniques 

commonly used to add these features to transporter simulation are discussed in this section 

(Fig. 3), and should be used in conjunction with equilibrium MD of the apo state to elucidate 

how substrates trigger conformational change.

Determining Substrate Force Field Parameters

Classical MD simulations are founded on molecular mechanics (MM) force fields, a 

mathematical description of interatomic (comprising intra- and intermolecular) interactions 

(Ponder & Case, 2003; Mackerell, 2004; Guvench & MacKerell, 2008; Monticelli & 

Tieleman, 2013). MM potential energy functions are comprised of terms to describe each 

individual topological and intermolecular element, in which each term is tuned for a specific 

interaction using parameters. For the transporters themselves and their environment, decades 
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of research has led to the availability of robust parameter sets for commonly studied 

biopolymers (e.g., proteins (MacKerell, Jr. et al., 1998, 2004; Best et al., 2012; Cornell et al., 

1995; Lindorff-Larsen et al., 2010; D.-W. Li & Brüschweiler, 2010; Oostenbrink et al., 

2004; Kamisnki et al., 2001), DNA/RNA (MacKerell Jr. & Banavali, 2000; Denning et al., 

2011; Hart et al., 2012; Pérez et al., 2007; Aduri et al., 2007; Soares et al., 2005), 

carbohydrates (Guvench et al., 2009; Raman et al., 2010; Guvench et al., 2011; Glennon & 

Merz, Jr., 1997; Kirschner et al., 2008; Damm et al., 1997; Kony et al., 2002)) and other 

biological structures for which dynamic studies are required (e.g., lipids (Feller et al., 1997; 

Klauda et al., 2010; Skjevik et al., 2012; Dickson et al., 2014; Maciejewski et al., 2014)). 

The substrates of membrane transporters are generally classified as small molecules which, 

in contrast to biopolymers, frequently contain unique functional groups not shared with the 

biopolymers they interact with, and demand parameters not necessarily covered by existing 

parameter sets. Despite lacking an inherent repeated structure, transporter substrates often 

share common substructure or functional groups (e.g., aromatic rings, alcohols, amines, 

amides, alkyl chains, olefins, etc). Efforts towards developing parameter sets covering these 

common elements are the basis for generalized extensions to popular biopolymer force 

fields, such as the CHARMM General Force Field (CGenFF) (Vanommeslaeghe et al., 2010) 

and the Generalized AMBER Force Field (GAFF) (J. Wang et al., 2004).

While such parameter sets provide coverage for common substructures, it is unreasonable to 

expect that they can provide coverage for the exponential combinations required to describe 

small molecule parameter space (estimated at 1018–10200 molecules!) (Drew et al., 2011). 

The focus of obtaining parameters is thus shifted from parameterizing entire molecules, to 

focusing on linkages between substructures that lack parameters. Although this does not 

represent a complete solution to obtaining parameters, it significantly reduces the 

complexity and practical challenges associated with parametrization. There are several tools 

available that facilitate filling in the remaining missing parameters for small molecules, and 

take one of two approaches: assigning parameters by analogy to molecules for which 

parameters are already known, or by optimizing parameters against target data, typically 

high level quantum mechanical calculations. Traditionally, comparisons to determine 

molecular analogy has been performed by hand. While this allows for a high degree of 

control, it requires that the researcher has an in-depth knowledge of chemical similarity and 

what types of molecules are already present in the parameter set. Recently, several programs 

have been developed that automate the process of determining parameters by analogy, such 

as the CGenFF Program (Vanommeslaeghe & MacKerell, Jr., 2012; Vanommeslaeghe et al., 

2012) and MATCH (Yesselman et al., 2012) for the CGenFF force field, AnteChamber (J. 

Wang et al., 2006) and R.E.D. (Vanquelef et al., 2011) for the AMBER force field, and the 

Automated Topology Builder (ATB) (Malde et al., 2011) and PRODRG (Schüettelkopf & 

van Aalten, 2004) for the GROMOS force field.

In addition to targeting different force fields, each of these resources uses its own 

methodology to make parameter assignments. It is critical to understand how each tool 

arrives at the a parameter set and to make sure that this method is consistent with the target 

force field for the desired application, as this has been shown to strongly impact the quality 

of subsequent simulations (Lemkul et al., 2010). Each resource also relies upon a different 

database of parameter knowledge, which can impact the results. The CGenFF program, for 
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instance only crosschecks against the main CGenFF parameter set, excluding many 

chemotypes for which parameters are well-known but are distributed as add-on specialty 

parameters, such as parameters for lipids, sterols, carbohydrates, fluoroalkanes, and amines, 

amongst many others that are contained in separate “stream files” and are not part of the 

CGenFF Program similarity search.

Assigning parameters by analogy is often expedient, and in some cases sufficient; however, 

there are many cases which require computing the parameters directly, such as refining 

parameters for a specific system or obtaining parameters for novel chemotypes where no 

suitable analogy exists. Computing parameters directly is a significantly more involved 

process that requires multiple calculations to fit parameters to target data than for the 

analogy method (Fig. 4). The availability of toolsets for performing these tasks are less 

widespread, with the most options available for the CHARMM family of force fields (i.e., 

CHARMM, CGenFF). The General Automated Atomic Model Parametrization (GAAMP) 

webserver (L. Huang & Roux, 2013) is the simplest to use, requiring only modest input and 

employing a highly automated, albeit blackbox, approach to optimizing parameters. The 

Force Field Toolkit (ffTK) (Mayne et al., 2013), distributed as a plugin within the popular 

VMD molecular modeling package (Humphrey et al., 1996), is designed specifically with 

usability in mind by automating tedious and error-prone tasks, providing reasonable defaults 

for novice users, and featuring a set of analytical tools to assess the details of the 

optimization calculations and allow for extensive customization by expert users. Expert 

users may be interested in the stand-alone program lsfitpar (Vanommeslaeghe et al., 2015), 

which provides users with the same routines employed by the developers of CGenFF in a 

command-line environment, or the Force Balance program (L.-P. Wang et al., 2013), which 

is written in Python and furnishes an infrastructure that accommodates a diversity of target 

data, such as experimental data, and optimization techniques, such as MD-simulated 

properties, to fit parameters. In addition to these tools, the Paramfit program (Betz & Walker, 

2015) supports parametrization of for the AMBER force field, and the ForceFit program 

(Waldher et al., 2010) provides general routines that are not specific to any particular force 

field.

Following the steps to obtain parameters, it is critical to assess the quality of the parameters. 

Depending on the molecule in question, the availability of experimental data, assessments 

towards the parameter quality range greatly in terms of complexity and rigor. The CGenFF 

Program provides a “penalty score” for each parameter which describes how close the term 

matches by analogy to the existing term (Vanommeslaeghe et al., 2012). Using this penalty 

score, the authors of the tool suggest that the parameter is fair, requires basic validation, or 

extensive validation/optimization. When computing parameters directly, ffTK provides a 

significant amount of data and analytical tools to assess the degree of fit between the MM-

computed properties and the driving target data (Mayne et al., 2013). The most rigorous 

assessment of parameter performance, however, is the ability to reproduce condensed phase 

properties from MD simulations. The simplest calculations are to compute the density and 

enthalpy of vaporization (Vanommeslaeghe et al., 2010). These properties are only relevant 

to molecules that are liquids under simulation conditions, and are largely defined by the 

Lennard-Jones term of the force field; therefore, they are not ideal for assessing charge 

assignments or bonded parameters. Currently, the most rigorous approach is to compute the 
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free energy of solvation, where experimental values are frequently available (Mobley et al., 

2011; Mayne et al., 2013; Mobley & Guthrie, 2014; Zhang et al., 2015). Experimental 

partition coefficients for octanol/water solvent systems are also frequently available for 

lipophillic compounds (Sangster, 1989; CRC, 2015) and can be approximated from free 

energy calculations using alchemical simulations (Garrido et al., 2012; Vermaas, Taguchi, et 

al., 2015).

Ensemble Docking to Identify Putative Substrate Binding Sites

In cases where the substrate binding site of the transporter is unknown, small molecule 

docking can be used to search for possible binding conformations of a ligand in the binding 

site of a protein (Mihasan, 2012; Strynadka et al., 1996; Dolghih et al., 2011). The identified 

favorable protein-ligand conformations through docking provide a clear picture of the key 

molecular interactions that facilitate binding. Not all docking programs use the same scoring 

functions and docking protocols, so users should evaluate the reliability of available software 

for the ligands and proteins of interest to compare their results (Cross et al., 2009; 

Plewczynski et al., 2011). Following are a few ways to obtain reliable docking results, (i) a 

consensus approach (Clark et al., 2002), where a few docking programs are used to predict 

the protein/ligand complex and a predominant pose is selected, (ii) re-docking a 

crystallographically solved similar protein/ligand complex of interest to validate the 

programs in predicting the x-ray identified complex (Thangapandian et al., 2012), (iii) using 

a benchmark dataset (Hevener et al., 2009), which includes known binders and non-binders 

of the protein of interest, to evaluate the predictive ability of the docking programs.

Molecular docking was first carried out on static or nearly static structures, where only a few 

protein side chains were allowed to change their orientation (Meng et al., 2011; Morris & 

Lim-Wilby, 2008; Thangapandian et al., 2010). However this static approach misses binding 

sites that might become accessible only due to the motion of a protein or only exist after 

membrane interaction changes protein conformation, a feature that is common among 

membrane-associated proteins (Lin et al., 2002; Denisov et al., 2015; Rinne et al., 2015; 

Rodríguez et al., 2015). To take these conformational changes into account, a so called 

“ensemble docking” technique is used. Ensemble docking is performed against a series of 

protein conformations taken from a MD trajectory or experimentally solved conformations 

of a protein (Lin et al., 2002; S.-Y. Huang & Zou, 2007; Amaro et al., 2008; Korb et al., 

2012; Campbell et al., 2014; Tian et al., 2014; Ellingson et al., 2015). The breathing motions 

from MD may find even more poses and states, rather than relying on a single or a few 

experimental snapshots to be representatives of the ensemble of conformations encountered 

in vivo.

As an example, ensemble docking of a drug substrate on to P-glycoprotein (P-gp), an ATP-

binding casette (ABC) transporter that exports toxins and drugs out of the cell (Aller et al., 

2009; J. Li et al., 2014), is demonstrated. Here, an ensemble of 1000 protein conformations 

obtained from a long MD trajectory (Fig. 5A) is used. Then the docking region is defined, 

keeping in mind that it should comprise the complete translocation compartment and not just 

the final binding site, as transport proteins usually have multiple binding sites (Dolghih et 

al., 2011; Safa, 2004; Martin et al., 2000; Sharom, 2014). A drug substrate was docked in to 
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the defined docking region using AutoDock (Morris et al., 2009), generating 10 docked 

poses for each protein conformation. For this example, ensemble docking has resulted a total 

of 10,000 docked poses of the drug molecule (1000 conformations × 10 poses) covering the 

entire translocation compartment. A clustering method was then used to cluster all the 

docked poses, which in turn provided a set of possible binding sites (Fig. 5B). Repeating the 

same protocol for both end states of the transport cycle would provide additional insight as 

to the complete path of a substrate during the large-scale transition of the transporter.

Substrate Binding and Unbinding from Unbiased Simulation

The docking methods presented in the previous section provide starting points for substrates 

bound to their binding site. However, only through simulation is it possible to explore the 

detailed dynamics of substrate binding or unbinding (Fig. 6). Through extended equilibrium 

MD simulation, important dynamical elements of substrate binding have been observed, 

including the specific interactions that bind the substrate to the transporter, and gating 

residues that prevent premature translocation (Z. Huang & Tajkhorshid, 2008; Yin et al., 

2006; Zomot & Bahar, 2012; Simmons et al., 2014; Watanabe et al., 2010; Enkavi & 

Tajkhorshid, 2010; Y. Wang et al., 2008; Andersson et al., 2012; X. Jiang et al., 2014; Zhao 

et al., 2011). Conceptually, these simulations are simple equilibrium simulations, although 

an unprepared investigator can find analyzing their results surprisingly counterintuitive.

For instance, despite calculating forces based on a potential energy function, the exact value 

of that function for interaction strength between substrate and protein has no meaning in 

isolation, as it neglects the contribution of water and other species to the sum of the forces 

acting upon the substrate. Instead, dedicated free energy methods are required to compute 

experimentally relevant quantities, and are detailed in subsequent sections. However, these 

types of analyses can be useful in identifying specific interactions, such a hydrogen bonds, 

that restrain substrate dynamics and are liable to play a larger role in governing the substrate 

binding and unbinding behavior, as exemplified by numerous applications (Koldsø et al., 

2013; Kantcheva et al., 2013; Cheng & Bahar, 2015). In cases where the substrate bound 

form is being studied, it is recommended to release any equilibrating restraints placed upon 

the substrate binding site first, such that the residues surrounding the binding site can adopt 

their final favored conformation (J. Li & Tajkhorshid, 2012; Tavoulari et al., 2016). If this is 

insufficient, additional harmonic distance restraints can be applied to enforce a hypothesized 

binding geometry, though it may not prove to be stable during simulation.

Studies of binding or unbinding processes can focus on specific binding residues, such as 

those that form an intricate H-bonding network between the substrate and the binding site 

that needs to be disrupted for the substrate to be released from the binding site (Zomot & 

Bahar, 2012; Watanabe et al., 2010). However in some instances, other protein side chains 

can block binding or unbinding based on their rotameric state, acting as “gate” controlling 

the flow of substrate (Zomot & Bahar, 2010; Watanabe et al., 2010). The coupling between 

the substrate rearrangement and gate opening is frequently accomplished by water solvating 

the binding site and lubricating the unbinding event (Choe et al., 2010; Cheng & Bahar, 

2014). Analyzing the trajectories for these features is frequently first done by eye, using 

visualization tools such as VMD (Humphrey et al., 1996), Chimera (Pettersen et al., 2004), 
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or PyMOL (Schródinger, LLC, 2015), and then measuring quantities of interest via 

trajectory analysis tools such as VMD (Humphrey et al., 1996), MDTraj (McGibbon et al., 

2015), or MDAnalysis (Michaud-Agrawal et al., 2011).

Unlike substrate unbinding, binding events are difficult to capture using unbiased MD 

simulation, as the entropy decreases substantially upon binding relative to the unbound state. 

Additionally, substrate binding requires the reformation of interaction between the substrate 

and the binding site which is generally accompanied by local conformation reorganization of 

the amino acids in the binding site. Nevertheless, binding of small ions (Zomot et al., 2015) 

and gaseous molecules (CO and O2) has been observed previously in MD simulations 

(Baron et al., 2009; Ruscio et al., 2008). Furthermore, strong interactions, such as those 

between charged substrates and their binding site, have also been captured spontaneously in 

MD simulations (Enkavi & Tajkhorshid, 2010; Y. Wang et al., 2008; Dehez et al., 2008).

For uncharged substrates, the simplest simulation approach to apply to the transporter 

system to identify substrate binding sites and pathways would be to increase the 

concentration of the substrate, which may increase the probability of binding at the 

simulation timescale. In this “flooding” approach, a high concentration of substrate is placed 

in the simulation system and allowed to diffuse in an unbiased manner (Brannigan et al., 

2010; Murail et al., 2011). Copies of substrate can be generated by substituting water 

molecules or using softwares such as PACKMOL (Martínez et al., 2009). Binding sites and 

transport pathways of substrate can be identified by visualizing simulated trajectories and by 

clustering analysis (Ruscio et al., 2008; Brannigan et al., 2010; Buch et al., 2011; P. H. Wang 

et al., 2011; LeBard et al., 2012). As an example of such analysis, the entire trajectory of a 

simulation can be clustered into a three-dimensional occupancy map using tools integrated 

into VMD (Humphrey et al., 1996), which indicates regions within the protein where 

substrate is frequently sampled, and can be applied to a diverse set of transmembrane 

proteins (Mahinthichaichan et al., 2016; Arcario et al., 2014).

Implicit ligand sampling (ILS) is an alternative and complementary approach to these 

flooding simulations to characterize substrate binding and transport pathways in proteins 

(Cohen et al., 2006; Saam et al., 2007, 2010; Y. Wang et al., 2007; Y. Wang & Tajkhorshid, 

2010). Rather than explicitly simulating copies of the substrate, ILS is a post-processing 

method where substrates are probed to see if they would fit and bind favorably in different 

regions of a dense grid during a substrate-free simulation. ILS is most suitable for small 

hydrophobic gases, such as O2, NO and CO2, since the approach implicitly assumes that 

there are no strong interactions between the substrate and protein that might perturb the 

overall protein structure dynamics (Cohen et al., 2006). In this manner, ILS can be viewed as 

“systematic docking”, in that snapshots of the protein taken from a trajectory of MD 

simulation in the absence of a targeting molecules may be used to quantitatively identify 

high affinity sites for substrate binding over the entire structure (Fig. 7). ILS has been 

successfully employed to study gas transport in membrane proteins, which include 

aquaporins (Y. Wang et al., 2007; Y. Wang & Tajkhorshid, 2010) and bioenergetic proteins 

(photosystem II and cytochrome c oxidase) (Vassiliev et al., 2013; Mahinthichaichan et al., 

2016).
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Substrate Binding Pathway and Mechanism from Biased Simulation

Binding and particularly unbinding are relatively rare events in the lifetime of a transporter. 

Over a transport cycle of approximately 10 ms, a small substrate such as a sugar will travel ~ 

1 μm if left to freely diffuse, and so transporters bind their substrates tightly to confine the 

substrate during the cycle. Thus the barrier to unbinding is sufficiently high such that 

equilibrium MD may not capture and unbinding event. Similarly, the high entropy of a 

single substrate in solution can render binding too slow of a process to capture with 

equilibrium MD. By applying forces in addition those of the force field, the membrane 

binding and unbinding process can be examined in detail.

The simplest of these approaches is steered molecular dynamics (SMD, Fig. 3B), where a 

force is applied to induce a change within the simulation, in this case to force the binding or 

unbinding of the substrate. SMD comes in two major flavors, a constant force mode that was 

originally implemented, and a constant velocity mode analogous to that adopted in atomic 

force miscroscopy (AFM) which records the force required over a chosen pathway. In order 

to be consistent with an AFM setup, the pulling reaction coordinate should be in a constant 

direction, although the freedom of working in silico permits other reaction coordinates to be 

explored as well that might better reflect the unbinding or binding reaction coordinate, such 

as coordination number or the distance to a binding site (Fiorin et al., 2013; Tribello et al., 

2014). In either context, the choice of a proper force constant determines the accuracy of the 

SMD simulation. The force constant must be high enough so that the free energy barrier for 

the substrate transport in the membrane transporter is overcome, but ideally not so high that 

the measurement is far from equilibrium (Isralewitz et al., 2001). A common rule of thumb 

is to make sure that the thermal fluctuations as a result of pulling lies in the order of 0.5 Å 

(Isralewitz et al., 2001).

For SMD, it is critical to think statistically. A single SMD pull has limited significance in 

elucidating the binding and unbinding pathway. The nonequilibrium work from repeated 

pulls places an upper bound on the free energy difference of the process at hand (Jarzynski, 

1997), thereby providing a method by which different candidate pathways can be evaluated. 

For as far as is possible, these pulls should start from different starting configurations, such 

as by taking different timepoints from a trajectory as the starting point for individual pulls.

SMD does not overcome the fundamental problem of equilibrium simulation however, in 

that high energy states are still only rarely sampled. To sample these rarely visited states of a 

binding process, an additional external potential can be added to constrain the reaction 

coordinate to force sampling of a small region of reaction coordinate space (Kästner, 2011), 

typically taken along a SMD trajectory to seed the initial positions (Fig. 3B). Since the 

added potential is known, the underlying free energy profile near this highly sampled region 

can be deduced through self-consistently solving for the unweighted free energies given the 

weighted population distribution in each local environment. By repeating this procedure for 

many adjacent regions of reaction coordinate space, the total free energy profile can be 

estimated in a self-consistent manner (Kumar et al., 1992) via a number of different 

packages (Grossfield, 2013; Hub et al., 2010; Chodera et al., 2007). Since the individual 

applied potential looks like an umbrella, and each “umbrella” spans a region of the reaction 

coordinate, this sampling method is called umbrella sampling (Torrie & Valleau, 1977).
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Setting up umbrella sampling calculations to study substrate binding to transporters requires 

carefully balancing the force constants used to add the external, usually harmonic, potential. 

If the force constant is too weak, the underlying potential energy surface can overpower the 

biasing potential, causing specific regions of the free energy landscape to be undersampled 

that remain too high in energy to be thermally accessible. If the force constant is too strong, 

each umbrella will span only a small amount of the reaction coordinate. Since the sampled 

regions must overlap for a complete profile, strong force constants can dramatically increase 

the computational cost by forcing additional umbrellas to be placed in undersampled gaps. 

Umbrella placement and strength can be approached algorithmically (Sabri Dashti & 

Roitberg, 2013), although as a rule of thumb, the spacing between adjacent umbrellas should 

be such that the potential bias is ~3kT at the center of the adjacent umbrellas.

A more modern development in the field has been the proliferation of replica exchange 

umbrella sampling (REUS) studies, based on studies by Sugita et al. (2000), where the 

biasing potentials are exchanged over the course of the simulation set. The goal of this 

approach is to overcome a shortcoming of conventional umbrella sampling studies, where 

the simulations may be exploring conformational space orthogonal to the measured reaction 

coordinate, thereby changing the free energy profile in a hidden way (Neale et al., 2008). 

Replica exchange methods eliminate the effect of these hidden degrees of freedom, and can 

dramatically accelerate free energy profile convergence (W. Jiang et al., 2012; Kokubo et al., 

2013).

Less structured exploration methods have also been employed to study substrate dynamics in 

membrane transporters, namely metadynamics (Laio & Parrinello, 2002) and the adaptive 

biasing force (ABF) method (Darve & Pohorille, 2001; Darve et al., 2002). The basic 

approach in these biased sampling techniques is to smooth the energy landscape of the 

system along a predefined reaction coordinate by the addition of biases during the 

simulation that let the system overcome energetic barriers, with the goal of uniformly 

sampling the entire reaction coordinate (Darve et al., 2008). One advantage of these methods 

over umbrella sampling is that they can be significantly cheaper computationally, requiring 

only a single simulation to produce a result. However the robustness of both methods 

improves substantially with multiple copies, whose results can be agglomerated into a single 

free energy profile (Raiteri et al., 2006; Minoukadeh et al., 2010).

Alchemical Perturbation Applied to Substrate Binding

There are times when rather than an unbinding or binding process, the relative or absolute 

binding free energies are the critical observable comparable to experiment (Chipot & 

Pearlman, 2002; Chipot & Pohorille, 2007). For example, many transporters use ionic 

gradients to fuel their transition, and so the relative affinity of two similar ions (eg. Na+ or Li
+) may be the quantity of interest (Thompson et al., 2009). Alchemical method such as free 

energy perturbation (FEP) (Zwanzig, 1954) and thermodynamic integration (TI) (Kirkwood, 

1936) exploit the fact that free energy is a state function (i.e., it is path independent) by 

computing a free energy difference from in silico alchemical transmutation to complete a 

thermodynamic cycle (Pohorille et al., 2010). By carefully choosing the thermodynamic 

cycle, complicated absolute (Fig. 3C) or relative (Fig. 3D) binding free energies can be 
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computed far more efficiently than via other methods (Tembre & Cammon, 1984; W. L. 

Jorgensen & Thomas, 2008).

From the perspective of membrane transporter binding calculations, there is very little 

difference between FEP and TI methods, and the two methods become equivalent in the 

limit of infinitesimal step sizes (Christ et al., 2010; W. L. Jorgensen & Thomas, 2008). They 

differ in their formalism of how the free energy difference is computed, but generally 

speaking both operate by slowly decoupling one set of atoms from the calculation while 

coupling an originally decoupled set of atoms. The progress of this alchemical process is 

characterized by the scaling parameter λ, which varies between 0 and 1 to represent the 

initial and final states (Beveridge & DiCapua, 1989). This setup makes the free energy 

change a continuous function of λ between the initial and final states (Frenkel & Smit, 

2002). The intermediate values of λ must be chosen for both methods, and are frequently 

not equally spaced between the end points, as the largest free energy changes occur when a 

particle is being grown into or out of existence, where the non-bonded interactions may 

introduce large values as the weakly-coupled atoms overlaps with other atoms in the system 

(Goette & Grubmüller, 2009). These “end-point catastrophes” (Lu et al., 2004) are generally 

handled by altering the non-bonded interactions when λ is near extrema, however it is still a 

good idea to sample more in these regions (W. L. Jorgensen & Thomas, 2008).

The principle differences between FEP and TI comes in analysis. FEP takes discrete steps, 

and so one basic estimate of the error comes from taking the steps forward (from λ = 0 to λ 
= 1) and backward (from λ = 1 to λ = 0) and evaluating the hysteresis (W. Jorgensen & 

Ravimohan, 1985). This approach is implemented with the ParseFEP tool in VMD to 

analyze NAMD simulations (Liu et al., 2012), and other MD packages have other tools such 

as g_bar in GROMACS (Pronk et al., 2013) to evaluate the output of alchemical simulations.

Emerging Techniques to Simulate Large-Scale Structural Transitions in 

Membrane Transporters

Large-scale structural transitions are perhaps the defining functional features of membrane 

transporters, enabling them to regulate the accessibility of their binding site(s) to one side of 

the membrane at a time and allowing a chemical energy source to be used to drive the uphill 

motion of substrates. Unfortunately, while conventional MD simulation is well suited to 

work out the details of the interactions that might drive these processes, the millisecond or 

(often) longer time scales required for large-scale conformational changes rule out unbiased 

equilibrium MD simulation as a technique for studying these changes. We present here a 

recently developed procedure (Moradi & Tajkhorshid, 2013, 2014; Moradi et al., 2015) 

involving an array of advanced nonequilibrium MD techniques that can be used to study 

these conformational changes. In essence, this procedure simplifies to the following set of 

steps:

1. Obtain atomistic models of the states.

2. Choose collective variables and biasing protocols to drive the system from one 

state to another.
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3. Relax the transition pathway with a refinement technique.

4. Sample along the pathway to obtain a free energy profile.

5. Analyze the profile quality and return to Step 2 if need be.

Defining Target End States

Before any kind of transition can be investigated, the end states of that transition must be 

defined. For a few transporters (e.g., a glutamate transporter homolog called Gltph (Yernool 

et al., 2004; Reyes et al., 2009) and a bacterial ABC exporter called MsbA (Ward et al., 

2007)), X-ray crystal structures have captured the transporter in multiple states in their 

transport cycles. In these select few cases, two crystal structures can be used as the end 

states, and the conformational transition between the structures can be investigated. 

However, for most transporters, X-ray crystal structures are only available for a single state, 

so the structure of a second state must be modeled before the large-scale structural changes 

can be investigated. There are currently two main approaches available to model unknown 

states in transporters: homology modeling and repeat-swap modeling.

Homology modeling is a general tool in which an unknown structure for a protein is 

generated using a known structure of a homologous protein as a template (Martí-Renom et 

al., 2000). Homology modeling can be performed by many programs, and MODELLER 

(Webb & Sali, 2014) and SWISS-MODEL (Biasini et al., 2014) are popular examples. 

While the specific techniques used by different software packages differ, the basic procedure 

they use is the same (Martí-Renom et al., 2000). First, a sequence alignment is used to 

identify corresponding portions of the two proteins. The local conformations of these 

portions in the protein with unknown structure are then made to match the conformations in 

the template, which causes the global conformation of the entire protein to approximately 

match that of the template. Finally, the resulting model is refined to increase its quality (e.g., 

by eliminating steric clashes between residues).

Recently, it has been found that many transporters are composed of pairs of pseudo-

symmetric structural elements called inverted repeats (Forrest et al., 2008; Crisman et al., 

2009; Vergara-Jaque et al., 2015). When inverted with respect to the plane of the membrane, 

the topology of one repeat is (nearly) identical to the topology of the other (Fig. 8A). While 

their topologies are (nearly) identical, the conformations of the repeats are quite different, 

and it has been shown that swapping the conformations of the repeats will swap the overall 

conformation of the transporter from an IF to OF state or vice versa (Fig. 8B) (Forrest et al., 

2008; Crisman et al., 2009; Vergara-Jaque et al., 2015). The sequence similarity between the 

individual repeats is usually fairly low, but it is high enough that homology modeling 

techniques can be used to swap the conformations of the repeats (Forrest et al., 2008; 

Crisman et al., 2009; Vergara-Jaque et al., 2015). Once the conformations of the repeats have 

been swapped, the repeats can be fit back together, and the resulting global conformation of 

the model can be empirically refined to generate a model of a missing state in a transport 

cycle (Forrest et al., 2008; Crisman et al., 2009; Vergara-Jaque et al., 2015).

Before investigating the transition between a known and a modeled state, rigorous 

investigation of the quality of the modeled state is essential. If the modeled state does not 
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correspond sufficiently well to a physiological state visited by the transporter, the 

subsequent steps involved in this procedure will yield results that are of limited value at an 

extremely high computational cost. Standard modeling techniques attempt to maximize the 

internal quality of the model but cannot take into account the transporter’s environment. The 

stability of any model in the context of a membrane should be verified through equilibrium 

simulations (Moradi et al., 2015). If the quality of the model is not sufficient, it is common 

for the transporter to revert from the modeled state back to the known crystallographic state 

within a few dozen nanoseconds of simulation.

Generating a Biasing Protocol to Induce Transporter Transitions

One common way of inducing a structural transition is through a targeted MD (TMD) 

simulation, which makes use of the root-mean-square displacement (RMSD) of a selection 

of atoms in the transporter (Schlitter et al., 1993; Fiorin et al., 2013). RMSD is a common 

measure of differences in protein conformations (the lower the RMSD, the more similar the 

conformations) and is calculated using the equation 1
N ∑ j x j − x j′

2,, where N represents the 

number of atoms in the selection, xj represents the 3D coordinates of atom j in one 

conformation, and x j′ represents the 3D coordinates of the atom in a reference conformation. 

When an RMSD calculation is performed for large-scale conformational differences, only 

the protein’s heavy or Cα backbone atoms are selected, as side chain rotations and the 

movement of lighter atoms are small-scale conformational changes that may obscure the 

progress of the global transition. In a TMD simulation, the starting conformation is driven to 

the final (target) conformation by inducing a linear reduction of the RMSD, measured with 

reference to the target conformation, from its initial value to zero (Schlitter et al., 1993; 

Fiorin et al., 2013). This is done by applying forces to the selected atoms, and the forces are 

calculated using the gradient of a harmonic energy potential of the form U = k
2(ζ − ζ′)2

(Schlitter et al., 1993; Fiorin et al., 2013). Here, k is a user-specified force constant, ζ 
represents the RMSD of the transporter’s conformation and ζ′ represents a target RMSD 

value that changes throughout the simulation.

The TMD approach of investigating transporter transitions is popular due to its simplicity, 

but its use commonly results in transitions that approximately correspond to linear 

interpolations between the end states. Unfortunately, such transitions are often inconsistent 

with the alternating-access mechanism (i.e., substrate is accessible from both sides of the 

membrane at the same time), which makes them nonphysiological and therefore of limited 

scientific value (Moradi & Tajkhorshid, 2013, 2014). To avoid this problem, it is better to 

induce changes in ways specific to the transporter under investigation. By investigating the 

large-scale differences in conformation between the two end states and any experimental 

clues about the structural nature of the transporter’s mechanism, one can qualitatively 

predict the kinds of motion that must be induced in the transporter to transition it from one 

state to the next (Moradi & Tajkhorshid, 2013, 2014; Moradi et al., 2015). To induce these 

motions in a simulation, forces derived from harmonic potentials involving so-called 

“collective variables” (i.e., reaction coordinates) can be applied to the atoms in the 

transporter in the same way as is done with RMSD in TMD simulations (Fiorin et al., 2013). 
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Generally, a collective variable is a quantity that is calculated from the positions of the atoms 

and is used to represent a specific conformational element in the transporter (Moradi & 

Tajkhorshid, 2013, 2014; Moradi et al., 2015). Besides RMSD, examples of collective 

variables include distances between centers of mass of two atom selections within the 

transporter along a user-defined axis, which can be useful for translating the selections with 

respect to one another, and the orientation quaternion (Coutsias et al., 2004; Horn, 1987; 

Fiorin et al., 2013), which quantifies the differences in orientation between two states (Fig. 

9A).

By modeling each of the structural differences between the end states with a separate 

collective variable, one can represent these structural differences quantitatively and induce 

the predicted motions associated with the transporter’s mechanism using a biasing protocol. 

Nonequilibrium driven MD simulations are defined by the biasing protocols they use, which 

include the set of collective variables utilized to induce transitions as well as the parameters 

associated with the applied harmonic potentials. Transporters’ large-scale structural 

transitions are complex, so it is necessary to test a variety of biasing protocols to refine 

initial mechanistic predictions and to find good candidates for transition pathways through 

the collective variable space (Fig. 9B). Three criteria are used to judge the quality of a 

biasing protocol and the associated transition pathway (Moradi & Tajkhorshid, 2013, 2014; 

Moradi et al., 2015). First, it is necessary to check whether the desired conformational 

changes were actually induced by the biasing protocol by ensuring that the collective 

variables reach their final target values during the simulation. Second, the functional 

relevance of the pathway should be verified. For example, the pathway must be consistent 

with the alternating-access mechanism, and unphysical deformations of the membrane 

(which tend to arise as a result of inducing large-scale conformational changes in 

unrealistically short time scales) should be minimized. Finally, the nonequilibrium work 

required to induce the transition (defined as W(t) = ∫ 0
t ∂U(t′)

∂t′ dt′ should be minimized. A 

pathway that reproducibly requires less work corresponds to a pathway with a lower free 

energy barrier between the end states. The lower the free energy barrier, the easier and more 

likely it is for the transporter to use the associated pathway in reality.

Several refinements to the initial biasing protocol can and should be made when 

investigating a transition pathway. For example, the initial choice of collective variables may 

not adequately represent the conformational elements of the transporter, in which case 

different collective variables will need to be tested. The ideal force constants k associated 

with the harmonic potentials must also be determined empirically for each collective 

variable (Moradi & Tajkhorshid, 2013, 2014). Force constants should be high enough that 

the desired conformational changes are induced but low enough that the transporter has 

some freedom to avoid high energy barriers (e.g., steric clashes) and keep the work low. 

With the choice of collective variables and force constants established, changes in the 

collective variables should be induced in different orders and at different rates, and 

transitions that explore a variety of areas in the collective variable space should be tested 

(Moradi & Tajkhorshid, 2013, 2014). The relative quality of different pathways is never 

known a priori, so it is necessary to be as comprehensive as possible in this exploratory 

phase. It must be stated that the extreme complexity involved in this problem necessarily 
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prohibits one from conducting a systematic search to find an ideal biasing protocol and 

transition pathway. There are an infinite number of possible biasing protocols that use 

different combinations of collective variables and induce changes in them in unique ways. 

Intuition and knowledge of the transporter are the best guides for empirically designing a 

finite number of biasing protocols that have the best chance of capturing an acceptable 

transition pathway (Moradi & Tajkhorshid, 2013, 2014).

Due to the number of different biasing protocols that should be tested (e.g., ~ 200 in 

previous transporter studies (Moradi & Tajkhorshid, 2013, 2014)), it is advisable that 

preliminary simulations be made quite short (~ 5ns). Progressively fewer candidate 

transition pathways can be extended to longer and longer simulation time scales as the best 

pathways are identified at shorter time scales. Also, since these simulations are stochastic, 

the best candidate biasing protocols should be repeated several times to ensure their best 

qualities (especially low work) are reproducible (Moradi & Tajkhorshid, 2013, 2014). 

Before proceeding to the following steps involved in characterizing a transition pathway, it is 

advisable to reduce the work to less than ~100 kcal·mol−1. This is desirable because 

reducing the work required by the transition in this step greatly reduces the computational 

cost of subsequent steps. Once a satisfactory biasing protocol and transition pathway have 

been found, the pathway can be refined using a more advanced computational technique.

Refining the Transition Pathway

Refinement of the transition pathway found in the previous step can be accomplished by 

applying a path refinement technique like the string method with swarms of trajectories 

(SMwST). SMwST is a method that relaxes the initial pathway to the nearest minimum free 

energy pathway through the following steps (Pan et al., 2008; Gan et al., 2009). First, a set 

of images (i.e., conformations) are obtained at evenly spaced intervals along the initial 

pathway. Distances along the pathway are calculated using a metric (e.g., weighted 

Euclidean distance) based on the collective variables used in the driven transition. Multiple 

independent copies of the images (swarm of trajectories) are then harmonically restrained 

near their initial collective variable values before being released into short equilibrium 

simulations. The average drift observed during the equilibrium simulations is used to 

calculate a new image center for each swarm of trajectories, and the positions of the image 

centers are refined such that they remain evenly spaced along the new relaxed pathway. 

Iterations of this restrain-release cycle are performed until the pathway has converged and no 

longer changes (Fig. 10). A convenient method of evaluating the convergence of SMwST is 

through the use of the the Fréchet distance, which is able to quantify the similarity between 

two curves (W. Jiang et al., 2014; Seyler et al., 2015).

In a recent study on the large-scale conformational changes in a transporter called GlpT 

(glycerol-3-phosphate:phosphate antiporter), 50 images along the initial pathway were used, 

and 20 copies per image were simulated (Moradi et al., 2015). In each iteration, the copies 

were restrained for 5ps and released for 5ps, and ~20 iterations were required for 

convergence (Moradi et al., 2015). Such a small number of iterations was required due to the 

high quality (low free energy) of the initial pathway. Because SMwST is so computationally 

expensive, careful refinement of the initial transition pathway by evaluating a variety of 
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different biasing protocols should be performed before using SMwST. SMwST is also quite 

sensitive to the collective variables used, so great care should be taken to ensure that the 

collective variables chosen in the previous step adequately capture the transporter’s motion 

(Moradi & Tajkhorshid, 2014). Finally, it is worth noting that a convenient feature of 

SMwST is that it can be implemented either serially or in parallel (Moradi et al., 2015). That 

is, each transporter copy associated with each window can either be simulated one after the 

other on a small computing cluster or at the same time on a massive supercomputer.

Obtaining a Free Energy Profile

As described previously, US is a technique that is used to obtain free energy profiles and 

other thermodynamic information through enhanced conformational sampling along a 

reaction coordinate. By using the refined transition pathway found previously as the reaction 

coordinate, US can be applied not only to binding processes but also to the structural 

changes involved in transport cycles. To obtain an accurate free energy profile along such a 

transition pathway, it is essential to use REUS since there are many orthogonal degrees of 

freedom in the transporter that are not directly sampled. When REUS is applied to large-

scale conformational changes in transporters, it is more commonly called bias-exchange 

umbrella sampling (BEUS) (Moradi & Tajkhorshid, 2013, 2014; Moradi et al., 2015). Just as 

for a conventional US calculation, the number of umbrellas and force constants applied 

during a BEUS simulation are important parameters, and empirical or systematic efforts to 

optimize them must be made. Additionally, all umbrellas should have roughly equal 

exchange rates with their neighbors in a BEUS simulation to ensure convergence of the free 

energy profile (Moradi & Tajkhorshid, 2013, 2014; Moradi et al., 2015). Once the BEUS 

simulation has been run, the free energy profile along the pathway can be reconstructed 

using the Weighted Histogram Analysis Method (WHAM) (Kumar et al., 1992), a method 

which is considered standard, or other techniques (H. Wu et al., 2014; Shirts & Chodera, 

2008). If multiple transition pathways within a transport cycle are investigated, it is possible 

to structurally elucidate and thermodynamically characterize the entire transport cycle for a 

transporter. Using this approach, an engineered cycle for GlpT, composed of three natural 

transition pathways from the transport cycle and one that is considered forbidden, has 

recently been characterized. (Moradi et al., 2015). In Fig. 11, a schematic of the engineered 

cycle is shown alongside the free energy profile obtained for the entire cycle. Importantly, 

the location and height of major barriers in this profile are quantitatively available, and it is 

clear that the structural transition induced along the natural pathways is significantly more 

energetically favorable than the one induced along the forbidden pathway.

Before the free energy profile resulting from a BEUS simulation can be considered accurate, 

the BEUS data must first be analyzed for poor sampling, which would make the free energy 

profile unreliable. If poor sampling is observed along any of the collective variables used, a 

better biasing protocol must be employed (Moradi & Tajkhorshid, 2014). Evaluation of 

sampling is fairly straightforward, as one simply needs to create a histogram, using a 

collective variable as the independent variable for the plot, from the conformations visited in 

the BEUS simulation and verify that it is uniform over the range of collective variable values 

between the end states (Moradi & Tajkhorshid, 2014). Whether or not poor sampling along 

one of the collective variables is observed, it is also useful to identify the important degrees 
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of freedom present in the BEUS simulation. One way this can be done is by using principal 

component analysis (PCA) (Amadei et al., 1993), which is a method used to determine the 

orthogonal combinations of degrees of freedom that show the greatest variation within a data 

set, on the conformations generated in the BEUS simulation. If n collective variables were 

used in a biasing protocol, the first n principal components (PCs) should correspond roughly 

to these collective variables (Moradi & Tajkhorshid, 2014). If more than n significant PCs 

are found, the result indicates that there are combinations of degrees of freedom that must be 

accounted for to ensure reliable sampling (Moradi & Tajkhorshid, 2014). To account for 

these degrees of freedom, collective variables must be added to a revised biasing protocol, 

the steps required to obtain a new free energy profile must be completed, and PCA must be 

performed once more.

In addition to BEUS simulations along a refined pathway, which are inherently one 

dimensional, it is also possible to perform multidimensional BEUS simulations to obtain 

informative free energy landscapes. While more general configurations are possible, these 

landscapes are most commonly generated by performing two dimensional (2D) BEUS 

simulations on a rectangular grid (Moradi & Tajkhorshid, 2014). Due to the computational 

cost associated with such simulations, only approximate free energy landscapes can be 

generated (Moradi & Tajkhorshid, 2014). Before such a simulation can be performed, the 

collective variables that represent the transporter’s important structural elements must be 

well established, but an extensive exploration of the collective variable space does not need 

to have been performed. A 2D BEUS simulation can either be used to guide pathway 

exploration, or it can be used after exploration is finished to generate a more complete 

understanding of the thermodynamics that govern the transporter’s transition. To set up a 2D 

BEUS simulation, conformations corresponding to the points in the BEUS grid must be 

generated, and the grid points must be spaced following the same considerations as for 1D 

BEUS simulations. If large areas of the collective variable space have been explored during 

pathway exploration, these grid conformations can be generated by driving nearby 

conformations from previous simulations to the grid points. If such data is not available, 

conformations representing the grid points can also be generated systematically using driven 

simulations. After verifying the quality of the sampling and reconstructing the free energy 

landscape, one can then identify the minimum free energy path connecting any two points in 

the landscape using a variety of path-finding algorithms (Moradi et al., 2015), and this path 

can be further refined using SMwST.

The Direction of Future Membrane Protein Studies

The membrane protein field is progressing rapidly, currently experiencing exponential 

growth in the number of available 3D structures of distinct membrane proteins (White, 

2009). With the growing success of cryo-EM in determining membrane protein structures to 

high resolution (Vinothkumar, 2015), this trend is expected to continue for the foreseeable 

future. Similarly, the methods of the modeling community will not remain static. While 

much of the groundwork for current simulation techniques was established in the 1990’s, the 

continued advancement of computing power granted by Moore’s Law, replica exchange and 

other enhanced sampling techniques have become much more common and have become far 

more routine to a degree not foreseen even a few years ago.
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The wealth of available structural information is also pushing simulation in new directions. 

For instance, crowding on the membrane surface is generally currently neglected, despite 

suggestions that interplay between different membrane actors is critical to membrane protein 

function in general (R. Phillips et al., 2009; Guigas & Weiss, 2015) and to understand 

cellular membrane topology (Stachowiak et al., 2012). This will require a substantial 

increase in the simulation scope in the years to come, as the community moves from 

studying individual transporters to collective action by the membrane-embedded community 

of proteins.
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Figure 1. 
An exemplary scheme of the alternating access mechanism adopted by a cation-coupled 

symporter, where ions and substrate move in tandem. Here the coupling mechanism only 

permits conformational transitions when the binding site is either completely vacant or 

bound with both chemical species, forbidding transitions of partially bound states (red X). 

Different types of transporters have different coupling mechanisms, however all share this 

feature of certain forbidden transitions to regulate substrate transit and to prevent draining 

membrane potential.
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Figure 2. 
Schematic diagrams of the many membrane embedding protocols outlined here. The protein 

is colored blue and the phospholipid bilayer is shown with a purple head group and yellow 

lipid tails. (A) The naive lipid deletion method carried out within VMD (Humphrey et al., 

1996) or CHARMM (Brooks et al., 2009), where overlapping lipids are removed from the 

bilayer and equilibration eliminates the gap as denoted by the arrows. (B) The method of 

Wolf et al. (2010), where the protein, initially a thin rod, expands to make space for itself 

within the membrane. Outward displacement of lipids is illustrated by the arrows. (C) 

Pseudo atoms replaced by lipid conformers taken from a lipid library that results in a nearly 

equilibrated membrane-protein complex (Jo et al., 2007). (D) The membrane is introduced 

to the protein by a pressure applied to the membrane, resulting in an embedded complex 

(Javanainen, 2014). Flow of the membrane is indicated by the direction of the arrow. (E) 

Stansfeld et al. (2015) use coarse grained simulation to reach equilibrium. Reversion of 

coarse grain lipids to atomistic allows further equilibration. (F) Alchemical techniques 
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(Jefferys et al., 2015) gradually introduce protein-lipid interactions by using a soft-core Van 

der Waals potential as indicated by the λ parameter.
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Figure 3. 
Schematic of widely employed techniques for characterizing substrate association and 

dissociation, including their energetics. (A) Flooding simulations are where a high 

concentration of substrate (green circle) is allowed to interact with the transporter. (B) 

Steered molecular dynamics (SMD) and umbrella sampling (US) use biasing forces applied 

along a reaction coordinate (curved arrows) to steer a binding or unbinding process. (C & D) 

Alchemical methods such as free energy perturbation (FEP) or thermodynamic integration 

(TI) permit absolute binding (C) and relative binding (D) free energies to be computed 

without knowing the binding or unbinding pathway.

Vermaas et al. Page 43

Methods Enzymol. Author manuscript; available in PMC 2019 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
General parameterization workflow for developing CHARMM-compatible parameters. 

These steps are implemented in the Force Field Toolkit (ffTK) (Mayne et al., 2013), and are 

grouped by color to highlight how quantum mechanical target data feeds into each step of 

the parameter optimization process. Molecules showing the water interactions, bond 

stretching, and torsional scanning are presented on the right beside the workflow.
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Figure 5. 
Ensemble docking of a drug substrate into the translocation lumen of P-gp. (A) MD 

simulation-generated ensemble of conformations used in molecular docking. Two 

pseudosymmetric halves of P-gp are colored in cyan and orange, respectively. Only 100 out 

of 1000 conformations used in ensemble docking are shown. A set of translocation path 

residues is shown to display the diverse side chain conformations represented by the MD-

generated ensemble (inset). (B) Top 5 RMSD-based clusters of docked poses of the drug 

molecule are shown in different colors with P-gp in surface representation. One half of the 

protein is shown transparent to clearly show the clusters of the docked drug molecule.
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Figure 6. 
Binding of an ion (left) or unbinding of substrate (right) from membrane transporters 

captured in unbiased equilibrium simulations. The color of the ion and substrate changes 

with time to show movement in the direction of the arrows.
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Figure 7. 
Probing substrate binding sites and pathways using Implicit Ligand Sampling (ILS) 

technique. (A) Substrate binding sites predicted by ILS are shown in red isosurfaces. Blue 

helices represent the protein. The brown surface represents lipid bilayer. Black lines 

represent the grid on which the substrate is placed systematically during ILS analysis. (B) 

Experimental observed substrate binding sites taken from crystal structures. Substrates are 

shown in balls.

Vermaas et al. Page 47

Methods Enzymol. Author manuscript; available in PMC 2019 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Schematic of the inverted repeats of a transporter. (A) The topologies of the inverted repeats, 

boxed in blue and orange, are identical when inverted with respect to the plane of the 

membrane. The color lightness of the helices can be used to identify corresponding helices 

in the two repeats. (B) In any given state, the conformations of the repeats differ. When the 

IF conformations of the repeats are swapped, they form the OF state and vice versa.
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Figure 9. 
Two important considerations in the design of a biasing protocol. (A) The choice of 

collective variables. The differences between an exemplary IF and OF state are decomposed 

into two collective variables. One, z, represents the position of the center of mass of the 

transport domain relative to the center of mass of the scaffold domain along the membrane 

normal axis. The other, α, represents the change in orientation of the transport domain. (B) 

The choice of the transition pathway. Three possible transition pathways are shown in the 

collective variable space. If a crystal structure or other experimental evidence identified an 

intermediate state, two of the transition pathways could immediately be eliminated from 

consideration.
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Figure 10. 
Schematic representation of SMwST. A series of paths, iteratively refined by SMwST, 

connecting two minima in a schematic 2D free energy surface are shown. The color gradient 

represents different iterations, while the red line represents the converged lowest free energy 

path.
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Figure 11. 
Thermodynamic characterization of the transport mechanism of GlpT. Adapted from 

(Moradi et al., 2015). (A) Schematic representation of the engineered cycle with gating 

helices highlighted in pink and blue. The substrate is inorganic phosphate (Pi), and the cycle 

consists of transitions between four states: the apo OF (OFa) and IF (IFa) states and the 

bound OF (OFb) and IF (IFb) states. (B) Free energy profile along the entire cycle with the 

important states denoted explicitly.
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